Vetores Cartesianos. Marcio Varela

Tamanho: px
Começar a partir da página:

Download "Vetores Cartesianos. Marcio Varela"

Transcrição

1 Vetoes Catesianos Macio Vaela

2 Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial.

3 Componentes Retangulaes de um Veto Um veto pode te um, dois ou tês componentes ao longo dos eixos de coodenadas x, y, z dependendo de como está oientado em elação aos eixos. z y x y x z assim : ' ' (I)

4 Vetoes Unitáios dieção de é especificada usando-se o veto unitáio. Se é um veto com intensidade 0, então o veto unitáio que tem a mesma dieção de é epesentado po: u (II)

5 Vetoes Catesianos Unitáios Em tês dimensões, o conjunto de vetoes unitáios, i, j, k é usado paa designa as dieções dos eixos x, y, z, espectivamente. Esses vetoes seão descitos analiticamente po um sinal positivo ou negativo dependendo da oientação do veto. Os vetoes catesianos unitáios positivos estão epesentados abaixo.

6 Repesentação de um Veto Catesiano Como as tês componentes de, figua abaixo, atuam nas dieções positivas i, j, k pode-se esceve sob a foma de veto catesiano como: x i y j k z (III) Dessa foma cada componente do veto estão sepaadas e, como esultado, simplifica as opeações de álgeba vetoial, paticulamente em tês dimensões.

7 Intensidade de um Veto Catesiano É sempe possível obte a intensidade de, desde que ele esteja expesso sob a foma vetoial catesiana. Pela figua abaixo temos: z y x y x z assim ' ' : Potanto, a intensidade de éigual a aiz quadada positiva da soma dos quadados de seus componentes. (IV)

8 Dieção de um Veto catesiano dieção de é definida pelos ângulos dietoes coodenados α (alfa), β (beta) e γ (gama), medidos ente a oigem de e os eixos positivos x, y, z localizados na oigem de. Obseve que cada um desses ângulos está ente 0º e 180º, Independentemente da oientação de.

9 Paa deteminamos α (alfa), β (beta) e γ (gama), vamos considea a pojeção de sobe os eixos x, y, z. Com efeência aos tiângulos etângulos sombeados mostados em cada uma das figuas temos: cosα x cos β y cos γ z (V.I) (V.II) (V.III)

10 Uma maneia fácil de se obte os cossenos dietoes de é cia um veto unitáio na dieção de, equação (II). Desde que seja expesso sob a foma de veto catesiano, equação III: u (II) x i y j k z (III) u x y i j z k (VI) Onde: X Y z (IV)

11 Po compaação com as equações (V), vemos que os componentes de u(i, j, k), epesentam os cossenos dietoes de, isto é: x y z cos α ; cos β ; cos γ (V) u cos α i cos β j cos γk (VII) Como a Intensidade de é igual a aiz quadada positiva da soma dos quadados da intensidade dos componentes e u tem intensidade 1, então: cos α cos β cos γ 1 (VIII)

12 inalmente, se a intensidade e os ângulos da coodenada de dieção de são dados, pode se expesso sob foma vetoial catesiana como: u cos α i cos β j cos γk (IX)

13 dição e Subtação de Vetoes Catesianos Essas opeações são simplificadas se os vetoes são expessos em função de seus componentes catesianos. Po exemplo, se: x i y j zk e B B i B j B k, então o veto esultante R tem componentes x y que epesentam as somas escalaes de i, j, k de e B. Ou seja: z R ± B ( x ± B x ) i ( y ± B y ) j ( z ± B z ) k Genealizando; Σ Σ i j k (X) R X Y Z

14 Execícios: Expesse a foça, mostada na igua abaixo, como um veto catesiano. Solução: cos cos α α cos cos β cos 60º cos γ 1 45º 1 cos α 1 (0,5) (0,707 ) cos α ± 0,5 Dessa foma α pode se: α accos( 0,5) 60 º α accos( 0,5) 10 º

15 Paa expessa a foça 00 N, como veto catesiano usa-se a equação (IX): u cos α i cos β j cos γk cos α i cos β j cos γk ( 00.cos 60 º ) i ( 00.cos 60 º { 100 i 100 j 141,4 k }N ) j ( 00.cos 45 º ) k plicando a equação (IV): X Y z (100 00N ) (100 ) (141,4)

16 Detemine a intensidade e os ângulos dietoes coodenados da foça esultante que atua sobe o anel, confome a figua abaixo.

17 Expesse a foça 1, mostada na figua abaixo, como veto catesiano.

18

19 Duas foças atuam sobe o gancho mostado abaixo. Especifique os ângulos dietoes coodenados de, de modo que a foça esultante atue ao longo do eixo positivo y e tenha intensidade de 800 N.

