MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) ="

Transcrição

1

2

3 Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3) tg (a) = Fórmulas Fundamentas: ) sen x + cos x= x sen x cos x tg x 30 ou 6 45 ou 4 60 ou Fórmulas de transformação em produto ) sen p + sen q = ) sen p - sen q = 3) cos p + cos q = 4) cos p cos q = Leis do Seno e do Cosseno: ) tg x = 3) cotg x = 4) sec x = 5) cossec x = Consequências: = = = R. (ITA) Considere um quadrado ABCD. Sejam E o ponto médio do segmento CD e F um ponto sobre o seg - mento CE tal que m ( BC) + m ( CF) = m ( AF). Prove que cos = cos, sendo os ângulos = BÂF e = EÂD. 6) sec x= 7) cossec x= 8) tg x = Fórmulas de Adição de arcos: ) sen (a ± b) = ) cos (a ± b) = 3) tg (a ± b) =

4 3. (ITA) Se x [0, [ é tal que 4 tg 4 x = + 4, então o valor de cos 4 x sen x + sen 4x é: 5 5 a) b) c) 4 8 d) e) (IME) Determine sabendo-se que: (i) cos 4 + ctg. = sen 4 + tg 3 (ii) 0 < radianos.

5 . (ITA) Considere o sistema: x = 3. sen x = cos para x e reais. Se restringirmos ao intervalo 0;, então o sistema a) não possuirá solução. b) possuirá apenas uma solução (x ; ). c) possuirá duas soluções (x ; ) e (x ; ), de modo 40 que x + x =. 3 d) possuirá duas soluções (x ; ) e (x ; ), de modo 7 que sen + sen =. e) possuirá duas soluções (x ; ) e (x ; ), de mo - do que cos. cos =. MÓDULO 30 Trigonometria I. Esboçar o gráfico da função f definida de em por f(x) = sen x + cos x. 3

6 3. (ITA) Se denota o conjunto dos números reais e (a; b) o intervalo aberto {x ; a < x < b}, seja ( 0; ) definida por f(x) = sec x + cossec x. Se ( 0; a ) é tal que tg =, então f( ) é igual a b a + b a) b) a + b a c) b d) ab e) n.d.a. a + b ab MÓDULO 3 Trigonometria I. Os valores reais de a para que a equação sen 4 x cos x + a = 0 admita raízes reais são tais que: a) a b) a = 3 c) a d) 3 a < e) < a 3 4. Resolver, em, a equação 5 sen x 3 sen x. cos x + 4 cos x = 3 4

7 . (ITA-006) Seja f : definida por f(x) = 77 sen[5(x + /6)] e seja B o conjunto dado por B = {x : f(x) = 0}. Se m é o maior elemento de B (, 0) e n é o menor elemento de B (0, + ), então m + n é igual a: a) /5 b) /5 c) /30 d) /5 e) /5 3. (ITA-007) Assinale a opção que indica a soma dos ele mentos de A B, sendo: A = x k = sen k : k =, e 4 (3k + 5) 4 B = y k = sen : k =,. a) 0 b) c) d) + 3 /3 e) + 3 /3 5

8 4. (ITA) Se tg(a) = 5 então tg + A tg A é igual a: 4 4 a) 40/ b) c) 5 d) 8 e) 0. (ITA) A expressão MÓDULO 3 Trigonometria I x sen x + + cotg x tg x + tg é equivalente a a) [cos x sen x] cotg x. b) [sen x + cos x] tg x. c) [cos x sen x] cotg x. d) [l cotg x] sen x. e) [ + cotg x] [sen x + cos x].. (IME) Determine o conjunto-solução da equação sen 3 x + cos 3 x = sen x. cos x 6

9 4. (ITA) A respeito da equação sen x + 3 cos x =, 0 x <, podemos afirmar que: a) Existe apenas uma solução real no primeiro quadrante. b) Existe apenas uma solução real no segundo quadrante. c) Existe apenas uma solução real no terceiro quadrante. d) Existe apenas uma solução real no quarto quadrante. e) Existem duas soluções no intervalo 0 x <. 3. (ITA) Seja a equação sen 3 x cos x sen x cos 3 x = m onde m é um número real não nulo. Podemos afirmar que: a) A equação admite solução qualquer que seja m, m 0. b) Se m < 4 esta equação não apresenta solução real. c) Se m > esta equação não apresenta solução real. d) Se m > esta equação sempre apresenta solução real. e) Se m < 4 esta equação não apresenta solução real. 7

10 exercícios-tarefa MóduLo 9. Se sec x. cossec x = 3, então tg 3 x + cotg 3 x é igual a a) 9 b) 5 c) 8 d) e) 7. (ITA) Se num quadrilátero convexo de área S, o ângulo agudo entre as diagonais mede /6 radianos, então o produto do comprimento destas diagonais é igual a: a) S b) S c) 3S d) 4S e) 5S MóduLo 30. Considere o sistema e 0. Então, é correto afirmar que a) o sistema possui solução única. b) o sistema possui solução (x 0 ; 0 ), com < 0 <. c) o sistema possui solução única (x 0 ; 0 ), com x 0 >. d) o sistema possui duas soluções distintas. 3 e) tg =. 3. Esboce o gráfico da função f definida por f(x) = sec x + sen x, com contradomínio em. 3. (ITA) Se cos 4 4x sen 4 4x = a 0, então cos 8x vale: a) a b) a c) 4a d) zero e) a + 4 MóduLo 3. (ITA) O valor de x > 0 que satisfaz a equação x = tg é: sen = x {, para x cos = x + a) x = 4 3 b) x = c) x = 7 3 d) x = e) x = (ITA) Sejam a e b constantes reais positivas. Considere x = a tg t + e y = b sec t b onde 0 t <. Então uma relação entre x e y é dada por: b a) y = (x ), x a. a b b) y = (x ), x. a 4 b c) y = (x ), "x. a b d) y = (x ), x. a a e) y = (x ), x. b 4 MóduLo 3. (ITA) Sabendo-se que é um ângulo tal que sen( 60 ) = cos ( + 60 ), então tg é um número da forma a + b 3 onde a) a e b são reais negativos; b) a e b são inteiros; c) a + b = ; d) a e b são pares; e) a + b =.. (ITA) Suponha x e y números reais, tais que tg(x y) = 3 (tg x)(tg y) = Calcule o módulo do número S = tg x + tg y. resolução dos exercícios-tarefa MóduLo 9 sen x cos x ) ) tg x + cotg x = + cos x sen x = sen x + cos x = cos x. sen x = cos x. sen x = = sec x. cossec x = 3 ) tg x + cotg x = (tg x + cotg x) = 3 = 7 3) tg 3 x + cotg 3 x = = (tg x + cotg x) (tg x tg x. cotg x + cotg x) = = 3. (7 ) = 8 Resposta: C 8

11 ) No quadrilátero convexo ABCd da figura, sendo AC = a + b e Bd = c + d, tem-se: ) f(x) = sec x + sen x = cos x + sen x = = sen x + sen x = sen x + sen x f(x) = { e o gráfico de f é: sen x; se sen x 0 0 ; se sen x < 0 5. a. c. sen +. b. c. sen b. d. sen + a. d. sen = S 6 6 Assim: ac bc bd ad = S ac + bc + bd + ad = 4S (a + b). (c + d) = 4S AC. Bd = 4S Resposta: d MóduLo 30 ) { sen = x cos = x + x ( ) 4x 4x + + x + = 4 = 4x 3x = 0 x = ou x = 3 Para x =, tem-se sen =, cos = e = 6 x + ( ) 3 Para x =, tem-se sen =, cos = < < 4 Resposta: d + { x sen = x + cos = 4 Resposta: Gráfico 3) cos 4 4x sen 4 4x = = (cos 4x + sen 4x)(cos 4x sen 4x) Então: cos 4 4x sen 4 4x = cos 4x sen 4x = cos 8x = a Resposta: B MóduLo 3 ) Para x > 0 tem-se: tg 3 I) tg = = 6 3 tg II) = 3 3 tg = 6tg tg = 3 x=tg x = tg = ) I) y = b. sec t b = b. (sec t ) = b. tg t y = ± b. tg t II) x = a. tg t + 0 t < 9

12 x tg t =, x, supondo a 0 de (I) e (II), vem: y = ± b. x, x y = ±. (x ), x. uma relação entre x e y pode ser: b y =. (x ), x a Resposta: d b a a MóduLo 3 ) sen ( 60 ) = cos( + 60 ). (sen. cos 60 cos. sen 60 ) = = cos. cos 60 sen. sen 60 sen 3. cos = 3. cos. sen 3 sen. ( + ) = cos. ( + 3) tg = = = Sendo tg = a + b. 3, temos a = 4 e b = 3. Resposta: B a ) Sendo x e y, números reais, tais que: tg(x y) = 3 tg x. tg y = tg x tg y = 3 + tg x. tg y tg x. tg y = temos: tg x tg y + = 3 tg x tg y =. 3 Como: (tg x + tg y) = (tg x tg y) + 4. tg x. tg y resulta: (tg x + tg y) = (. 3) + 4. = 6 e, portanto: S = tg x + tg y = 4 Resposta: S = tg x + tg y = 4 0

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG)

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG) (Unimontes-MG) (PUC-RS) Quando um relógio está marcando horas e minutos, o menor ângulo formado pelos seus ponteiros é de: Considere o relógio localizado na entrada do MCT. a) º0 b) º0 c) 7º d) º Considerando

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3. TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

BANCO DE QUESTÕES Funções Trigonométricas JOÃO CARLOS MOREIRA

BANCO DE QUESTÕES Funções Trigonométricas JOÃO CARLOS MOREIRA COLEÇÃO ESCOLA DE CÁLCULO BANCO DE QUESTÕES Funções Trigonométricas JOÃO CARLOS MOREIRA DEFINIÇÕES Defina: Ângulo; Ângulo nulo; Ângulo agudo; d) Ângulo reto; e) Ângulo obtuso; f) Ângulo convexo; g) Ângulo

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário.

Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. 10. NÚMEROS COMPLEXOS 10.1 INTRODUÇÃO Números complexos são aqueles na forma a + bi, em que a e b são números reais e i é o chamado número imaginário. O número a é denominado parte real do número complexo

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

Exercícios Trigonometria

Exercícios Trigonometria Exercícios Trigonometria Temas Abordados: Funções Trigonométricas e Equações; Arcos na Circunferência; Redução ao Primeiro Quadrante; Razões Trigonométricas.. (Upe 0) Um relógio quebrou e está marcando

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 2 a Fase. RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 2 a Fase. RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 9 a Fase Professora Maria Antônia Gouveia Questão Na impressão de 8 cópias de uma mesma prova, foram usadas duas impressoras, A e B, sendo que B trabalhou dez minutos

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN

Tópicos Matriciais Pedro Henrique O. Pantoja Natal / RN 1. Traço de Matrizes. Definição 1.1: O traço de uma matriz quadrada A a de ordem n é a soma dos elementos da diagonal principal. Em símbolos, TrA a a a a. Daqui em diante, A denotará uma matriz quadrada

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Triângulos Quaisquer algumas questões resolvidas

Triângulos Quaisquer algumas questões resolvidas Arquivo: lsencos.pdf Page /4 Triângulos Quaisquer algumas questões resolvidas leicos.htm Num triângulo ABC, a, e. Calcular o ângulo B. Resp. B ` (lei dos cosssenos) ( ) ( ) +. (.cos ) + + 4. (.cos ) B.

Leia mais

Lista 02 - Matemática Básica II

Lista 02 - Matemática Básica II Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B).

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B). Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo : Funções.- Definições Sejam A e B dois conjuntos não vazios. Uma função f de

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3

MATEMÁTICA NÚMEROS COMPLEXOS. d) 2 e) 3 MATEMÁTICA NÚMEROS COMPLEXOS 1. U. Católica Dom Bosco-MS O valor do número real x para que o conjugado do número complexo (x + i)(1 + xi) seja igual a i é: a) b) 1 c) 1 d) e) 1. UFCE Considere o número

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C). ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA

EXERCICIOS APROFUNDAMENTO MATEMATICA TRIGONOMETRIA 1. (Unifesp 015) O metano (CH 4) possui molécula de geometria tetraédrica (figura 1). Do ponto de vista matemático, isso significa que, em uma molécula de metano, os 4 átomos de hidrogênio localizam-se

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações:

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações: ITA18 - Revisão LMAT9A - ITA 2016 (objetivas) Questão 1 Considere as seguintes armações: I. A função f(x) = log 10 é estritamente crescente no intervalo ]1, + [. II. A equação 2 x+2 = 3 x 1 possui uma

Leia mais

Proposta para Abordagem da Trigonometria da Primeira Volta Utilizando o Software Sintesoft Trigonometria 2.0

Proposta para Abordagem da Trigonometria da Primeira Volta Utilizando o Software Sintesoft Trigonometria 2.0 Programa de Pós-Graduação em Ensino de Ciências Exatas, Curso de Licenciatura em Ciências Exatas, com habilitação integrada em Física, Química e Matemática Atividades desenvolvidas na pesquisa Inserção

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Professor Dacar Lista Desafio - Revisão Trigonometria

Professor Dacar Lista Desafio - Revisão Trigonometria . (Fuvest 0) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 7 a.c. e 9 a.c. Sabendo que em Assuã, cidade localizada no sul do

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais