TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS"

Transcrição

1 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre

2 GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a altura h do edifício, sabendo que AB mede 25m e cos Θ = 0, (UFCE) Em certa hora do dia, os raios do Sol incidem sobre um local plano com uma inclinação de 60º em relação à horizontal. Nesse momento, o comprimento da sombra de uma construção de 6m de altura será, aproximadamente: A) 10,2 m B) 8,5 m C) 5,9 m D) 4,2 m E) 3,4 m

3 TESTANDO OS CONHECIMENTOS 3 3 (UFPA) A figura representa um barco atravessando um rio, partindo de A em direção ao ponto B. A forte correnteza arrasta o barco em direção ao ponto C, segundo um ângulo de 60º. Sendo a largura do rio de 120m, a distância percorrida pelo barco até o ponto C, é: A) m B) 240 m C) 80 3 m D) 80 m E) 40 3 m 4 (UFPA) Para permitir o aceso a um monumento que está em um pedestal de 2m de altura, vai ser construída uma rampa com inclinação de 30 com o solo, conforme a ilustração. O comprimento da rampa será igual a: A) 3 / 2 m B) 3 m C) 2 m D) 4 m E) 4 3 m

4 TESTANDO OS CONHECIMENTOS 4 5 (UFRN) Um observador, no ponto O da figura, vê um prédio segundo um ângulo de 75. Se esse observador está situado a uma distância de 12m do prédio e a 12m de altura do plano horizontal que passa pelo pé do prédio, então a altura do prédio, em metros, é: A) 4(3 + 3). B) 3. C) 3 / 2. D) 6( 2 + 2). E) ½. 6 (UFRS) Uma torre vertical é presa por cabos de aço fixos no chão, em um terreno plano horizontal, conforme mostra a figura. Se A está a 15m da base B da torre e C está a 20m de altura, comprimento do cabo AC é: A) 15 m B) 20 m C) 25 m D) 35 m E) 40 m

5 GABARITO: 2) 30º, 45º e 105º. 5 TESTANDO OS CONHECIMENTOS 7 Determine o perímetro e a área do triângulo dado. Sabendo que: sen 80º = 0,98 sen 40º = 0,64 sen 60º = 0,86 8 Os lados de um triângulo medem a = 2, b = 2 e c = Determine as medidas de seus ângulos.

6 6 TRIGONOMETRIA NA CIRCUNFERÊNCIA O NÚMERO π Dada uma circunferência de raio r, diâmetro d = 2r, o número π é definido como a razão do comprimento C da circunferência pelo seu diâmetro d, isto é, O COMPRIMENTO DA CIRCUNFERÊNCIA Observando a definição do número π, podemos concluir que: C = 2.π.r O COMPRIMENTO DE UM ARCO Em uma circunferência de raio r a definição de radiano implica que um ângulo de 1 radiano compreende um arco de comprimento r. Logo um ângulo de Θ radianos compreende um arco de comprimento s. O valor s é dado por

7 7 TRIGONOMETRIA NA CIRCUNFERÊNCIA EXEMPLO: Sabendo que 1 radiano compreende um arco de comprimento r (ou seja, s = r). Determine quantos radianos são necessários para completar uma volta? SOLUÇÃO: Fazendo a regra de 3, temos: 1 rad está para o arco de medida s = r, assim como Θ em radianos está para a volta completa C = 2πr. Sendo assim: Isto é, uma volta completa na circunferência corresponde a um ângulo de medida 2π radianos.

8 8 TRIGONOMETRIA NA CIRCUNFERÊNCIA Afinal, o radiano é uma medida de comprimento ou de ângulo? Segundo Luis Roberto Dante: Um arco de um radiano (1 rad) é um arco cujo comprimento RETIFICADO da circunferência é igual ao raio da circunferência. Isso deve ser interpretado da seguinte forma: Se temos um ângulo central de medida 1 radiano, então ele subtende um arco de medida 1 radiano e comprimento de 1 raio. Lembre-se que a medida do arco é igual a medida do ângulo. Sendo assim, se temos um ângulo central de medida 2 radianos, então ele subtende um arco de medida 2 radianos e de comprimento igual a 2 raios.

9 9 TRIGONOMETRIA NA CIRCUNFERÊNCIA CONVERSÃO GRAU RADIANO Assim, dado um ângulo Θ radianos, sua medida x em graus é dada por EXEMPLOS: a) Determine a medida do ângulo ( 3 / 4 )π rad em graus. b) Determine a medida do ângulo 155º graus em radianos. c) Determine a medida do ângulo 1º graus em radianos. d) Determine a medida do ângulo 1 rad em graus.