20 k j i k j i k j i u k j i Z Y X R z y x z y x z Y X z y x Σ Σ γ β α γ β α γ β α cos cos cos 1 cos cos cos cos ; cos ; cos

21 Macio Vaela

22 O veto posição édefinido como um veto fixo que localiza um ponto no espaço em elação a outo ponto. Po exemplo, se estende-se da oigem de coodenadas, O, paa o ponto P(x, y, z), figua abaixo, então pode se expesso na foma de veto catesiano como: xi yj zk

23 Obseve que a adição de veto da oigem paa a extemidade dos tês componentes esulta do veto, figua abaixo. Começando na oigem, O, desloca-se sobe x na dieção i, depois sobe yna dieção je finalmente sobe zna dieção kpaa atingi o ponto P(x, y, z).

24 Em geal, o veto posição éoientado do ponto paa o ponto Bno espaço, figua abaixo. Como uma questão de convenção esse veto édesignado pelo símbolo, algumas vezes seão utilizados índices subscitospaa indica o ponto de oigem e o ponto paa o qual estáoientado. ssim, também seádesignado B, Obseve também que e B, são escitos com apenas um índice, visto que se estendem a pati da oigem das coodenadas.

25 Da figua anteio, pela adição de vetoes ponta-cauda, é necessáio que: B Resolvendo-se em e expessando-se e B na foma vetoial catesiana, temse: k z z j y y i x x k z j y i x k z j y i x B B B B B B B ) ( ) ( ) ( ) ( ) (

26 Na Pática: O compimento e a dieção do cabo B usado paa supota a chaminésão deteminados medindo-se as coodenadas dos pontos e B e usando-se os eixos x, y, z. O veto posição ao longo do cabo éentão estabelecido. intensidade epesenta o compimento do cabo e a dieção dele é definida po α, β, γ, que são deteminados pelos Componentes do veto unitáio calculados a Pati do veto unitáio u.

27 Exemplo: Uma fita elástico estápesa aos pontos e B, como mosta a igua abaixo. Detemine seu compimento e sua dieção, medidos de paa B.

28 Solução: 1º-estabelece um veto posição de paa B, igua abaixo. º- detemina as coodenadas dos pontos de oigem e de extemidade do veto: (1, 0, -3)m e B(-,, 3)m, espectivamente; Calcula-se o veto : m k j i k j i k z j y i x k z j y i x B B B B ) 6 3 ( 3)) ( (3 0) ( 1) ( ) ( ) (

29 intensidade de epesenta o compimento da fita elástica: Definindo um veto unitáio na dieção, temos: Os componentes desse veto unitáio dão os ângulos dietoes coodenados: m 7 (6) () 3) ( k j i u

30 Cálculo dos ângulos dietoes coodenados: 3 α accos 7 β accos γ accos Esses ângulos são medidos a pati dos eixos positivos de um sistema de coodenadas catesianas localizado na oigem de, ponto, como mostado na figua acima º 73,4º 31º

31 Macio Vaela

32 Pode-se defini, como sendo um veto catesiano pessupondo que ele tenha mesma dieção e sentidoque o veto posição oientado do ponto paa o ponto B da coda, igua abaixo. Essa dieção comum éespecificada pelo veto unitáio u, então: u, unidade de foça;, unidade de compimento.

33 Na Pática: foça que atua ao longo da coente pode se epesentada como um veto catesiano definindo-se pimeio os eixos x, y, z, fomando-se um veto posição ao longo do compimento da coente e deteminando-se depois o veto unitáio ucoespondente que define a dieção tanto da coente quanto da foça. inalmente, a intensidade da foça écombinada com sua dieção, u.

34 Exemplo: O homem mostado na igua abaixo puxa a coda com uma foça de 70 lb. Repesente essa foça, que atua sobe o supote, como veto catesiano e detemine sua dieção.

35 Solução: 1º-estabelece um veto posição de paa B, igua abaixo. º- detemina as coodenadas dos pontos de oigem e de extemidade do veto: (0, 0, 30)pés e B(1,-8,6)pés, espectivamente; Calcula-se o veto : pés k j i k j i k z j y i x k z j y i x B B B B ) 4 8 (1 30)) (6 0) 8 ( 0) (1 ) ( ) (

36 intensidade de epesenta o compimento da coda B: (1) ( 8) ( 4) 8pés Definindo-se o veto unitáio que detemina a dieção e o sentido de e, temos: u 1 8 i 8 8 j 4 8 k Como tem intensidade de 70 lbe dieção especificada po u, temos: i 8 8 { 30i 0 j 60k}lb j 4 8 k

37 Os componentes desse veto unitáio dão os ângulos dietoes coodenados: α accos β accos 8 4 γ accos 8 64,6º 107º 149º

38 Macio Vaela

39 O poduto de vetoes e B, escito.b e lido como escala B, é definido como o poduto das intensidades de e de B e do Cosseno do ângulo θ ente suas oigens. Expesso na foma de equação:.b B.cos θ Onde 0º θ 180º.

40 Leis das Opeações Lei Comutativa:.B B. Multiplicação po Escala: a.(.b) (a.).b.(a.b) (.B).a Lei Distibutiva:.(B D) (.B) (.D)

41 Definição de Veto Catesiano.B x.bx y.by z.bz plicações: O poduto escala tem duas aplicações impotantes: 1 - Detemina o ângulo ente dois vetoes ou eta que se inteceptam. O ângulo θ ente as oigens pode se deteminado pela equação: θ. B B 0 accos ; 0 θ 180 0

42 Detemina os componentes paalelo e pependicula de veto a uma eta..1 - Componente Paalelo:.cos θ.u Potanto, a pojeção escala de ao longo de uma eta é deteminada pelo poduto escala de e o veto unitáio uque define a dieção da eta. Dessa foma o componente epesentado como um veto é:.cos θ u (.u)u

43 . Componente Pependicula: O componente pependicula a eta aa pode se obtido de duas maneias: θ accos u ; então :. senθ; Da mesma foma se fo conhecido, então, pelo teoema de Pitágoas, pode-se esceve: ;

44 Na Pática: O ângulo θente a coda e a viga pode se deteminado usando-se 0 poduto escala. Definem-se os vetoes posição ou vetoes unitáios ao longo da viga, e ao longo da coda, como θédefinido ente as caudas desses vetoes, pode-se esolve em θ usando-se: ; u ; u ;. accos.. accos u u θ

45 Na Pática: Se a coda exece uma foça sobe a junta, a pojeção dessa foça ao longo da viga pode se deteminada definindo-se pimeio a dieção da viga, usando-se u ; um veto unitáio e depois definindo-se a foça como um veto. u. catesiano, plicando-se o poduto escala, a pojeção seá:. u

46 Exemplos: estutua mostada abaixo está submetida a uma foça hoizontal {300j}N. Detemine a intensidade dos componentes da foça paalela e pependicula ao elemento B. 1º-Detemina-se o veto posição B. Com base na figua temos: B {i 6j 3k}

47 º- intensidade do componente de ao longo de B éigual ao poduto escala de pelo veto unitáio u B, que define a dieção de B, como: B i 6 j 3k ub B () (6) (3) u então : cosθ B B B B B 0,86i 0,857 j 0,49k;. u (300 j).(0,86i 0,857 j 0,49k) (0).(0,86i) (300 j).(0,857 57,1N B j) (0).(0,49k)

48 Como o esultado éum escala positivo, B tem o mesmo sentido de dieção de u B. Expessando B na foma vetoial catesiana, temos: B B B cosθ. u B B. u (57,1N ).(0,86i 0,857 {73,5i 0 j 110k} B j 0,49k) O componente pependicula é potanto: B 300 j (73,5i 0 j 110k) { 73,5i 80 j 110k} N

49 Sua intensidade é deteminada tanto po meio desse veto como po Pitágoas: B (300) 155N (57,1)

50 O tubo da igua abaixo estásujeito a foça 80 lb. Detemine o ângulo θente e o seguimento B do tubo e as gandezas dos componentes de, que são paalelos e pependiculaes a B.

51 Solução: Ângulo θ: Pimeio define-se os vetoes posição de B paa e de B paa C. (0, 1, 0); B (, 3, -1); C (, 0, 0); B ( B) [(0-)i (1-3)j (0-(-))] B {-i -j 1k}pés BC (C-B)[(-)i (0-3)j (0-(-1))k] BC {-3j 1k}pés

52 Solução: Ângulo θ- continuação: Em seguida, calcula-se o ângulo θ ente as caudas desses dois vetoes. B. BC cosθ. cosθ B BC ( ) ( )(0) ( )( 3) (1)(1) ( ) (1) x ( 3) (1) cosθ ,7379 θ 4,5º

53 Solução: Componentes de : foça édecomposta duas componentes,figua, desta foma calcula-se B cos θe.sen θ. B B B cosθ 80.cos 4,5º 59lb senθ 80. sen4,5º 54lb

54 Solução Tivial: Componentes de continuação: Detemina-se os unitáios u B e u BC: u u u u u u B B B BC BC BC ( ) i 3 B B BC BC ( i j 1k ) ( 3 j 1k ) ( 3) j 3 ( ) 1k 3 (1) 3 j 1k (1)

