UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

Tamanho: px
Começar a partir da página:

Download "UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya"

Transcrição

1 UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = u (b (c 2 +2 (, 3,, se u =. Resposta. 6 z sen + 23 cos z. Resposta f v 2 u 8 (0,, 2, se f(u, v, w = eu ln( + vw. Resposta. /9 2. Em aplicações do cálculo difeencial (temodinâmica po eemplo usa-se a notação (, que significa quando z se epime como função das vaiáveis e. Atente paa o fato de que, em geal, f significa f, mas tem este outo significado que acabamos de desceve. Po eemplo, se z = 2 2, então, epimindo e em coodenadas polaes, = cos, = sen, podemos esceve z de outas fomas, tendo então as deivadas paciais que indicamos: z = 2 cos 2 2 sen 2, = 2(cos 2 sen 2 z = 2 2 ( = 2 2 2, = 2 z = = 2 2 2, = +2 Com base nos conceitos e eemplos acima, sendo z = , = cos, = sen, calcule as deivadas paciais pedidas, escevendo peviamente z como função das duas vaiáveis indicadas na deivação. (a (e (b (f (c (g ( (d (h ( Respostas. (a z = , = 2 (b z = 22 2, = 2 (c z = 2 (2 sec 2, = 2(2 sec2 (d z = , = 4 (e z = 2 + 2, = 2 (f z = 2 ( + cosec 2, = 2( + cosec 2 (g z = 2 (2 sec 2, = 42 tg sec 2 (h z = 2 ( + cosec 2, 4 2 cosec 2 cotg =

2 2 3. Esceva uma epessão paa du, se u = f(,, z, com = ϕ(, e z = ψ(,. d Resposta. du = f d (,, z + f (,, z ϕ ( + f z (,, z (ψ (, + ψ (, ϕ (, sendo, nesta epessão = ϕ( e z = ψ(, ϕ(. 4. Moste que se w = f(u, v é difeenciável, e se u = +at, v = +bt, então w t = aw +bw. 5. Sendo z = (sen cos, calcule dz, po deivação em cadeia, tomando z = uv e d u = sen, v = cos. Resposta. dz = (sen d cos ( cos2 sen ln(sen. sen 6. Moste que se z = + f(, (f deivável então + = + z. então 7. A função difeenciável z = f(, é homogênea de gau n se f(t, t = t n f(,. Moste que uma tal função satisfaz a equação f + f = nf(,. Sugestão. Deive ambos os membos em elação a t e depois faça t =. 8. Considee a equação difeencial pacial 2 z 5 2 z 2 + z 6 2 = 0 2 Moste que, fazendo-se s = + 2, t = + 3, a equação tona-se 2 z =. Detemine s t então a foma de uma solução geal z = ϕ(,, supondo ϕ difeenciável com deivadas paciais de odem 2 contínuas. Resposta. z = f( g( Como no poblema anteio, detemine a solução geal da equação 2 2 z z 0 2 z 2 = 0 fazendo a mudança de vaiáveis u = 5 2, v = Suponha que w = f(, é solução geal de w w =. Faça = u + v, = u v, e moste que a equação se tona 2 w =. Resolva então a equação dada. u v Resposta. w = f( + + g(. 4. Se z = f(,, e = cos, = sen, moste que (a e então que = cos + sen = sen + cos (b ( 2 + ( 2 = ( ( 2. = cos sen = sen + cos