10 10 FUNÇÕES TRIGONOMÉTRICAS FUNÇÃO SENO Seja x um ângulo variável no círculo trigonométrico. A cada valor de x associamos um único valor para seu seno, denotado sen(x). Definimos então a função f(x) = sen(x), cujo gráfico, é denominado senóide. OBSERVAÇÕES: A função f(x) = sen (x) é periódica de período T = 2π ; isto significa que suas imagens se repetem de 2π em 2π radianos, isto é, para todo x real temos que sen(x) = sen(x +2π); A imagem é limitada em 1 e 1, isto é, para todo x real temos que 1 sen(x) 1.

11 11 FUNÇÕES TRIGONOMÉTRICAS SINAL DA FUNÇÃO SENO O sinal da função seno é dado seguindo o esquema abaixo: VARIAÇÃO DA FUNÇÃO SENO Considere x 1 < x 2,então temos no: 1º Quadrante, sen x 1 < sen x 2 crescente 2º Quadrante, sen x 1 > sen x 2 decrescente 3º Quadrante, sen x 1 > sen x 2 decrescente 4º Quadrante, sen x 1 < sen x 2 crescente

12 12 TESTANDO OS CONHECIMENTOS 9 Determine os valores reais que m pode assumir para que exista um número real x que satisfaça a igualdade sen x = 2m 3 10 Determine os valores reais de m para os quais sen x = m 2 m 1 tenha solução.

13 13 FUNÇÕES TRIGONOMÉTRICAS FUNÇÃO COSSENO Seja x um ângulo variável no círculo trigonométrico. A cada valor de x associamos um único valor para seu cosseno, denotado cos(x). Definimos então a função f(x) = cos(x), cujo gráfico, é denominado cossenóide. OBSERVAÇÕES: A função f(x) = cos (x) é periódica de período T = 2π ; isto significa que suas imagens se repetem de 2π em 2π radianos, isto é, para todo x real temos que cos(x) = (x +2π); A imagem é limitada entre 1 e 1, isto é, para todo x real temos que 1 cos(x) 1.

14 14 FUNÇÕES TRIGONOMÉTRICAS SINAL DA FUNÇÃO COSSENO O sinal da função cosseno é dado seguindo o esquema abaixo: VARIAÇÃO DA FUNÇÃO COSSENO Considere x 1 < x 2,então temos no: 1º Quadrante, cos x 1 > cos x 2 decrescente 2º Quadrante, cos x 1 > cos x 2 decrescente 3º Quadrante, cos x 1 < cos x 2 crescente 4º Quadrante, cos x 1 < cos x 2 crescente

15 15 TESTANDO OS CONHECIMENTOS 11 Determine os valores reais que m pode assumir para que exista um número real x que satisfaça a igualdade cos x = 2m Determine os valores reais de m para os quais cos x = 3m 2 m 1 tenha solução. 13 Seja f(x) = sen x + cos x. Calcule o valor de 6.f( π / 6 )

16 16 FUNÇÕES TRIGONOMÉTRICAS FUNÇÃO TANGENTE Seja x um ângulo variável no círculo trigonométrico. A cada valor de x associamos um único valor para sua tangente, denotado tg(x). Definimos então a função f(x) = tg(x), cujo gráfico, é denominado tangentóide. OBSERVAÇÕES: A função f(x) = tg (x) é periódica de período T = π ; isto significa que suas imagens se repetem de π em π radianos, isto é, para todo x real temos que tg(x) = (x +π); A imagem é ilimitada. As retas verticais tracejadas são denominadas por assíntotas. A tangente não é definida em x = π /2 + πk.

17 17 FUNÇÕES TRIGONOMÉTRICAS SINAL DA FUNÇÃO TANGENTE O sinal da função tangente é dado seguindo o esquema abaixo: VARIAÇÃO DA FUNÇÃO TANGENTE Considere x 1 < x 2,então temos no: 1º Quadrante, tg x 1 < tg x 2 crescente 2º Quadrante, tg x 1 < tg x 2 crescente 3º Quadrante, tg x 1 < tg x 2 crescente 4º Quadrante, tg x 1 < tg x 2 crescente

18 18 RAZÕES TRIGONOMÉTRICAS INVERSAS COTANGENTE COSSECANTE SECANTE cotg x = cos x / sen x cossec x = 1 / sen x sec x = 1 / cos x EXEMPLOS: Calcule: a) cossec 45º b) sec 60º c) cotg 45º d) cotg π e) sec 2π f) cossec 5π / 4 TESTANDO OS CONHECIMENTOS 14 Determine os valores de TODAS as demais razões trigonométricas de um arco x quando: a) sen x = ½, com x no 3º quadrante b) cossec x = 2 e π < x < 3 π / 2

19 19 FUNÇÕES TRIGONOMÉTRICAS GRÁFICOS COTANGENTE SECANTE COSSECANTE

20 20 TESTANDO OS CONHECIMENTOS 15 No ciclo trigonométrico abaixo, determine os segmentos que expressam as medidas trigonométricas pedidas: a) sen x b) cos x c) tg x P d) cossec x e) sec x f) cotg x 8 Exercícios do livro: P.272_18 e 24

21 Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

8-Funções trigonométricas

8-Funções trigonométricas 8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

MATEMÁTICA SEGUNDO ANO - PARTE UM

MATEMÁTICA SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM TRIGONOMETRIA NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos:

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Lista 02 - Matemática Básica II

Lista 02 - Matemática Básica II Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Matemática Régis Cortes TRIGONOMETRIA

Matemática Régis Cortes TRIGONOMETRIA TRIGONOMETRIA 1 TRIGONOMETRIA A palavra TRIGONOMETRIA é formada por 3 radicais gregos : TRI (três), GONO (ângulos) e METRIA (medida). Atualmente a trigonometria não se limita apenas a estudar triângulos

Leia mais

CICLO TRIGONOMÉTRICO

CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Qual o valor, em radianos, de um ângulo que mede 150o? (a) π 2 (b) 2π 3 (c) 5π 6 (d) π 3 Exercício 2 Qual o valor, em graus, de um ângulo que mede (a) 210 (b) 230 (c) 270 7π

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1.

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1. Arco Duplo. (Insper 0) Movendo as hastes de um compasso, ambas de comprimento, é possível determinar diferentes triângulos, como os dois representados a seguir, fora de escala. Se a área do triângulo T

Leia mais

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega

Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega Técnico de Nível Médio Subsequente em Geologia 1 ula 2 Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega 2 ELEMENTOS DE UM TRIÂNGULO RETÂNGULO a b ß c Lembre-se: soma das medidas dos ângulos

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 SUMÁRIO APRESENTAÇÃO -------------------------------------------- 3 6. Trigonometria---------------------------------------------4

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG

COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA 1 Série/Ano: 1º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SANDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados

Leia mais

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação?

Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação? 18 Atividade extra UNIDADE VAMOS POUPAR DINHEIRO! Fascículo 6 Matemática Unidade 18 Função do Segundo Grau Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual

Leia mais

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:? Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Questão 01 - (Faculdade

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Questão 01 - (Faculdade Questão 0 - (Faculdade e º), qual a probabilidade Guanambi BA) desse valor escolhido não ser igual Uma partícula se move ao longo do ao seno ou cosseno de 0º, º ou eixo oy de acordo com a equação 0º? 7

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

LISTA DE ATIVIDADES III UNIDADE - REVISÃO

LISTA DE ATIVIDADES III UNIDADE - REVISÃO LISTA DE ATIVIDADES III UNIDADE - REVISÃO 01) (F.C.CHAGAS-SP) Um observador, no ponto A, vê o topo de um poste (B) e o topo de um prédio (C), conforme a figura. Se as alturas do poste e do prédio são,

Leia mais

Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental

Olá! Brunna e Fernanda. Matemática. Somos do PET Engenharia Ambiental Trigonometria Olá! Brunna e Fernanda Somos do PET Engenharia Ambiental Matemática Vamos pensar + Considere cinco circunferências concêntricas de raios diferentes e um mesmo ângulo central subtendendo arcos

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado.

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado. TRIGONOMETRIA - I RESOLUÇÃO DE EXERCÍCIOS RACIOCÍNIO LÓGICO MATEMÁTICA FÍSICA/QUÍMICA E mail gabaritocerto@hotmail.com Envie suas dúvidas e questões para gabaritocerto@hotmail.com e saiba como receber

Leia mais

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo 3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)

REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m) REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila

Leia mais

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que Matemáticas Revisão de trigonometria Professor Luiz Amaral E- 1. (Uepg 01) Em um triângulo, as medidas dos lados, em cm, são números inteiros consecutivos e o ângulo maior é igual ao dobro do ângulo menor.

Leia mais

2º ANO MATEMÁTICA E.E.E.M. Parte um... Pitágoras Razões trigonométricas Trigonometria Relações trigonométricas Funções trigonométricas NOME COMPLETO:

2º ANO MATEMÁTICA E.E.E.M. Parte um... Pitágoras Razões trigonométricas Trigonometria Relações trigonométricas Funções trigonométricas NOME COMPLETO: E.E.E.M. Parte um... Pitágoras Razões trigonométricas Trigonometria Relações trigonométricas Funções trigonométricas 2º ANO MATEMÁTICA NOME COMPLETO: Nº TURMA: TURNO: PROFESSORA: 1 TRIGONOMETRIA - PARTE

Leia mais

Lista de Exercícios 3 - Gabriel Mendes (1º Ano)

Lista de Exercícios 3 - Gabriel Mendes (1º Ano) Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

Plano de Recuperação Semestral EM

Plano de Recuperação Semestral EM Série/Ano: 1º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

MATEMÁTICA Questões de 1 a 20

MATEMÁTICA Questões de 1 a 20 MATEMÁTICA Questões de 1 a 0 Um corpo lançado do solo verticalmente para cima tem posição em função do tempo dada pela função f(t) = 40 t 5 t, onde a altura f(t) é dada em metros e o tempo t é dado em

Leia mais

Ciclo trigonométrico

Ciclo trigonométrico COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

Medir um arco ou ângulo é compará-lo com outro, unitário.

Medir um arco ou ângulo é compará-lo com outro, unitário. Trigonometria A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos. Historicamente,

Leia mais

Trigonometria - Segunda Parte

Trigonometria - Segunda Parte Capítulo 8 Trigonometria - Segunda Parte 81 Conceitos Preliminares número Dada uma circunferência de raio r, diâmetro d = r, o número é denido como a razão do comprimento C da circunfeência pelo seu diâmetro

Leia mais

MATEMÁTICA. Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof.

MATEMÁTICA. Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof. MATEMÁTICA Geometria Plana. Relações Trigonométricas no Triângulo Retângulo, Leis dos Senos e Cossenos. Parte3. Prof. Renato Oliveira 9) Considere os triângulos retângulos PQR e PQS da figura a seguir.

Leia mais

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017 TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /017 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Sabendo que AB = 4 m e as medidas dos ângulos PÂB, PïA, TÂB e TïA são, respectivamente, 120, 30, 60 e 75, determine a distância de P a T.

Sabendo que AB = 4 m e as medidas dos ângulos PÂB, PïA, TÂB e TïA são, respectivamente, 120, 30, 60 e 75, determine a distância de P a T. 1. (Ufal) Na figura a seguir, os pontos A e B representam a localização de duas pessoas em um terreno plano e a forma como vêem os topos de um poste (P) e de uma antena (T). Sabendo que AB = 4 m e as medidas

Leia mais

TRIGONOMETRIA - I. Telefone para contato: (21) Envie suas dúvidas e questões para

TRIGONOMETRIA - I. Telefone para contato: (21) Envie suas dúvidas e questões para TRIGONOMETRIA - I R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c o m Envie suas dúvidas e questões

Leia mais

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º Ensino Aluno (a): Nº: Turma: 1ª série Bimestre: º Disciplina: Matemática Razões Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / cossec x sec x Questão 1 Seja M, com cot gx 1 kπ x, k. Utilizando-se

Leia mais

PLANO DE TRABALHO SOBRE TRIGONOMETRIA NA CIRCUNFERÊNCIA

PLANO DE TRABALHO SOBRE TRIGONOMETRIA NA CIRCUNFERÊNCIA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP 359 RAUL SEIXAS PROFESSOR: JUSSARA RAMALHO DIAS DOS SANTOS MATRÍCULA: 0921996-5 SÉRIE: 1º ANO DO ENSINO MÉDIO

Leia mais

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de

Leia mais

Professor Dacar Lista Desafio - Revisão Trigonometria

Professor Dacar Lista Desafio - Revisão Trigonometria . (Fuvest 0) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 7 a.c. e 9 a.c. Sabendo que em Assuã, cidade localizada no sul do

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

COLÉGIO TERESIANO CAP/PUC 2ª SÉRIE / ENSINO MÉDIO / /2012. Aluno (a): N Turma: (A) (B) (C)

COLÉGIO TERESIANO CAP/PUC 2ª SÉRIE / ENSINO MÉDIO / /2012. Aluno (a): N Turma: (A) (B) (C) COLÉGIO TERESIANO CAP/PUC ESTUDO DIRIGIDO º BIMESTRE ª SÉRIE / ENSINO MÉDIO / /0 Professor (a): ANNA RITA Disciplina: MATEMÁTICA Aluno (a): N Turma: (A) (B) (C) ª PARTE: CONCEITOS BÁSICOS Faça um resumo

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais