O conhecimento é a nossa propaganda.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O conhecimento é a nossa propaganda."

Transcrição

1 Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen 2 x).(sec 2 x 1) = 3 (1 sen 2 x).(sec 2 x 1) = 3/4 sec²x - 1 sen²x.sec²x + sen²x = 3/4 sec²x = 1 + tg²x e secx = 1/cosx 1 + tg²x 1 sen²x.(1/cosx)² + sen²x = 3/4 1 + tg²x 1 sen²x.(1/cos²x) + sen²x = 3/4 1 + tg²x 1 sen²x/cos²x + sen²x = 3/4 senx/cosx = tgx 1 + tg²x 1 tg²x + sen²x = 3/4 sen²x = 3/4 senx = 3/ 4 senx = 3/2 e - 3/2 senx = 3/2 x = π/3 e 2π/3 senx = - 3/2 x = 4π/3 e 5π/3 No intervalo 0 x π/2, x = π/3.

2 02) (UFRRJ 2005) Observe o gráfico da função trigonométrica y = sen x, abaixo. Pode-se afirmar que o seu conjunto imagem é o intervalo: a) [-2, 1]. b) [-2, 2]. c) [-1, 2]. d) [-1, 3]. e) [-1, 4]. y = sen x 2.senx = 1 y senx = (1 y)/2-1 senx 1-1 (1 y)/2 1-1 (1 y)/2-2 1 y y 3 e (1 y)/2 1 1 y 2-1 y -1 y 3 ou [-1, 3] GABARITO: LETRA D 03) (UFRN 2008) A equação (Sen x)² 5(Sen x) + 6 = 0 a) admite mais de duas raízes. b) admite exatamente duas raízes. c) admite uma única raiz. d) não admite raízes. senx = t

3 t² - 5t + 6 = 0 = (-5)² = = 1 t 1 = [-(-5) + 1] / 2 = [5 + 1] / 2 t 1 = 6 / 2 t 1 = 3 t 2 = [-(-5) - 1] / 2 t 2 = [5-1] / 2 t 2 = 4 / 2 t 2 = 2 senx = 3 ou senx = 2-1 senx 1, ou seja, nenhum dos valores são válidos. GABARITO: LETRA D 04) (UEPB 2009) Os ângulos agudos a e b de um triângulo retângulo, satisfazem à condição cos α = cos β. Se o comprimento da hipotenusa é 6 cm, a área do triângulo em cm² é: a) 6. b) 9. c) 7. d) 8. e) 10. cos α = y/6 cos β = x/6 x/6 = y/6 x = y

4 Aplicando o Teorema de Pitágoras: (x)² + (y)² = (6)² x² + x² = 36 2x² = 36 x² = 18 A = x.y / 2 A = x.x / 2 A = x² / 2 A = 18 / 2 A = 9 05) (UFPEL 2007) Toda igualdade envolvendo funções trigonométricas que se verifica para todos os domínios de tais funções e uma Identidade Trigonométrica. A expressão idêntica a y = senx.tanx é: a) y = cos x sec x. b) y = sec x cos x. c) y = sec x. d) y = 1 cos x. e) y = sen x + cos x. y = senx.tanx y = senx. senx/cosx y = sen²x/cosx y = (1 cos²x) / cosx y = 1/cosx cos²x/cosx y = secx cosx (tanx = senx/cosx) (sen²x = 1 cos²x) (secx = 1/cosx) 06) (FUVEST 2002) Se α está no intervalo [0, π/2] e satisfaz sen 4 α cos 4 α = 1/4, então o valor da tangente de α é: a) b) c) d) e)