3 3 2. Esceva a equação de Laplace 2 f + 2 f = 0, em temos de coodenadas polaes e, 2 2 sendo = cos, = sen. Resposta. 2 + f f 2 = Se = e s cos t, = e s sen t, moste que 2 u u 2 = e 2s 4. Detemine as difeenciais das seguintes funções. ( 2 u s + 2 u 2 t 2 (a z =. Resposta. dz = 2 d + ( + ln d. (b z = ln( Resposta. dz = ( d + d (c f(, = ln tg 2. Resposta. df = sen(2/ d + 2 sen(2/ d. (d u = z 2. Resposta. du = (e u = ac tg z 2. Resposta. du =. ( d + d + z dz z2 z 2 2 ( d + d dz z4 z (f u = cos 2 + sen 2. Resposta. du = sen 2 d sen 2 d. 5. Usando a difeencial de f( =, moste que se n é bastante gande, tem-se 3 = 3. Estime então, sem usa calculadoa, uma boa apoimação paa n 4 (n+ 3 n 3 ( Resposta = 9, Usando difeenciais, moste que, sendo A = π 2, tem-se A = π( + 2 π 2 = 2π. Intepete geometicamente esse esultado. 7. A áea de um etângulo de lados e é dada po A =. Se os lados e sofem vaiações e, espectivamente, intepete geometicamente a quantidade de áea despezada quando utilizamos a apoimação A = da. 8. Seja R a esistência total de um cicuito de tês esistoes R = 25 ohms, R 2 = 5 ohms, R 3 = 0 ohms, ou seja, = R R + R 2 + R 3. Se R e R 2 são alteados paa 25, ohms e 4,8 ohms, espectivamente, detemine o valo paa o qual R 3 deve se alteado de modo a mante R inalteado. Resposta. R 3 deve passa a se 0,073 ohms. 9. Em condições ideais, a aceleação da gavidade pode se calculada a pati do compimento l e do peíodo T de um pêndulo, pela fómula g = 4π2 l. Enconte o eo máimo elativo T 2 no cálculo de g, g/g, se o eos elativos nos cálculos de l e T são da odem de 5% e 2%, espectivamente. Resposta. 9%. 20. Até qual pecentual um eo elativo de % em a e em b pode afeta a 2 b 3. Resposta. 5%. 2. Calcule os valoes numéicos indicados usando uma difeencial (compae com valoes obtidos em uma boa calculadoa. (a 3 (2, (, Resposta. 2,0. (b ln( Resposta (c Resposta ,5 0 4.

4 4 Deivadas diecionais, gadiente, e aplicações. Calcule a deivada diecional de z em P 0, na dieção u, em cada um dos casos abaio. (a z = ln 2 + 2, P 0 = (,, u = (cos π/4, sen π/4. Resposta. 2/2. (b z = 2 2 2, P 0 = (, 2, u = (cos 60, sen 60. Resposta. 9 3/2. 2. Calcule f v (P 0, sendo (a f(, = cos 2, P 0 = (2, π/4, v = 5 i + j. Resposta. /(2 26. (b f(, = ac tg, P 0 = (4, 4, v = 2 i 3 j. Resposta. /( A pati do ponto (,, em que dieção a função φ = decesce mais apidamente? Resposta. Na dieção do veto i. 4. Calcule a deivada de w = ze cos, no ponto P = (, 0, π/2, na dieção do veto i + 2 j. Resposta. πe/( Detemine um veto nomal à supefície z = 2 + 2, no ponto (3, 4, 25. Detemine equações do plano tangente e da eta nomal à supefície nesse ponto. Resposta. n = 6 i + 8 j k; z = 25; 3 6 = 4 8 = z Idem, agoa consideando a supefície z + z 2 + = 0, e ponto A = (, 2, dessa supefície. Resposta. n = 5 i 3 j + 2 k; z + 3 = 0; = 2 = z= Sendo φ = 2 2, esboce (em um único sistema de coodenadas catesianas no plano as cuvas φ = 4, φ = 0, φ =, φ = 4. Se φ é o potencial eletostático no ponto (,, as cuvas φ = constante são as cuvas equipotenciais e o campo elético é o campo vetoial E = φ. Se φ é a tempeatua em (,, as cuvas φ = constante são as isotemas e φ é o gadiente de tempeatua. O calo flui na dieção φ. Enconte e esboce os vetoes φ nos pontos (, = (±, ±, (0, ±2, (±2, 0 (esboce os vetoes geometicamente, demacando suas etemidades iniciais nesses pontos. Então, lembando que φ é nomal às cuvas φ = constante, esboce váias cuvas ao longo das quais o calo fluiá, assumindo que φ = tempeatua em (,. 8. Seja φ = 2 2 e considee os conceitos definidos no poblema anteio. (a Se φ é o potencial eletostático em (,, ache a gandeza e a dieção do campo elético em (, 2. Resposta. 2 5, 2 i + j. (b Se φ é a tempeatua em (,, em que dieção a tempeatua decesce mais apidamente a pati do ponto ( 3, 2? Resposta. 3 i + 2 j. (c Se φ é a tempeatua em (,, enconte a taa de vaiação da tempeatua, em elação ao deslocamento, no ponto (, 2, na dieção 3 i j. Resposta. 0 (essa é a deivada diecional de φ, no ponto (, 2, na dieção 3 i j.

5 5 9. A altua de uma colina (ou montanha tem equação z = 00( (metos em elação a plano hoizontal de efeência O (uma colina com equação! Isso eiste? Se você está no ponto (,, z = (3, 2, 30, que dieção do plano O você deve evita paa desce a colina com isco mínimo de cai olando abaio? Resposta. 3 i + 4 j. 0. Justifique a seguinte afimação. Se z = f(, é difeenciável em P 0, então eistem constantes m e n tais que paa cada veto unitáio u = (cos α i + (sen α j, tem-se f (P u 0 = m cos α + n sen α. { 2, se (, (0, 0. Seja f(, = , se (, = (0, 0 Moste que, paa cada veto unitáio u = (cos α i + (sen α j, eiste a deivada diecional de f na dieção u, no ponto (0, 0 (lembe-se de que f f((0,0+t u f(0,0 (0, 0 = lim. Usando u t 0 t o fato estabelecido no eecício anteio, deduza que f não é difeenciável em (0, 0.

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Cadeno de Eecícios João C. Bastos 4/5 Mestado Integado em Engenhaia Química Faculdade de Engenhaia da Univesidade do Poto Análise Matemática II Cadeno de Eecícios Paa a consolidação

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Mecânica Vetoial paa Engenheios: Está

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2,

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2, Univesidade Fedeal do Rio de Janeio INSTITUTO DE MATEMÁTICA Depatamento de Métodos Matemáticos Pimeia Lista de Execícios - Geometia Difeencial 010/0 1. Calcula o veto tangente unitáio, a nomal pincipal

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Aula Prática 5: Preparação para o teste

Aula Prática 5: Preparação para o teste Aula Pática 5: Pepaação paa o teste Tipo I: Equação Newton Foças não estauadoas & Enegia Tipo II: Equação Newton Foças estauadoas & Enegia Tipo III: Cicula & Gavidade & Enegia Poblema tipo 1: Equação Newton

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I

Total. UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT Turma C /1 Prova da área I UFRG - INTITUTO DE MATEMÁTIA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma - 19/1 Pova da áea I 1-6 7 8 Total Nome: Ponto exta: Wikipédia Apesentação Nenhum Tópico: atão: Regas Geais: Não é pemitido

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 2ª

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 2ª ESCLA PLTÉCNCA DA UNVERSDADE DE SÃ PAUL DEPARTAMENT DE ENENHARA MECÂNCA PME MECÂNCA B ª Pova /5/ Duação minutos (Não é pemitido o uso de calculadoas). b j B y A ω a M ω C g i ª Questão (, pontos) No sistema

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais Intodção às Eqações Dieencias Paciais Poblemas com Valo de Fonteia e com Valoes Iniciais Conteúdo 1. Opeadoes Dieenciais. Condições iniciais e de onteia 3. Eqações Dieenciais Paciais 4. Sistemas de coodenadas.

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas Um pouco de cálculo UM POUCO DE CÁLCULO. Intodução aos vetoes Eistem gandezas físicas que podem se especificadas fonecendo-se apenas um númeo. Assim, po eemplo, quando dizemos que a tempeatua de uma sala

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10

Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10 Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Depatamento de Engenhaia de Mateiais (DEMAR) Escola de Engenhaia de Loena (EEL) Univesidade de São Paulo (USP) LOM30 - Teoia da Elasticidade Aplicada Pate 3 - Fundamentos da Teoia da Elasticidade (Coodenadas

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

(a) Num vórtice irrotacional du i = u i

(a) Num vórtice irrotacional du i = u i Pova II Nome: Infomações: Duação de 2 hoas. Pode come e bebe duante a pova. Pode faze a pova à lápis. Pode usa calculadoa sem texto. A pova tem complexidade pogessiva. A tentativa de violação de qualque

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME-50 - Mecânica dos Sólidos II a Lista de Eecícios 1) Pode-se mosta ue as elações deslocamentos-defomações, em coodenadas

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Análise Vectorial (revisão)

Análise Vectorial (revisão) nálise ectoial (evisão) OpE - MIB 7/8 Pogama de Óptica e Electomagnetismo nálise ectoial (evisão) aulas Electostática e Magnetostática 7 aulas ampos e Ondas Electomagnéticas 7 aulas Óptica Geomética aulas

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f).

Experimento 2 Espectro de potência e banda essencial de um sinal. Exercício preliminar. o gráfico de X(f). UnB - FT ENE Epeimento Especto de potência e banda essencial de um sinal Eecício pelimina O eecício deve se manuscito ou impesso em papel A4. As epessões matemáticas básicas e os passos pincipais do desenvolvimento

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite a FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA 6/5/8 INSTRUÇOES: Responda no espaço pópio da questão e use o veso da página como

Leia mais

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras)

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras) PME Mecânica B ª Pova 3/3/9 Duação: minutos (Não é pemitido o uso de calculadoas) ª Questão (3, pontos) O eixo esbelto de compimento 3L e massa m é apoiado na aticulação e no anel B e possui discos de

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

QUESTÃO 1. r z = b. a) y

QUESTÃO 1. r z = b. a) y QUESTÃO 1 Uma longa baa cilíndica condutoa, de aio R, está centada ao longo do eixo z. A baa possui um cote muito fino em z = b. A baa conduz em toda sua extensão e no sentido de z positivo, uma coente

Leia mais

Física Exp. 3 Aula 3, Experiência 1

Física Exp. 3 Aula 3, Experiência 1 Pofa. Eloisa Szanto eloisa@dfn.if.usp.b Ramal: 7111 Pelleton Física Exp. 3 Aula 3, Expeiência 1 Pof. Henique Babosa hbabosa@if.usp.b Ramal: 6647 Basílio, sala 100 Pof. Nelson Calin nelson.calin@dfn.if.usp.b

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

raio do disco: a; carga do disco: Q.

raio do disco: a; carga do disco: Q. Uma casca hemisféica de aio a está caegada unifomemente com uma caga Q. Calcule o veto campo elético num ponto P no cento da base do hemisféio. Dados do poblema aio do disco: a; caga do disco: Q. Esquema

Leia mais

T sin θ = F E T cos θ = P

T sin θ = F E T cos θ = P Capítulo Eletostática. Pelas condições de equilíbio T = P + F E, ou seja: T sin θ = F E T cos θ = P Se l é o compimento de cada linha, então a distância d ente as duas patículas é dada po d = l sin θ,

Leia mais

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos

Leia mais

Eletricidade e Magnetismo II Licenciatura: 3ª Aula (06/08/2012)

Eletricidade e Magnetismo II Licenciatura: 3ª Aula (06/08/2012) leticidade e Magnetismo II Licenciatua: 3ª ula (6/8/) Na última aula vimos: Lei de Gauss: ˆ nd int xistindo caga de pova sente uma foça F poduzida pelo campo. Ocoendo um deslocamento infinitesimal, o tabalho

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2015

CONCURSO PÚBLICO EDITAL Nº 03 / 2015 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Banco, 50 Santa Lúcia 9056-55 Vitóia ES 7 3357-7500 CONCURSO PÚBLICO EDITAL Nº 03 / 015 Pofesso do Magistéio do Ensino Básico,

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a Eletomagnetismo II 1 o Semeste de 7 Notuno - Pof. Alvao Vannui 4 a aula 15jun/7 Vimos: Usando os poteniais de Lienad-Wiehet, os ampos de agas em M..U. são dados po: i) v q ( v ) q 1 E( a ) u ( u ) ii)

Leia mais

Eletromagnetismo I Instituto de Física - USP: 2ª Aula. Elétrostática

Eletromagnetismo I Instituto de Física - USP: 2ª Aula. Elétrostática Eletomagnetismo I Instituto de Física - USP: ª Aula Pof. Alvao Vannucci Elétostática Pimeias evidências de eletização (Tales de Mileto, Gécia séc. VI AC): quando âmba (electon, em gego) ea atitado em lã

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A.º Ano de Escolaidade Deceto-Lei n.º 9/0, de 5 de julho Pova 65/Época Especial Citéios de Classificação Páginas 05 Pova 65/ E. Especial

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

7.4 A Lei de Ampère. Encontramos a seguinte expressão (7.4.1)

7.4 A Lei de Ampère. Encontramos a seguinte expressão (7.4.1) 7.4 A Lei de Ampèe Encontamos a seguinte expessão x B µ (, ϕ, z ϕˆ 2 π (7.4.1 paa o campo magnético geado po um fio eto infinitamente compido. Esta expessão se efee a coodenadas cilíndicas. O fio fica

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais