SOLUÇÃO NUMÉRICA DA EQUAÇÃO DE BURGERS PELO MÉTODO DAS DIFERENÇAS CENTRAIS DE SEXTA-ORDEM

Tamanho: px
Começar a partir da página:

Download "SOLUÇÃO NUMÉRICA DA EQUAÇÃO DE BURGERS PELO MÉTODO DAS DIFERENÇAS CENTRAIS DE SEXTA-ORDEM"

Transcrição

1 Rvs Iromr d Irí Má. Vol. 7, N.º, pp. 7-, SLUÇÃ NUMÉRICA DA EQUAÇÃ DE BURGERS PEL MÉTD DAS DIERENÇAS CENTRAIS DE SEXTA-RDEM ESTANER CLAR RMÃ, JAIR APARECID MARTINS, LUIZ ELIPE MENDES DE MURA Uvrsdd drl d Ijá Cmps d Ir R Irmã Ivo Drmod,, Dsro Idsrl II, CEP 5-7, Ir MG Brsl Dprmo d Ehr d Prodo, Mso Mrls Av. Idpdê, 5, Ipor, CEP 7- Soro SP Brsl Uvrsdd Esdl d Cmps ldd d Ehr Mâ, Dprmo d Térm ldos R Mdlyv,, Cdd Uvrsár "Zro Vz", CEP:-6 Cmps SP Brsl Rdo d jlo d, pr pló 5 d or d Rsmo Es rlho m omo ojvo prsr plção d m sqm d drçs rs d 6 solção d qção d Brrs, dmosrdo s ê ldd d mplmção. A prr d omprçõs om oros méodos proposos por oros ors, dmosr-s q s méodo é ão qo város oros, porém, d ál ormlção mplmção lém d prsr m o so ompol. Plvrs-hv Méodo ds Drçs s, qção d Brrs, Méodo d Crk-Nolso Mhod, Sérs d Tylor.. INTRDUÇÃ Pr lsr ê mér do méodo ds drçs rs d 6, s rlho srá propos omo plção m smplção d qção d Nvr-Soks, mém ohd omo qção d Brrs. Ns osdr-s m rd d prssão lo, m ods s drçõs, q o somo é rdo ps drção, o q rsl s prssão: om,,, A, L, B,, sdo q é vsosdd má o domío ompol ddo omo L. ojvo prpl ds rlho é dmosrr q plção do méodo ds drçs rs d 6 pr dsrzção dos rmos sps jm om o méodo d Crk-Nolso pr o rmo rs é ão qo város oros méodos proposos lor r, r ls pod-s r [-5] r oros, porém, om vm d sr d ál mplmção d o so ompol.. INITE DIERENCE METHD Pr prolms ísos ovrdos por qçõs drs prs, pr smlção mér d s prolms é ssáro m méodo méro pr promr lms dss drvds. Ns rlho, o Méodo ds Drçs s srá lzdo. Cosdrdo m ção s drvd o poo,

2 E.C. Romão, J.A. Mrs, L..M. d Mor lm S é pddo m sérs d Tylor m oro d, m-s! Ssdo, rsl q é m promção d prmr ordm, so é, o rro d rmo é. Esrvdo m sérs d Tylor pr +, m-s [6],!! 5!! 6 Rorzdo 5, oém-s drç pr r, 7 Smlrm, pr 6, m-s drç pr rás, lm, somdo-s s 5 6, oém-s prssão ohd omo drç rl d sd ordm d, Pr drç rl d, Ch prs s órml, 6 6 Um orção spl ds rlho é osrção d m promção d 6 pr drçs rs pls sérs d Tylor. Ulzdo msm dé d 5 6 pr,, + + m-s,!!

3 Solção mér d qção d rrs plo méodo ds drçs rs d s-ordm!!!! Pls 5, 6,,, srv-s prssão, d d 6 6! 7 7! ! 5! Pl 5, sl-s m prssão pr drvd sd d prr do s ssm lr, d / 5 / / / / 5 / / d. Rsldo, ssm prssão, RMULAÇÃ NUMÉRICA Cosdrdo E, m oros plvrs, E lzdo o méodo d Crk-Nolso, oém-s, E od E

4 E.C. Romão, J.A. Mrs, L..M. d Mor Pr dsrzção spl srá lzdo o méodo ds drçs rs. ssm lr srá osrído omo s: Nó Nó NNós Codção d ooro m = =, rspvm. s.: Nós: qdd ol d ós mlh. Nó Nó NNós Drç Crl : od,, Nó Nó NNós Drç Crl : 5 od 6 6,, ros Nós Drç Crl 6 : 6 od ,,,,,,. APLICAÇÕES NUMÉRICAS Pr solção do ssm lr q rprs o prolm proposo, lz-s m ro hmd DLSLRG d lo orr. Dvdo à pdd d mmór ompol do ompdor lzdo, o possívl s prolm rlho, rmzr os os m m mrz h. Pr áls do rro omdo solção mér m omprção om solção lí, o lzd orm L, sdo s dd orm: m m, o sj, mor drç m módlo, dr odos os ós d mlh ompol, omprção d solção lí om mér. Pr dmosrr ê ds propos, sr prsm-s o plçõs mérs. Aplção Ns plção osdr-s qção om s ss odçõs d ooro l:,,. s,

5 Solção mér d qção d rrs plo méodo ds drçs rs d s-ordm Tl. Rsldos méros pr ls poos = =.. D [7] Kly Zh [] X [5] Prs E [] [5] =. =.5 =. = Tl. Comprção d rsldos méros d város ors solção. Al [] D [7] Do ] X [5] Prs E [5] =. = / =.5 =.5 =.5 =. = Aq, lzm-s os rlhos [,5,7,]. Arvés d l, o-s q os rsldos do prs rlho prs os mlhors rsldos, ssm omo o rlho [5] q lz m mlh mos rd m, porém lz m psso o mpo dz vzs mor, o sj, qo o prs rlho lz-s d pssos o mpo, [5] lz-s d pssos pssos o mpo ms, osodo ssm m so ompol osdrvlm mor. Aplção Ns plção osdr-s. om odçõs d ooro,,. m odção l do po,. /, od.5. Ns plção, os rlhos [5,7,,] srvrm d omprção dos rsldos méros ds rlho, jm om solção lí. Um rrís mpor q pod sr vdd l, é q o prs rlho [5] ssrm d m dsrzção mporl ms rd pr or os rsldos, qo q os oros rlhos, om m rmo mor o mpo, os rsldos prsm o prsão, porém ão ompv om [5] o prs rlho. Um rrís mpor d ão do méodo d drçs rs d 6 om o méodo d Crk-Nolso d é

6 E.C. Romão, J.A. Mrs, L..M. d Mor Tl. Comprção dos rsldos pr. zs Hss Prs = / = / = /6 E =. =. = Tl. Comprção dos rsldos pr zs [] Hss [] Prs = / = / = /6 E [] =. =. = ssdd d m psso d mpo ms m rdo, m orprd, rçs l ordm d prsão do méodo d dsrzção spl, sso m smpr é ssáro. Aplção Aq, srá lzdos os vlors l. l pr vsosdd má qção. Com rlção às odçõs d ooro l m-s,,,, Como rlhos pr omprção, s plção lzo-s [,]. A l mosr q o prs rlho lç os rsldos qdo omprdos om os oros dos rlhos om solção. É mpor rsslr q o psso d mpo lzdo o rmdáro qdo omprdo om os oros, od [] já oém os rsldos om m =. qo q [] ss d m psso d mpo =.. Ns rlho o lzdo m psso d mpo =.. Aplção Pr, s plção s odçõs d ooro l são d ordo om s solção lí, s, os jo domío ompol é.

7 Solção mér d qção d rrs plo méodo ds drçs rs d s-ordm Tl 5. Norm L pr = /. / / / /6 / /6 W d Lyo [] Prs Tl 6. Norm L pr = /. /5 / / / / W d Lyo [] Prs Ns plção m omprção om os rsldos méros prsdos por [] é rlzd. N l 5 -s = / vrm-s vlors d dmosrdo q o prs rlho o rmo do psso d mpo mlhor osm os rsldos, qo q m [] o msmo ão oorr. A- or l 6, = / vrm-s vlors d os rsldos méros dos dos rlhos mosrm rsldos q mlhorm pr d msm ordm d prsão. Applo 5 Pr s plção qção ovr é d orm, pr áls d rro srá lzd s solção lí pr omprçõs,, jo domío ompol é om s odçõs d ooro l sdo d ordo om solção lí []. s rsldos méros prsdos l 7 dmosrm pr m so od s odçõs d ooro dpdm do mpo do spço, o méodo proposo prs ls rsldos, ordo o mor rmo d m ordm d prsão m oro d CNCLUSÕES As d qlqr os, é mpor mor q o ojvo ds rlho ão o d prsr m méodo q oss mlhor o por q qlqr oro dr os rlhos q dos. Aq, prso-s m sqm d l ordm d drçs rs pr dsrzção spl do om m méodo d Crk-Nolso d sd-ordm d ál ormlção mplmção. A lzção do méodo d Crk-Nolso d mr q o lzdo prs ldd d ps ssr d odção l pr o ío dos állos, lmrdo q ls méodos d l ordm ssrm d ms d m psso d mpo, o q dlr m poo os állos. A lzção d m sqm d drçs rs d s-ordm possl lzção d m mlh spl poo rd, rdo ssm m ssm mrl d pq ordm lrdo ssm os állos, rssldo q s rlho lzo-s m rmzmo m mrz h por s rr d m prolm D, m prolms D o D, o or prpl ds rlho ormlm lz-s d rmzmo m vors q ohm ps os os ão los [] do ssm mrl possldo ssm m rd rmo d mlh ompol. Como propos pr rlhos ros, srá pldo s sqm qção d Brrs D pr lsr ê do méodo m domíos ms omplos s promdo ssm d prolms práos d hr d ís.

8 E.C. Romão, J.A. Mrs, L..M. d Mor AGRADECIMENTS Es rlho é podo plo Coslho Nol d Dsvolvmo Cío Tolóo CNPq Brsl Pro. 5/-5. REERÊNCIAS [] Hss, I.A., Slm, A.A., Hoshm, H.A., orh-ordr dr mhod or solv Brs qo, Appl. Mh. Comp. 7, 7-5 [] Lo, W., A mpl orh-ordr omp dr shm or o-dmsol Brrs qo, Appl. Mh. Comp., 6, [] Zh, C.C., W, R.H., Nmrl solo o Brrs qo y B-spl qs-rpolo, Appl. Mh. Comp.,, 6-7 [] W, J., Lyo, A., Nw mrl mhods or Brrs qo sd o sm-lr d modd qo pprohs, Appl. Nm. Mh., 6, [5] X, M., W, R.H., Zh, J.H.,, Q., A ovl mrl shm or solv Brrs s qo, Appl. Mh. Comp., 7, 7- [6] Ch, T.J., Compol ld Dyms, Cmrd Uvrsy Prss [7] D, I., Irk, D., Sk, B., A mrl solo o h Brrs qo s B-Spls, Appl. Mh. Comp., 6, 5 [] Kly, S., Bhdır, A.R., Özds, A., Nmrl solo o o-dmsol Brrs qo: pl d -pl dr mhod, J. Comp. Appl. Mh.,, 5 6 [] Al, A.H.A., Grdr, L.R.T., Grdr, G.A., A olloo mhod o Brrs s qo s spls, Comp. Mh. Appl. Mh. E., 5-7 [] Do, A., A Glrk lm pproh o Brrs qo, Appl. Mh. Comp., 57, -6 [] zs, T., Aks, E.N., zds, A., A lm pproh or solo o Brrs s qo, Appl. Mh. Comp.,, 7- [] Gors, A., A omprso w Col Hop rsormo d h domposo mhod or solv Brrs qos, Appl. Mh. Comp., 7, [] Romão, E.C., Cmpos, M.D., Mor, L..M., Applo o h Glrk d Ls-Sqrs Elm Mhods h solo o D Posso d Hlmholz qos, Comp. Mh. Appl., 6, - A NUMERICAL SLUTIN THE BURGERS EQUATIN USING SIXTH- RDER CENTRAL INITE DIERENCE Asr Ths ppr ms o prs h pplo o shm o rl drs D6 o solv h Brrs qo, show s y d sss or pplo. Th ppr srs wh h omprsos wh ohr mhods proposd y ohr hors, d rvls h h mhod proposd s sh s h ohrs; howvr, r dvs o sy mplmo d rdd ompol oss. Kywords Crl Dr Mhod, Brrs qo, Crk-Nolso Mhod, Tylor srs.

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO

ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Dprmo d Mmá ALGUMAS PROPRIEDADES DAS CURVAS CONVEXAS DO PLANO Aluo: Pul Muro Nus Ordor: Hr Nols Aux Irodução Nos ds us mmá fz-s prs m odos os lugrs. Ao olor um mod pr lfor ou osgur ls guém pr pr psr m

Leia mais

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) :

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) : Epço Eo Eqo or corolo covcol - rlção r í-r, o fção rfrêc, o corolo moro - crção qçõ o m m rmo qçõ frc ªorm q pom r com m qção frcl ª orm form mrcl. O o oção mrcl mplfc m mo rprção mmác m qçõ. O mo úmro

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita.

= n + 1. a n. n 1 =,,,,,, K,,K. K descreve uma sequência finita. DICIPINA: CÁCUO A CONTEÚDO: EQUÊNCIA PROFEORA: NEYVA ROMEIRO PERÍODO: BIMETRE EQUÊNCIA Um squêc um fução f cujo domío o cojuo dos ros posvos su gráfco o plo y do po, ou d, squêc um cojuo d prs orddos do

Leia mais

OPÇÕES EXÓTICAS MSc MATEMÁTICA FINANCEIRA 2008/09 EXAME - Resolução 29/07/09 Duração: 2.5 horas

OPÇÕES EXÓTICAS MSc MATEMÁTICA FINANCEIRA 2008/09 EXAME - Resolução 29/07/09 Duração: 2.5 horas OPÇÕE EÓICA AEÁICA FINANCEIRA 8/9 EAE - Rsolção 9/7/9 Drção:.5 hors CAO Consir m Eroi sor o ivo om srik om vnimno no momno om m rémio igl K. Ao onrário o q é hil o rémio k não é liqio hoj n rnsção (momno.

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 2 PUSERRUSLIITIN EM 35 MM

Leia mais

1 Sm ª 13. Então, se dispôs Davi com os seus homens, uns seiscentos, saíram de Queila e se foram sem rumo certo. Ziclague

1 Sm ª 13. Então, se dispôs Davi com os seus homens, uns seiscentos, saíram de Queila e se foram sem rumo certo. Ziclague 1 Sm. 23.13ª 13 Então, s dspôs Dv om os ss homns, ns ssntos, sírm d Q s form sm rmo rto. Z 1 Sm 27.1-3 1 Dss, porém, Dv onso msmo: Pod sr q m d vnh prr ns mãos d S; nd há, pos, mhor pr mm do q fr pr trr

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

Dualidade. Fernando Nogueira Dualidade 1

Dualidade. Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

O Uso da Álgebra Linear nas Equações Diferenciais

O Uso da Álgebra Linear nas Equações Diferenciais Uso d Álgr ir s Equçõs ifriis íi Gri ol úi Rsd rir Bofim Fuldd d mái FT Uivrsidd Fdrl d Urlâdi UFU 88 - Urlâdi ril d 8 Rsumo Álgr ir é um supor mmáio pr muis árs d iêi Vrmos omo lgus d sus rsuldos podm

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 35 MM 10X

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

MONTAGEM DO SISTEMA GLOBAL

MONTAGEM DO SISTEMA GLOBAL PMR 0 Mân Comptonl MOGEM DO SISEM GLOBL nts do sstm glol sr montdo dv-s stlr m sqm d nmrção glol pr spr topolog do sstm. tl o dn ontvdd dos lmntos d mlh d gr d págn 55. Como trt-s d m so ndmnsonl o sqm

Leia mais

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico

Hans Staden Luiz Antonio Aguiar PROJETO DE LEITURA. O autor. Romance histórico. Ficha Autor: Quadro sinóptico Hs S Lz r J L r Lz r s 9, Jr. sr Lrr rslr, l -J, s sr lr lr sss, é rss rs lrárs, rr, rr, só Lr slr rl r fs rçã rçã lrár. rl r rrs sórs qrs ár l rk. s íls ls vrss rês ss lvrs, lsv J lr íl f- l Jvl, 99,

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES 0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

Sobre a obra: Sobre nós:

Sobre a obra: Sobre nós: Sobre a obra: A presente obra é disponibilizada pela equipe do ebook espírita com o objetivo de oferecer conteúdo para uso parcial em pesquisas e estudos, bem como o simples teste da qualidade da obra,

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

Laplace para Problemas Setorialmente Homogêneos

Laplace para Problemas Setorialmente Homogêneos Trbho prdo o XXXVII CNMAC, S.J. do Cmpo - SP, 20 Prodg Sr of h Brz Soy of Compuo d Appd Mhm Té d Prção do Domío Apd Equção d Lp pr Probm Sorm Homogêo Cro Frdrh Loffr Progrm d Pó Grdução m Eghr M, PPGEM/UFES,

Leia mais

Revista Bioética ISSN: Conselho Federal de Medicina Brasil

Revista Bioética ISSN: Conselho Federal de Medicina Brasil Revista Bioética ISSN: 1983-8042 bioetica@portalmedico.org.br Conselho Federal de Medicina Brasil de Pontes Regis, Arthur Henrique; Cornelli, Gabriele Situação jurídica dos animais e propostas de alterações

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM:

EQUAÇÕES DIFERENCIAIS DE 2ª ORDEM: EQUÇÕES DIFERENCIIS DE ª ORDEM: Cofom dfção v m EDO d odm é m qção d fom F E fom é mo gl o o m ávl D modo q o gmo EDO om d odm f Com ê obd EDO d odm odmo q d odm m bm m dfí d olv Eo m d bl d EDO om d odm

Leia mais

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO.

ESTE FORMULÁRIO É SOMENTE PARA CONSULTA. NÃO O UTILIZE COMO RASCUNHO. Uvrdd Tcológc drl do Prá DAMAT Dprmo Acdêmco d Mmác Dcpl: álculo Drcl grl 4 Proor: Rudmr u Nó ORMUÁRO ETE ORMUÁRO É OMENTE PARA ONUTA. NÃO O UTZE OMO RAUNHO.. ér d ourr/oc d ourr b co d b d co d. A orm

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02.

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02. Trss rso Loro Tr R rl âmr R sso o Nsmto R Sqr mpos 1:250 STUÇÃO TUL 20m PLNTÇÃO prk lot m Porto lr LOLZÇÃO 1 LUS POL WNNN Urs rl o Ro r o Sl Trlho olsão rso 2014.1 Ortor rt Pxoto Púlo pês Sls rm Lojs r

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

a x Solução a) Usando a Equação de Schrödinger h m

a x Solução a) Usando a Equação de Schrödinger h m www.fsc.com.br Consdr m rtícl d mss m confnd ntr os ontos / /, q od s movr lvrmnt nst rgão o longo do o. Son q s rds q lmtm st rgão sjm comltmnt mntrávs (oço d otncl nfnto ndmnsonl) rtícl stá sbmtd m otncl

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo problm d P.L. pod sr sbsttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Problm Prml j n j n c j j j j j j b {... n} {...m} Problm Dl Mn W m m b j c {... m} j

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t).

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t). 8. REPRESENÇÃO NO ESPÇO DE ESDOS 8. Coco so ( prsção srá f o omío o mpo coío; s frçs com o cso scro são pqs srão prss posrorm). rprsção r/sí m ssm lr só é ál qo, o mpo cl, o ssm sá o so scoáro. ssm é ál

Leia mais

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida

BANCO DE FÓRMULAS PROF. FRED MOURA. Movimento Circular 1 T. a cp. = velocidade angular. = espaço angular. Unidades de medida O D ÓMUL O. D MOU MU & MU Moo ul Lço Oblíuo p = lo ul * opo l - MU y y y y y s y y y = lo é = ção spço = spço ul = o H s = Ilo po = üê * opo hozol - MU = spço (l) = píoo x os = spço Il = lo = lo l = lção

Leia mais

!" # $$ " " '# " *+,!$%!-"( "%&'%"($ )%" !" #$% " &"% '(%&!" ) '%" *+( $&"% +"", -$. &) $% /.")" /

! # $$   '#  *+,!$%!-( %&'%($ )% ! #$%  &% '(%&! ) '% *+( $&% +, -$. &) $% /.) / !" # $$ "!" #$% " &"% '(%&!" ) '%" *+( $&"% +"", -$. &) $% /.")" #%"0&"#"1$!"%"2&% 3 "%&'%"($ )%" " '# " *+,!$%!-"( /4 56673 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

Abertura Celebração Coletiva Local: Pátio Central Oficina de Culinária Regiões do Brasil

Abertura Celebração Coletiva Local: Pátio Central Oficina de Culinária Regiões do Brasil C ês I S C v ªF L D 12 Sb Púbc-Av C Esc T 51 6 EM EF EM Lv M-I 4 5 6 9 I M - I N3 N4 6 9 I T 71 7 EM 8 EM T 72 8 9 I 7 EM T 51 Ecçã If A 5 EF 2 Av/Pj Ab Cbçã Cv Lc: Pá C Ofic Cá Rõs Bs P Rflxõs - Rcs: c

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Formulação de Problemas 2D e 3D

Formulação de Problemas 2D e 3D Formlção d Problms D D Mcâc Estrtrl (07/09/4) 0 Pdro V. Gmbo Dprtmto d Cêcs Arospcs . Itrodção A áls d lmtos ftos d problms bdmsos volv os msmos pssos báscos dos problms dmsos. A áls é m poco ms complcd

Leia mais

P PÓ P. P r r P P Ú P P. r ó s

P PÓ P. P r r P P Ú P P. r ó s P PÓ P P r r P P Ú P P r ó s P r r P P Ú P P ss rt çã s t à rs r t t r rt s r q s t s r t çã r str ê t çã r t r r P r r Pr r r ó s Ficha de identificação da obra elaborada pelo autor, através do Programa

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

tr EU H."i Ed <Ft En ,-t;dt.'j oa 5 F.> ?-.ES >.= ii EN -</9Fl _FU ca pla a- c)-e a-t- .Pi ce* ir. F. FT* te l^' ooo\ Q.a tr o^q Et C) slb Ca rr vti

tr EU H.i Ed <Ft En ,-t;dt.'j oa 5 F.> ?-.ES >.= ii EN -</9Fl _FU ca pla a- c)-e a-t- .Pi ce* ir. F. FT* te l^' ooo\ Q.a tr o^q Et C) slb Ca rr vti ?/ :; : 5 G VJ. iiu'. \..c G 3.;i.. f) \J + '= il 'i rl c pl _ ii >.= h:,;.'j e < n."i r r. 1! ' nr 9 ^^, r.!. l k J J l = r*r ( r f = 9 >,i r!.?. b r r &'= b 9 c l f l^' T*.i ir.. Gr

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa T B591e 2015

Leia mais

INTEGRAÇÃO NUMÉRICA. Em situações práticas, a função a ser integrada não é fornecida analiticamente, e sim por meio de pares (x, f(x)).

INTEGRAÇÃO NUMÉRICA. Em situações práticas, a função a ser integrada não é fornecida analiticamente, e sim por meio de pares (x, f(x)). NTEGRAÇÃ NUMÉRCA trodução Em stuçõs prátcs, ução sr tgrd ão é orcd ltcmt, sm por mo d prs,. Nsts csos tor-s cssár utlção d métodos umércos pr o cálculo do vlor d tgrl d. grupos: s métodos ms utldos podm

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

O ESTADO DA ARTE DO MÉTODO DA DECOMPOSIÇÃO NA SOLUÇÃO DE PROBLEMAS DE CONDUÇÃO E RADIAÇÃO EM UMA PLACA

O ESTADO DA ARTE DO MÉTODO DA DECOMPOSIÇÃO NA SOLUÇÃO DE PROBLEMAS DE CONDUÇÃO E RADIAÇÃO EM UMA PLACA 5 Iol l Al Cof - IAC 5 So, S, Bzl, Ag 8 o S, 5 ASSOCIAÇÃO BRASILEIRA DE EERGIA UCLEAR - ABE ISB: 85-99--5 O ESADO DA ARE DO MÉODO DA DECOMOSIÇÃO A SOLUÇÃO DE ROBLEMAS DE CODUÇÃO E RADIAÇÃO EM UMA LACA

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

Sistemas Lineares Aplicações Veja a resolução no final

Sistemas Lineares Aplicações Veja a resolução no final Sstems Lneres Aplções Vej resolução no fnl (Fuvest-SP) Crlos e su rmã André form om seu horro Bdu à frmá de seu vô Lá enontrrm um velh lnç om defeto que só ndv orretmente pesos superores kg Assm eles se

Leia mais

Algumas considerações iniciais:

Algumas considerações iniciais: Progrm d álulo d otmzção do n d ntrd íd do oltor olr trvé d orrlçõ r rd d rg m lnh lzd. lgum ondrçõ n: Condçõ d orção do fludo: t modlção não v lvr m ont vrçõ d tmrtur ud lo trto l borção do lor rovnnt

Leia mais

c=mr cloj=klk=ttmjntov^

c=mr cloj=klk=ttmjntov^ c=mr cloj=klk=ttmjntov^ bهضنلëـ cê~ه ~لë aةىيëإـ kةاةêن~هاë fي~نل~هç bëé~ çن pîةهëâ~ a~هëâ kçêëâ pىçمل mçêيىضىئë إëëçيéêـ Magyar Polski esky Slovensky Românete Slovensko Hrvatski Srpski P cc ه¼ ½و apc

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

Ô P Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t

Ô P Ó P P. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t Ô P Ó P P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã str Pr ss t át r t çã tít st r t 11/6/2015 FichaCatalografica :: Fichacatalografica Ficha catalográfica preparada pela Biblioteca Central da

Leia mais

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra.

ESTIMATIVA: é o valor numérico obtido para o estimador numa certa amostra. I- STIMAÇÃO D PARÂMTROS 9 INTRODUÇÃO: Sj,,, um mostr ltór com fução (dsdd d proldd cohcd, sj d θ um vtor dos prâmtros dst vrávl ltór Assm θ {θ, θ,, θ k } os k prâmtros qu chmmos d spço d prâmtros dotdo

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Hymnarium von Mestre Irineu. O Cruzeirinho

Hymnarium von Mestre Irineu. O Cruzeirinho Hymnrium von O ruzeirinho Prtituren RINH O MR - 2009 iretion: Mrco rcie Imperil Prtituren: isele rcie Imperil irigenten: Mestro nés Romno e isele rcie Imperil www.ceflupedrmr.org 117. ou Viv À eus Ns lturs

Leia mais

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos.

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos. C, O Mkz Vlá é m j sl Mkz, sm fs lvs (D º 8668 3/11/1981), q m sl bsl há 141 s. Iml m 24, m m l fl ssblz, mblz g s s ss gs, gss, lbs, fsss, ls, gs ls, fs, s, mgs fmls m mvm xmçã s ms q bgm s ss m, lém

Leia mais

Análise de Sistemas no Espaço de Estados

Análise de Sistemas no Espaço de Estados MEE Mrdo m Engnhr Elcroécnc d ompdor MSD Modlção onrolo d Sm Dnâmco Ercíco d nál d Sm no Epço d Edo onjno d rcíco lordo plo docn Joé Tnrro Mchdo JTM, Mnl Sno Sl MSS, Víor odrg d nh V Jorg Erl d Sl JES.

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

Folhas de Cálculo. O EXCEL como Folha de Cálculo

Folhas de Cálculo. O EXCEL como Folha de Cálculo Flh d Clul O qu é: U Flh d Clul é, dç, u ju d élul qu u glh u bl qu d l- vé d xõ lóg /u O qu : Ogzç ç d bl l d vl; F, í,, qu jud xu lul lx; Auzç d, vé d gç u d ódg d lul u d uld; Rç g d ç; d bl ulzd çõ

Leia mais

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Correção da fuvest ª fase - Matemática feita pelo Intergraus

Correção da fuvest ª fase - Matemática feita pelo Intergraus da fuvest 009 ª fase - Matemática 08.0.009 MATEMÁTIA Q.0 Na figura ao lado, a reta r tem equação y x no plano cartesiano Oxy. Além dis so, os pontos 0,,, estão na reta r, sendo 0 = (0,). Os pontos A 0,

Leia mais

1 3Centrs e PP esq is II DD C n MM n Astr l i Astri C h i n Re. C h e H n g K n g F i n l n i I n i F rn 0 4 C n I n n si Al e m n h E st s U n i s I

1 3Centrs e PP esq is II DD C n MM n Astr l i Astri C h i n Re. C h e H n g K n g F i n l n i I n i F rn 0 4 C n I n n si Al e m n h E st s U n i s I 1 3Mr P e re s, R e s e r h D i re t r I D C B rs i l Br 0 0metr Cis e Bn L rg n Brsil, 2005-201 0 R e s l t s P ri m e i r T ri m e s t re e 2 0 0 7 Prer r Prer r Met e Bn Lrg em 2 0 1 0 n Brs i l : 10

Leia mais

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS FACULDADES UNIFICADAS DA FUNDAÇÃO EDUCACIONAL DE BARRETOS Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 REGULAMENTO DO NÚ CLEO DE PRÁ TICA JURÍ DICA DA F UNDAÇ Ã O EDUCACIONAL DE

Leia mais

14º LEILÃO RR AGROPECUARIA

14º LEILÃO RR AGROPECUARIA 14º LLÃO GOPCU 1 Z 3068 780 14/10/2014 32 20,35 2 38,5 MNDN M. VO D FO.V 2 Z 3792 652 15/12/2014 30 35,5 DONO D NV GKUS.DN N D V D U S 3 Z 3292 667 28/12/2014 30 18,02 4 35 DO S.MN LO D SS 4 Z 3302 699

Leia mais

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F -

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

InBook. book. The. The inspiration by EGGER. n 01

InBook. book. The. The inspiration by EGGER. n 01 IBk Th Th p by EGGER bk 01 1 2 Th IBk by EGGER Bm-vd pm úm d IBk d Egg Dd mp, ddm- mph-v, vê, pf d çã, uv px vd d dg O mud ub fvlh d gd, d xpõ, d l: um lv d dg p db Avé d pm dçã, vhm p bv, mgulhm vgm,

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

Procedimento do U.S.HCM2010

Procedimento do U.S.HCM2010 Eh Táo Poo o U.S.HM1 ál oo o, l (oo l o HM/1). íl ço o ção o ool zão /. íl ço /l ção o j (LoS So) V Tl 18-4,5 (HM1 ão l oo íl l ço o j é l ço lo áo) ál oção xl o oolo o EUA. o ção EMA, l à çõ áoo. oo o

Leia mais

0, não há reação!), sendo. =, a concentração de A em um tempo t [A] t é:

0, não há reação!), sendo. =, a concentração de A em um tempo t [A] t é: - Rção orm zro: Es ipo rção ão po sr lmr (., ão há rção!), so poro ipo ν, logo, mos qu, i Igrção, pr 4 ) (, cocrção m um mpo é: 5 6 7 Eq. () 8 (Nos mplos i supori qu ). 9 - Rçõs orm : S loci rção é rmi

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7.

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7. PRVA DE QUÍMICA º 2º 3º 4º 5º 6º 7º TABELA PERIÓDICA DS ELEMENTS (IA),0 3 Li 6,9 Na 23,0 9 K 39, 2 (IIA) 4 Be 9,0 2 Mg 24,3 3 (III B) 4 5 6 7 8 9 0 2 20 2 22 23 24 25 26 27 28 29 30 Ca Sc Ti V Cr Mn Fe

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

Agrupamento de Escolas Drª Laura Ayres

Agrupamento de Escolas Drª Laura Ayres cár rª r yrs, Qrtr, lé tífc-místc êcs clgs 11º 1 r fs Vz 15 X X X X X X X 9405 2 r s más 16 X X X X X X X 11481 3 r chz rt 16 X X X X X X X 11596 4 árbr f mrl rrã 15 X X X X X X X 11597 5 c f ckhm rrs

Leia mais