5 sen 4 α cos 4 α = 1/4 sen 4 α (cos 2 α)² = 1/4 sen 4 α (1 - sen 2 α)² = 1/4 sen 4 α (1-2sen 2 α + sen 4 α) = 1/4 sen 4 α 1 + 2sen 2 α sen 4 α = 1/ sen 2 α = 1/4 2sen 2 α = 1/ sen 2 α = 1/4 + 4/4 2sen 2 α = 5/4 sen 2 α = 5/8 sen α = ± 5/ 8 Como o ângulo pertence ao primeiro quadrante, sen α > 0, sen α = 5/ 8. sen² α + cos² α = 1 cos² α = 1 sen² α cos² α = 1 ( 5/ 8)² cos² α = 1 5/8 cos² α = 8/8 5/8 cos² α = 3/8 cos α = ± 3/ 8 Como o ângulo pertence ao primeiro quadrante, cos α > 0, cos α = 3/ 8. tg α = sen α / cos α tg α = ( 5/ 8) / ( 3/ 8) tg α = ( 5/ 8).( 8/ 3) tg α = 5/ 3 07) (UFLA 2003/2) O valor da expressão [tg (20º) + cotg (20º)].sen (40º) é: a) 2. b) 1. c) 0. d) sen (20º) + cos (20º). e) sen (20º).cos (20º). [tg (20º) + cotg (20º)].sen (40º) (tgx = senx/cosx e cotgx = cosx/senx) [sen 20º/cos 20º + cos 20º/sen 20º].sen 40º [(sen² 20º + cos² 20º)/cos 20º.sen 20º].sen 40º (sen² x + cos² x = 1) [1/ cos 20º.sen 20º].sen (20º + 20º) (sen(a + b) = sen a.cos b + sen b.cos a) [1/ cos 20º.sen 20º].(sen 20º.cos 20º + sen 20º.cos 20º) 2.sen 20º.cos 20º / sen 20º.cos 20º = 2 GABARITO: LETRA A

6 1 tg( x) 08) (UFLA 2003) O valor da expressão - 1é de: a) sen 2 (x). b) cos 2 (x). c) 0. d) 1. e) sec(x) cos 2 ( x) Como: Temos que: Sabendo que: e Temos que: Como: Assim: Portanto: GABARITO: LETRA C

7 09) (UFAM 2005) Quando simplificamos a expressão cos x 1 senx, vamos obter: 1 senx cos x a) 2 sec x. b) 2 cossec x. c) 2 sec² x. d) 2 cos x. e) cos x. Multiplicando e dividindo a expressão por (1 sem x), temos: Como: Temos que: Fazendo mmc: Sabendo que: Temos que: GABARITO: LETRA A 10) (UEPB 2006) Sabendo que sen a cos a = 2/5, o sen 2a será igual a: a) -21/5. b) 21/50. c) -21/50. d) 21/25. e) 42/25. Temos que: sen a cos a = 2/5 Elevando sen a cos a = 2/5 ao quadrado:

8 (sen a cos a)² = (2/5)² sen² a 2. sen a. cos a + cos² a = 4/25 Como sen² a + cos² a = 1, temos: 1 2. sen a. cos a = 4/25 Como sen 2a = 2. sen a.cos a, temos: 1 sen 2a = 4/25 sen 2a = 1 4/25 sen 2a = (25 4)/25 sen 2a = 21/25. GABARITO: LETRA D Lista de Exercícios 2 01) (UEPB 2005) O valor de cos 1 200º é igual ao valor de: a) cos 30º. b) sen 30º. c) sen 60º. d) cos 60º. e) cos 45º Como o ciclo trigonométrico possui 360, dividindo 1200 por esse valor temos: 1200 /360 = 3, Então sabemos que 1200 representam 3 voltas no ciclo trigonométrico mais uma parte dele. Vamos encontrar essa parte: / = 1080 Subtraindo de 1200 : = 120. Assim, temos que cos 1200 = cos 120. No ciclo trigonométrico, cos 120 = - cos 60 e cos 60 = sem 30. Portanto: cos 120 = - sem ) (UEG 2007/2) Sendo x um número real qualquer, a expressão (senx + cos x)² sen2x é igual a: a) 1. b) -2. c) 3 2.