55 Solução Tivial: Componentes de continuação: Detemina-se como Veto Catesiano e B. 80. BC BC 3 j 1k ( 75,89 j 5,3k ) lb então : B B B B. u B ( 75,89 j 5,3k ). 0 50,60 8,43 59lb i 3 j 3 1k 3

56 Solução Tivial: Componentes de continuação:com B e detemina-se : B (80) 54lb (59)

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Mecânica Vetoial paa Engenheios: Está

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA CAPÍTULO 1 VETORES

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA CAPÍTULO 1 VETORES ÁLULO VETORIL E GEOMETRI NLÍTI Luiz Fancisco da uz Depatamento de Matemática Unesp/auu ÁLULO VETORIL E GEOMETRI NLÍTI 1 PÍTULO 1 VETORES cedita-se que as pimeias noções intuitivas sobe opeações com segmentos

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

Apostila de álgebra linear

Apostila de álgebra linear Apostila de álgeba linea 1 Matizes e Sistemas de Equações Lineaes 1.1 Matizes Definição: Sejam m 1 e n 1 dois númeos inteios. Uma matiz A de odem m po n, (esceve-se m n) sobe o copo dos númeos eais (R)

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

Vestibulares da UFPB Provas de Física de 94 até 98 Prof. Romero Tavares Fone: (083) Eletricidade. q 3

Vestibulares da UFPB Provas de Física de 94 até 98 Prof. Romero Tavares Fone: (083) Eletricidade. q 3 Vestibulaes da UFB ovas de Física de 9 até 98 of. omeo Tavaes Fone: (08)5-869 leticidade UFB/98. Quato patículas caegadas com cagas,, e estão colocadas nos vétices de um uadado (ve figua ao lado). e o

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ª Questão ( pontos. Um caetel de massa M cento e aios (exteno e (inteno está aticulado a uma baa de massa m e compimento L confome indicado na figua. Mediante a aplicação de uma foça (constante a um cabo

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Depatamento de Engenhaia de Mateiais (DEMAR) Escola de Engenhaia de Loena (EEL) Univesidade de São Paulo (USP) LOM30 - Teoia da Elasticidade Aplicada Pate 3 - Fundamentos da Teoia da Elasticidade (Coodenadas

Leia mais

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C.

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C. 13 Geometia I - GRITO VLIÇÃO - 01/ Questão 1. (pontuação: ) o seto O de cento O, aio O = 3 e ângulo O = 60 o está inscita uma cicunfeência como mosta a figua. a) alcule o aio dessa cicunfeência. b) alcule

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [A] A velocidade linea de cada ponto da hélice é popocional ao aio: v ωr I A intensidade da foça de atito é popocional à velocidade linea: Fat kv II O toque da foça

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87.

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87. Sumáio Pefácio à quata edição, ix CAPÍTULO 1 Vetoes, 1 1.1 Peliminaes, 1 1.2 Vetoes, 2 1.3 Adição de Vetoes, 3 1.4 Poduto po Escalaes, 6 1.5 Dependência e Independência Lineaes, 9 1.6 O Poduto Inteno,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

CAPÍTULO 6. Exercícios 6.3

CAPÍTULO 6. Exercícios 6.3 CAPÍTULO 6 Execícios 6.3 1. Em notação vetoial: (x, y) (x 0, y 0 ) (a, b) é a equação da eta que passa pelo ponto (x 0, y 0 ) e é paalela à dieção do veto v ( a, b). Potanto, (x, y) (1, 2) (1, 1), é a

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--

Leia mais

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE FASE PROVA DE FÍSI E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. A pimeia questão é objetiva, e as

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas Um pouco de cálculo UM POUCO DE CÁLCULO. Intodução aos vetoes Eistem gandezas físicas que podem se especificadas fonecendo-se apenas um númeo. Assim, po eemplo, quando dizemos que a tempeatua de uma sala

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Pof. D. Helde Alves Peeia Maço, 9 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -. Estágio

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras)

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras) PME Mecânica B ª Pova 3/3/9 Duação: minutos (Não é pemitido o uso de calculadoas) ª Questão (3, pontos) O eixo esbelto de compimento 3L e massa m é apoiado na aticulação e no anel B e possui discos de

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

ATIVIDADES PARA SALA PÁG. 50

ATIVIDADES PARA SALA PÁG. 50 GTI esoluções apítulo ojeções, ângulos e distâncias estacando o tiângulo, tem-se o 8 0 TIIS SL ÁG. 0 0 0 onte luminosa cm 7 cm 4 7 I. = 7 + II. tg = = 6 49 = + d = 76 4 7 = = = 4 + d 4 + d = 48 d = d 4

Leia mais