9 d) 2. Temos que: (sem x + cos x)² - sen 2x = (sen x + cos x)² - 2. sen x. cos x sen² x + 2. sen x. cos x + cos² x - 2. sen x. cos x = sen² x + cos² x Sabemos que: sen² x + cos² x = 1. GABARITO: LETRA A 03) (UECE 2007/2) Se x e y são arcos no primeiro quadrante tais que sen(x) = 3/2 = cos(y), então o valor de sen(x + y) + sen(x y) é: a) 6/2. b) 3/2. c) 6/3. d) 2/3. O ângulo do primeiro cuadrante que possui sen(x) = 3/2 é x = 60. Sabemos que sen(60 ) = cos(30 ). Assim: sen(x + y) + sen(x y) = sen( ) + sen(60-30 ) Temos que: sen( ) = sen(60 ). cos(30 ) + sen(30 ). cos(60 ) = ( 3/2. 3/2) + (1/2. 1/2) = 3/4 + 1/4 = 1 sen(60-30 ) = sen(60 ). cos(30 ) sen(30 ). cos(60 ) = ( 3/2. 3/2) - (1/2. 1/2) = 3/4-1/4 = 2/4 Somando: sen( ) + sen(60-30 ) = 1 + 2/4 = (4 + 2)/4 = 3/2. 04) (FUVEST 1999) Qual das afirmações abaixo é verdadeira? a) sen 210º < cos 210º < tg 210º. b) cos 210º < sen 210º < tg 210º. c) tg 210º < sen 210º < cos 210º. d) tg 210º < cos 210º < sen 210º. e) sen 210º < tg 210º < cos 210º. O ângulo 210º no terceiro quadrante é equivalente ao ângulo 60º no primeiro quadrante. sen 210º = - sen 60º = - 1/2 cos 210º = - cos 60º = - 3/2 tg 210º = tg 60º = 3-3/2 < - 1/2 < 3 cos 210º < sen 210º < tg 210º

10 05) (FEI 2009/2) Seja a um arco do segundo quadrante com sen(a) = 4/5. Resolvendo a inequação cossec(a) + x.sec(a) > 0. a) b) c) d) e) sen² a + cos² a = 1 cos² a = 1 sen² a cos² a = 1 (4/5)² cos² a = 1 16/25 cos² a = 25/25 16/25 cos² a = 9/25 cos a = ± 3/5 Como o ângulo pertence ao segundo quadrante, cos x < 0, cos x = -3/5. cossec (a) + x.sec (a) > 0 1 / sen (a) + x.1 / cos (a) > 0 (1 / 4/5) + (x / -3/5) > 0 5/4-5x/3 > 0 5/4 > 5x/3 1/4 > x/3 3/4 > x 06) (FEI 2009) Simplificando a expressão, onde existir, obtemos: a) (tg² x)/3. b) 3.cotg² x.

11 c) 3.tg² x. d) (cotg² x)/3. e) sec² 3x β = [1 + (cos x / sen x)²] / [3.(1/cos² x)] β = [1 + (cos² x / sen² x)] / [3/cos² x] β = [(sen²x + cos² x) / sen² x] / [3/cos² x] cos²x + sen² x = 1 β = [1 / sen² x] / [3/cos² x] β = [1 / sen² x].[cos² x/3] β = cos² x / 3.sen² x cos² x/sen² x = cotg² x β = cotg² x / 3 07) (FEI 2008/2) Se sen α = 3/5 e α pertence ao segundo quadrante, então o valor de a) -12/5. b) 4/15. c) 12/5. d) -4/15. e) -5/3. é: sen² x + cos² x = 1 cos² x = 1 sen² x cos² x = 1 (3/5)² cos² x = 1 9/25 cos² x = 25/25 9/25 cos² x = 16/25 cos x = ± 4/5 Como o ângulo pertence ao segundo quadrante, cos x < 0, cos x = -4/5. y = [1 (-4/5)] / [(3/5) / (-4/5)] y = [1 + 4/5] / [(3/5).(-5/4)] y = [5/5 + 4/5] / [-3/4] y = [9/5] / [-3/4] y = [9/5].[-4/3] y = - 36/15 y = -12/5 GABARITO: LETRA A 08) (FEI 2007/2) Sabendo que 0 x π e que (senx+cosx)² + cosx = sen2x, pode-se afirmar que x é igual a: a) π/2. b) π/3. c) π/4.

12 d) 2π/3. e) π. Desenvolvendo a expressão temos: (senx + cosx)² + cosx = sen2x sen²x + 2. senx. cosx + cos²x + cosx = sen2x Sabendo que: sen²x + cos²x = 1; e sen2x = 2. senx. cosx Temos que: senx. cosx + cosx = 2. senx. cosx 1 + cosx = 0 cosx = -1 Pelo ciclo trigonométrico, sabemos que: cos(180 ) = -1 Em radianos: 180 = π. GABARITO: LETRA E 09) (FMCA 2008) Observe o gráfico. Esse gráfico representa a função F(x). É correto afirmar que: a) F(x) = cos x. b) F(x) = sen x. c) F(x) = sen x / cos x. d) F(x) = 1 / sen x. e) F(x) = 1 / cos x. Esse gráfico corresponde à função tangente. tg x = sen x / cos x Logo, F(x) = tg x = sen x / cos x GABARITO: LETRA C

13 10) (MACKENZIE 2004/2) Se α e b são ângulos internos de um triângulo, tais que senα.cosβ = senβ.cosα = 1/4, então a medida do terceiro ângulo interno desse triângulo pode ser: a) 90. b) 45. c) 120. d) 105. e) 150. sen(a + b) = sena.cosb + senb.cosa sen(α + β) = senα.cosβ + senβ.cosα sen(α + β) = 1/4 + 1/4 sen(α + β) = 2/4 = 1/2 sen x = 1/2 x = π/6 ou 5π/6 x = 30º ou 150º α + β = 30º ou 150º O terceiro ângulo pode ser 150º ou 30º, nesse caso, a alternativa 150º, ou seja, Lista de Exercícios 3 01) (MACKENZIE 2003/2) Se, então log 2 a é: a) -1/2. b) -1/4. c) 1. d) 2. e) -1. sen 70º = sen (90º - 20º) [sen(a b) = sena.cosb senb.cosa] sen 70º = sen 90º.cos 20º - sen 20º.cos 90º sen 70º = 1.cos 20º - sen 20º.0 sen 70º = cos 20º a = log 4 (2.cos 20º / cos 20º) a = log a = 2 (2 2 ) a = 2 2 2a = 2 2a = 1 a = 1/2

14 log 2 1/2 = x 2 x = 1/2 2 x = 2-1 x = -1 GABARITO: LETRA E 02) (MACKENZIE 2003) Com relação ao ângulo α da figura, podemos afirmar que tg 2α vale: a) 3/2. b) 1. c) 3. d) 2 3. e) 3/3. Temos disponíveis os valores da hipotenusa e do cateto adjacente de α, então podemos calcular cos α: cos α = C.A./H = ½ Sabemos que o ângulo cujo cos α = ½ é o ângulo de 60, ou seja, α = 60. Assim: tg 2.60 = (2. tg 60 )/(1 tg²60 ) = (2. 3)/(1-3²) = 2 3/(1-3) = 2 3/(-2) = - 3. GABARITO: LETRA C 03) (PUC Campinas 2007 Adaptado) Há mais de 4000 anos, a pirâmide de Quéops media 233 m na aresta da base. Suponhamos que Tales tenha escolhido uma posição conveniente do Sol, para a qual a medição da sombra da pirâmide fosse adequada, e que tenha fincado uma estaca com 3 m de altura, como mostra a figura. Nesse instante, a sombra EA da estaca mediu 5 m.

15 O valor de cos 2θ igual a: a) 8/17. b) 15/34. c) 7/17. d) 13/34. e) 6/17. (AO)² = (EA)² + (OE)² (AO)² = (5)² + (3)² (AO)² = (AO)² = 34 AO = 34 sen θ = 3/ 34 cos 2θ = 1 2.sen² θ cos 2θ = 1 2.(3/ 34)² cos 2θ = 1 2.(9/34) cos 2θ = 1 9/17 cos 2θ = 17/17 9/17 cos 2θ = 8/17 GABARITO: LETRA A 04) (UNIMONTES 2009) As soluções da equação cos² x + cos x = 0, no intervalo [0,2π], são:

16 a) π/2, π, 3π/2 e 2π. b) π/2, π e 3π/2. c) 0, 3π/2 e 2π. d) 0, π/2 e π. cos x.(cos x + 1) = 0 cos x = 0 ou cos x + 1 = 0 cos x = 0 ou cos x = -1 cos x = 0 x = π/2 e 3π/2 cos x = -1 x = π x = π/2, π e 3π/2 05) (UNIMONTES 2008) Dados, o valor de y = (1+ cos x).(1- cos x) é: a) -3/4. b) 3/4. c) ± 3/4. d) 3/2. sen² x + cos² x = 1 cos² x = 1 - sen² x cos² x = 1 (-3/2 3)² cos² x = 1 (9/4.3) cos² x = 1 9/12 cos² x = 12/12 9/12 cos² x = 3/12 = 1/4 y = (1+ cos x).(1- cos x) y = 1 cos² x y = 1 1/4 y = 4/4 1/4 y = 3/4 06) (UESPI 2004) O topo de uma torre e dois observadores, X e Y, estão em um mesmo plano. X e Y estão alinhados com a base da torre. O observador X vê o topo da torre segundo um ângulo de 45, enquanto Y, que está mais próximo da torre, vê o topo da torre segundo um ângulo de 60. Se a distância entre X e Y é 30,4m, qual o inteiro mais próximo da altura da torre, em metros? (Dados: use as aproximações tg(45º) = 1 e tg(60º) 1,73).

17 a) 72m. b) 74m. c) 76m. d) 78m. e) 80m. Observando a imagem: Supondo a = distancia entre Y e o prédio; e b = altura do prédio. Temos que: tg 60 = C.O./C.A. = b/a = 1,73 tg 45 = C.O./C.A. = b/(30,4 + a) = 1 Isolando b em ambas as expressões, temos: b = 1,73. a b = 30,4 + a Assim:

18 1,73a = 30,4 + a 0,73a = 30,4 a = 41,64 Usando o valor em b = 1,73a, temos que: b = 1,73a b = 1,73. 41,64 b = 72,04 Portando, o inteiro mais próximo da altura da torre é: b = 72m. GABARITO: LETRA A 07) (PUC-MG 2007) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, em reais, é calculado pela expressão V(x) =12 +1,5x, em que x é o número de quilômetros percorridos. Se B = 90º, C = 30º e o táxi fizer o percurso AB+BC, conforme indicado na figura, essa pessoa deverá pagar pela corrida: a) R$40,50. b) R$48,00. c) R$52,50. d) R$56,00.

19 sen 30º = AB / 20 1/2 = AB / 20 AB = 10 cos 30º = CB / 20 3/2 = CB / 20 CB = 10 3 = 10.1,7 = 17 AB + BC = = 27 V(27) = ,5.27 V(27) = ,5 V(27) = 52,50 08) (UEMG 2007) Considere a figura a seguir: Sabendo que a distância AB mede 30 metros e o ângulo θ é igual a 60, a altura h do edifício, em metros, corresponde a: a) 15. b) c) 15 2/3. d) 15 3/2.

20 sen 60º = h / AB 3 / 2 = h / 30 h = 30 3 / 2 h = ) (FUVEST 2002) A soma das raízes da equação sen 2 x 2cos 4 x = 0, que estão no intervalo [0, 2π], é: a) 2π. b) 3π. c) 4π. d) 6π. e) 7π. sen 2 x 2(cos 2 x)² = 0 (cos² x = 1 sen² x) sen 2 x 2(1 sen² x)² = 0 sen² x 2(1 2sen² x + sen 4 x) = 0 sen²x 2 + 4sen² x 2sen 4 x = 0-2 sen 4 x + 5sen² x 2 = 0 sen² x = t -2 (sen 2 x)² + 5sen² x 2 = 0-2t² + 5t 2 = 0 = (5)² - 4.(-2).(-2) = = 9 t 1 = (-5 + 3) / 2.(-2) t 1 = -2 / -4 t 1 = 1/2 t 2 = (-5 3) / 2.(-2) t 2 = -8 / -4 t 2 = 2 sen² x = t sen² x = 1/2 sen x = 2/2 e sen x = - 2/2 sen² x = 2 sen x = 2 e sen x = - 2 Como -1 senx 1, e 2 1,4, sen x = 2 e sen x = - 2 não são válidos. sen x = 2/2

21 x = π/4 e 3π/4 sen x = - 2/2 x = 5π/4 e 7π/4 π/4 + 3π/4 + 5π/4 + 7π/4 = 16π/4 = 4π GABARITO: LETRA C 10) (UNIFAL 2005/2) Uma maneira rudimentar e eficiente para se medir o ângulo de inclinação α de uma rua R, em relação à horizontal H, é construir um triângulo retângulo, como mostra a figura abaixo, onde OA = 12 cm, OB = 20 cm e o segmento OA é perpendicular ao segmento AB. A tangente do ângulo α vale: a) 0,95. b) 0,85. c) 0,75. d) 0,65. e) 0,55. (AB)² + (AO)² = (BO)² (AB)² + (12)² = (20)² (AB)² = 400 (AB)² = 256 AB = 16 tg α = AO / AB tg α = 12 / 16 tg α = 0,75 GABARITO: LETRA C

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1.

Arco Duplo. Se a área do triângulo T 1 é o triplo da área do triângulo T 2, então o valor de cosθ é igual a. a) 1. b) 1. d) 1. Arco Duplo. (Insper 0) Movendo as hastes de um compasso, ambas de comprimento, é possível determinar diferentes triângulos, como os dois representados a seguir, fora de escala. Se a área do triângulo T

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

Exercícios de Matemática Trigonometria Equações Trigonométricas

Exercícios de Matemática Trigonometria Equações Trigonométricas Exercícios de Matemática Trigonometria Equações Trigonométricas 1. (Ufpe) Quantas soluções a equação sen x + [(sen x)/2] + [(sen x)/4] +... = 2, cujo lado esquerdo consiste da soma infinita dos termos

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Trigonometria - Segunda Parte

Trigonometria - Segunda Parte Capítulo 8 Trigonometria - Segunda Parte 81 Conceitos Preliminares número Dada uma circunferência de raio r, diâmetro d = r, o número é denido como a razão do comprimento C da circunfeência pelo seu diâmetro

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

Aula Trigonometria

Aula Trigonometria Aula 4 4. Trigonometria A trigonometria estabelece relações precisas entre os ângulos e os lados de um triângulo. Definiremos as três funções (mesmo se a própria noção de função será estudada no próximo

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 08 Trigonometria. 8. Trigonometria... 8.. Introdução... 8.. Razões Trigonométricas em um Triângulo Retângulo...8 8... Seno, Cosseno, Tangente e Cotangente...8

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria)

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria) ESCOL SECUNDÁRI DE LBERTO SMPIO MTEMÁTIC º NO FICH DE TRBLHO Nº (Trigonometria) ESCOLH MÚLTIPL. De um ângulo α sabe-se que sen( α) é positivo e que cosα é negativo. Então α pertence a: º quadrante B º

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

LISTA DE EXERCÍCIO DE MATEMÁTICA

LISTA DE EXERCÍCIO DE MATEMÁTICA LISTA DE EXERCÍCIO DE MATEMÁTICA SÉRIE: º ANO TURMA: DATA DA PROVA: / /00 PROFESSOR: ARI ALUNO(A): NOTA VALOR. (PUC-MG) O valor de - 5 + - 5 é: 5-5 b) 5 + 5 c) 5 d) + 5 e) Resp.: E 0. Dê o valor de:. 0.:

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Aplicações da Integral - Continuação e Técnicas de Integração Aula 33 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 30 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado.

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado. TRIGONOMETRIA - I RESOLUÇÃO DE EXERCÍCIOS RACIOCÍNIO LÓGICO MATEMÁTICA FÍSICA/QUÍMICA E mail gabaritocerto@hotmail.com Envie suas dúvidas e questões para gabaritocerto@hotmail.com e saiba como receber

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

Lista 02 - Matemática Básica II

Lista 02 - Matemática Básica II Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

EXERCÍCIOS MATEMÁTICA 2

EXERCÍCIOS MATEMÁTICA 2 EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA 1 Série/Ano: 1º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SANDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

Aula 1 O seno, o cosseno e a tangente de um ângulo agudo

Aula 1 O seno, o cosseno e a tangente de um ângulo agudo ula 1 O seno, o cosseno e a tangente de um ângulo agudo MÓDULO 2 - UL 1 utor: elso osta Objetivos 1) ompreender a importância do conceito de seno e cosseno de um ângulo. 2) prender a construir uma tabela

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,

Leia mais

Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M.

Módulo de Trigonometria. Seno, Cosseno e Tangente. 1 a série E.M. Módulo de Trigonometria Seno, Cosseno e Tangente 1 a série E.M. Trigonometria Seno, Cosseno e Tangente. 1 Exercícios Introdutórios Exercício 1. Determine a) sen 10 o. b) sen 180 o. c) sen 40 o. d) sen

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais