Derivadas das Funções Trigonométricas Inversas

Tamanho: px
Começar a partir da página:

Download "Derivadas das Funções Trigonométricas Inversas"

Transcrição

1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções Trigonométricas Inversas Prof.: Rogério Dias Dalla Riva

2 Derivadas das Funções Trigonométricas Inversas 1.Funções trigonométricas.funções circulares inversas 3.Derivadas das funções trigonométricas inversas 4.Exemplos

3 1. Funções trigonométricas Vamos apresentar o comportamento das funções seno, cosseno, tangente, cotangente, secante e cossecante. 3

4 1.1. Função seno Chama-se função seno a função definida de R em R por f(x) = sen x. 4

5 1.1. Função seno Para analisar o comportamento da função seno, imagine que a extremidade P de um arco, partindo da origem, percorra a circunferência trigonométrica no sentido anti-horário. 5

6 1.1. Função seno Nesse suposto deslocamento da extremidade do arco, observamos que: De 0 a π/ o seno cresce de 0 a 1. De π/ a π o seno decresce de 1 a 0. De π a 3π/ o seno decresce de 0 a -1. De 3π/ a π o seno cresce de -1 a 0. 6

7 1.1. Função seno Supondo que a extremidade P continue se deslocando indefinidamente, a cada nova volta na circunferência trigonométrica o seno assumirá, em idênticas condições, todos os seus valores da primeira volta. Numa linguagem simples, podemos dizer que a função f(x) = sen x repete-se periodicamente de π em π. 7

8 1.1. Função seno Na linguagem matemática escrevemos: = sen ( x 4 π ) = sen ( x π ) = sen ( x) = sen ( x + π ) = sen ( x + 4 π ) = ou ainda x R e k Z, sen x = sen ( x + k π ) 8

9 1.1. Função seno Então dizemos que: A função f(x) = sen (x) é uma função periódica de período igual a π. De um modo geral, uma função f é denominada periódica sempre que existe um número T > 0, tal que, para todo x do domínio de f tem-se: f ( x) = f ( x + T ) 9

10 1.1. Função seno O menor valor (positivo) de T que satisfaz essa igualdade é chamado período da função. O gráfico de sen(x) é chamado senóide. D( f ) = R f ( x) = sen x Im( f ) = 1;1 [ ] 10

11 1.. Função cosseno Assim como analisamos a função seno, vamos analisar o comportamento de f(x) = cos(x) para x variando de 0 a π. De 0 a π/ o cosseno decresce de 1 a 0. De π/ a π o cosseno decresce de 0 a -1. De π a 3π/ o cosseno cresce de -1 a 0. De 3π/ a π cresce de 0 a 1. o cosseno 11

12 1.. Função cosseno Da segunda volta em diante, o cosseno passa a repetir, em idênticas condições, os valores da primeira volta. Isto é, x R e k Z, cos x = cos ( x + k π ) Então dizemos que a função f(x) = cos (x) é uma função periódica de período igual a π. 1

13 1.. Função cosseno O gráfico da função cosseno é chamado cossenóide. Note, na figura, que a cossenóide nada mais é do que a senóide deslocada de π/ unidades, na direção horizontal, para a esquerda. Essa característica da cossenóide pode 13 ser traduzida assim:

14 1.. Função cosseno π x R, cos x = sen x + D( f ) = R f ( x) = cos x Im( f ) = 1;1 [ ] 14

15 1.3. Função tangente Chama-se função tangente a função definida por f ( x) = tg x, x π + kπ, k Z 15

16 1.3. Função tangente A função tangente também é periódica. Porém, enquanto as funções seno e cosseno têm períodos iguais a π, a função tangente tem período igual a π. 16

17 1.3. Função tangente Isso significa que a cada meia-volta a função tangente repete-se em idênticas condições. Isto é, π x R e k Z, x + kπ tg x = tg ( x + kπ ) 17

18 1.3. Função tangente De 0 a π/ a tangente cresce de 0 a +. De π/ a π a tangente cresce de - a 0. 18

19 1.3. Função tangente Daí em diante, a cada meia-volta, a tangente comporta-se exatamente como na primeira meia-volta. 19

20 1.3. Função tangente π D( f ) = x R / x + kπ ( k Z) f ( x) = tg x Im( f ) = R 0

21 1.4. Funções cotangente, secante e cossecante Por serem menos importantes que as demais funções trigonométricas, serão apresentadas de forma resumida, enfatizando-se o domínio e o conjunto-imagem das funções cotangente, secante e cossecante. 1

22 1.4. Funções cotangente, secante e cossecante P = π { R π} D( f ) = x / x k ( k Z) f ( x) = cotg x Im( f ) = R

23 1.4. Funções cotangente, secante e cossecante P = π π D( f ) = x R / x + kπ ( k Z) f ( x) = sec x Im( f ) = { y R / y 1 ou y 1} 3

24 1.4. Funções cotangente, secante e cossecante P = π { R π} Z { R } D( f ) = x / x k ( k ) f ( x) = cossec x Im( f ) = y / y 1 ou y 1 4

25 . Funções circulares inversas As funções trigonométricas inversas são também conhecidas como funções arco. Nessa notação: sen -1 x = arc sen x tg -1 x = arc tg x sec -1 x = arc sec x cos -1 x = arc cos x cotg -1 x = arc cotg x cossec -1 x = arc cossec x 5

26 7.1. Função arco-seno A função de domínio R definida por f(x) = sen x não admite função inversa por não ser injetora (*). Nota: Uma função f é chamada injetora se cada elemento de seu conjuntoimagem é imagem de um único elemento do domínio. 6

27 7.1. Função arco-seno Porém, restringindo o domínio da função seno ao intervalo [- π/, π/] é possível definir sua inversa, que é chamada função arco-seno e é denotada pelo símbolo arc sen. significa: Por exemplo, a sentença π 1 = arc sen 6 π 1 é o arco cujo seno é igual a 6 7

28 7.1. Função arco-seno Definição: π π Para x [ 1; 1 ] e y ;, a função arcoseno é definida pela sentença y = arc sen x sen y = x 8

29 7.1. Função arco-seno Veja estes exemplos: π 1 π 1 a) = arc sen, pois sen 6 = 6 π π b) - = arc sen( 1), pois sen 1 = Este esquema mostra que a função arcoseno é a inversa da função seno: 9

30 7.1. Função arco-seno Gráfico de f(x) = arc sen x 30

31 .1. Função arco-seno Se considerarmos a função seno restrita ao intervalo [-π/, π/] e com contradomínio [-1, 1], isto é, g: [-π/, π/] [-1, 1] tal que g(x) = sen x, a função g admitirá inversa e g -1 será denominada função arco-seno. Notemos que g -1 tem domínio [-1, 1], contradomínio [-π/, π/] e associa a cada x [-1, 1] um y [-π/, π/] tal que y é um arco cujo seno é x (indica-se y = arc sen x). Temos, portanto, que: y = arc sen x sen y = x e -π/ y π/ 31

32 .1. Função arco-seno 3

33 7.. Função arco-cosseno A exemplo da função seno, a função cosseno não admite inversa quando seu domínio é o conjunto R. Assim, para definir a inversa da função cosseno, vamos restringir o seu domínio ao intervalo [0; π]. 33

34 7.. Função arco-cosseno A inversa da função cosseno é chamada função arco-cosseno e é denotada por arc cos. Definição: Para [ 1; 1 ] e [ 0; ] x y π, a função arco-cosseno é definida pela sentença y = arc cos x cos y = x 34

35 7.. Função arco-cosseno Veja estes exemplos: π 3 π 3 a) = arc cos, pois cos 6 = 6 ( π ) b) π = arc cos( 1), pois cos = 1 Este esquema mostra que a função arcocosseno é a inversa da função cosseno: 35

36 7.. Função arco-cosseno Gráfico de f(x) = arc cos x 36

37 .. Função arco-cosseno Se considerarmos a função cosseno restrita ao intervalo [0, π] e com contradomínio [-1, 1], isto é, g: [0, π] [-1, 1] tal que g(x) = cos x, a função g admitirá inversa e g -1 será denominada função arco-cosseno. Notemos que g -1 tem domínio [-1, 1], contradomínio [0, π] e associa a cada x [-1, 1] um y [0, π] tal que y é um arco cujo cosseno é x (indica-se y = arc cos x). Temos, portanto, que: y = arc cos x cos y = x e 0 y π 37

38 .. Função arco-cosseno 38

39 7.3. Função arco-tangente Para definir o inverso da função tangente, vamos restringir o inverso da mesma ao intervalo (-π/, π/). Observe o gráfico seguinte e note que, nesse intervalo, a função tangente é bijetora. 39

40 7.3. Função arco-tangente A inversa da função tangente é chamada função arco-tangente e é denotada por arc tg. Definição: π π Para x R e y ;, a função arco-tangente é definida por y = arc tg x tg y = x 40

41 7.3. Função arco-tangente Observe estes exemplos: π π a) = arc tg( 1 ), pois tg = π π b) - = arc tg( 3), pois tg 3 3 = 3 41

42 7.3. Função arco-tangente Gráfico de f(x) = arc tg x 4

43 .3. Função arco-tangente Se considerarmos a função tangente restrita ao intervalo aberto (-π/, π/) e com contradomínio R, isto é, g: (-π/, π/) R tal que g(x) = tg x, a função g admitirá inversa e g -1 será denominada função arco-tangente. Notemos que g -1 tem domínio R, contradomínio (-π/, π/) e associa a cada x R um y (-π/, π/) tal que y é um arco cuja tangente é x (indica-se y = arc tg x). Temos, portanto, que: y = arc tg x tg y = x e -π/ y π/ 43

44 .3. Função arco-tangente 44

45 .4. Quadro resumo Atenção! Nenhuma função trigonométrica possui inversa, o que fazemos aqui é a modificação do domínio destas funções, criando assim novas funções que sejam inversíveis. 45

46 .4. Quadro resumo y = sen x Função trigonométrica Domínio: (-, + ) Imagem: [-1, 1] y = cos x Domínio: (-, + ) Imagem: [-1, 1] y = tg x Domínio: {x R/x π/ + k π, k Z} Imagem: (-, + ) y = cotg x Domínio: {x R/x k π, k Z} Imagem: (-, + ) y = sec x Domínio: {x R/x π/ + k π, k Z} Imagem: (-, 1] U [1, + ) y = cossec x Domínio: {x R/x k π, k Z} Imagem: (-, 1] U [1, + ) Função trigonométrica com domínio modificado y = sen x Domínio: [- π/, π/] Imagem: [-1, 1] y = cos x Domínio: [0, π] Imagem: [-1, 1] y = tg x Domínio: (- π/, π/) Imagem: (-, + ) y = cotg x Domínio: (0, π) Imagem: (-, + ) y = sec x Domínio: [-π, -π/) U [0, π/) Imagem: (-, 1] U [1, + ) y = cossec x Domínio: (-π, -π/] U (0, π/] Imagem: (-, 1] U [1, + ) Inversa trigonométrica y = sen -1 x = arc sen x Domínio: [-1, 1] Imagem: [- π/, π/] y = cos -1 x = arc cos x Domínio: [-1, 1] Imagem: [0, π] y = tg -1 x = arc tg x Domínio: (-, + ) Imagem: (- π/, π/) y = cotg -1 x = arc cotg x Domínio: (-, + ) Imagem: (0, π) y = sec -1 x = arc sec x Domínio: (-, 1] U [1, + ) Imagem: [-π, -π/) U [0, π/) y = cossec -1 x = arc cossec x Domínio: (-, 1] U [1, + ) 46 Imagem: (-π, -π/] U (0, π/]

47 3. Derivadas das funções trigonométricas inversas Aqui, usaremos a diferenciação implícita para determinar as derivadas das funções trigonométricas inversas, supondo que essas funções sejam diferenciáveis. 47

48 3.1. Derivada de arc sen x Lembre-se que a função inversa da função seno é dada por sen -1 x = arc sen x. y = sen -1 x significa sen y = x e -π/ y π/ Diferenciando sen y = x implicitamente em relação a x obtemos dy dy 1 cos y = 1 = dx dx cos y logo: Agora cos y 0,umavezque -π/ y π/, cos y = 1 sen y = 1 x 48

49 3.1. Derivada de arc sen x dy 1 1 = = dx cos y 1 x Portanto d dx ( 1 sen x) = 1 1 x 49

50 3.. Derivada de arc cos x Lembre-se que a função inversa da função cosseno é dada por cos -1 x = arc cos x. y = cos -1 x significa cos y = x e 0 y π Diferenciando cos y = x implicitamente em relação a x obtemos dy dy 1 sen y = 1 = dx dx sen y Agora sen y >0,umavezque 0< y< π, logo: sen y = 1 cos y = 1 x 50

51 3.. Derivada de arc cos x dy 1 1 = = dx sen y 1 x Portanto d dx 1 ( cos x) = 1 1 x 51

52 3.3. Derivada de arc tg x Lembre-se que a função inversa da função tangente é dada por tg -1 x = arc tg x. y = tg -1 x significa tg y = x e -π/ y π/ Diferenciando tg y = x implicitamente em relação a x obtemos dy dy sec y = 1 = dx dx sec y Da identidade sec y = 1 + tg y, temos 1 sec y = 1+ tg y = 1+ x 5

53 3.3. Derivada de arc tg x Portanto dy 1 1 = = dx sec y 1 + x d dx ( 1 tg x) 1 = 1 + x 53

54 3.4. Derivada de arc cotg x Lembre-se que a função inversa da função cotangente é dada por cotg -1 x = arc cotg x. y = cotg -1 x significa cotg y = x e 0 y π Diferenciando cotg y = x implicitamente em relação a x obtemos dy dy cossec y = 1 = dx dx cossec y 1 Da identidade cossec y = 1 + cotg y, temos cos sec y = 1+ cotg y = 1+ x 54

55 3.4. Derivada de arc cotg x Portanto dy 1 1 = = dx cossec y 1 + x d dx 1 ( cotg x) 1 = 1 + x 55

56 3.5. Derivada de arc sec x Lembre-se que a função inversa da função secante é dada por sec -1 x = arc sec x. y = sec -1 x significa sec y = x e {y R/ [- π, -π/) U [0, π/)} Diferenciando sec y = x implicitamente em relação a x obtemos dy dy 1 sec y tg y = 1 = dx dx sec y tg y Da identidade tg y = sec y - 1, temos tg y = sec y 1 = x 1 56

57 3.5. Derivada de arc sec x Portanto dy 1 1 = = dx y y x x sec tg 1 d ( 1 ) 1 sec x = dx x x 1 57

58 3.6. Derivada de arc cossec x Lembre-se que a função inversa da função cossecante é dada por cossec -1 x = arc cossec x. y = cossec -1 x significa cossec y = x e {y R/ (-π, -π/] U (0, π/]} Diferenciando cossec y = x implicitamente em relação a x obtemos dy dy 1 cossec y cotg y = 1 = dx dx cossec y cotg y Da identidade cotg y = cossec y - 1, temos cotg y = cossec y 1 = x 1 58

59 3.6. Derivada de arc cossec x dy 1 1 = = dx y y x x Portanto cossec cotg 1 d ( 1 ) 1 cossec x = dx x x 1 59

60 3.7. Resumo Se u for uma função de x, derivável, d dx 1 ( sen u) = 1 1 u du dx d ( 1 cotg u) 1 du = 1 + dx u dx d dx 1 ( cos u) = 1 1 u du dx d dx ( 1 sec u) = u u 1 1 du dx d 1 ( tg u) 1 = 1 + du dx u dx d dx ( 1 cossec u) 1 = u u 1 du dx 60

61 4. Exemplos Exemplo 1: Derive y = sen -1 x. d dx d dx d dx 1 du = 1 u dx 1 sen = x 1 1 ( sen u) 1 ( x ) 1 ( sen x ) = x 1 x ( x ) 4 61

62 4. Exemplos 1 1 Exemplo : Derive f ( x) = tg ( ) 1 + ( x + 1) ( x + 1) ( x + 1) ( x + 1) x + 1 d 1 1 du 1 1 ( tg u) = = dx 1+ u dx 1 ( x + 1) 1+ x + 1 d tg = dx x + 1 x + 1 x d tg = dx x + 1 x + x x + 1 d dx ( ) ( ) 1 1 x tg = x + x + ( x + 1) 1 1 = x + x + 6

63 4. Exemplos Exemplo 3: Derive y = x cotg x dy 3 cotg 1 x = x + x 3 dx x dy 1 x x 1 = 3x cotg dx x 3 9 dy dx x = x 1 3 cotg x x 3 3 dy 1 x 3x = 3x cotg dx x 63

64 4. Exemplos 1 x Exemplo 4: Ache dy/dx se ln ( x + y) = tg y dy dy dy y 1 x 1+ y x 1 dy = dx dx = dx x + y dx x y x + y x y y y dy dy dy dy 1+ y x 1+ dx 1 dx dx y y x = = dx x + y y + x y x + y y + x y y dy dy 1+ y x dx = dx y x ( y x ) xy y + + x y y x dy dx = + ( x xy ) dy dy dy y + x + x + xy = xy x x + xy + y = xy x dx dx dx x ( y x) = = dx x + xy + y dx x + xy + y ( ) ( ) ( ) dy xy x dy dy + dx 64

65 4. Exemplos 1 Exemplo 5: Derive a função f ( x) = sec ( 3e x ) x ( e ) x ( ) ' f ( x) = 3e x f f ' ' ( x) = ( x) = 1 3e 3 1 3e x 1 1 x 9e 1 3 x ( 3e ) 1 ( x e ) 65

66 4. Exemplos Exemplo 6: Derive a função ( ) = cossec + x 1 1 x 1 x x ' 1 f x x f ' ( x) = cossec + f ( x) cossec 1 1 x 1 x x x 1 x x x ' 1 = + ' 1 1 x f ( x) = cossec + x 1 x x f ( x) = x cossec 1 1 x 66

67 4. Exemplos No exemplo a seguir, um observador está olhando um quadro colocado em uma parede. Veja a figura a seguir. Quando o observador está afastado da parede, o ângulo segundo o qual ele vê o quadro é pequeno. À medida que o observador se aproxima da parede, o ângulo irá aumentando, até atingir um valor máximo. Então, se o observador continuar se aproximando, o ângulo diminuirá. Quando o ângulo for máximo, diremos que o observador tem a melhor visão do quadro. 67

68 4. Exemplos Exemplo 7: Um quadro com 1 m de altura é colocado em uma parede de tal forma que sua base esteja m acima do nível dos olhos de um observador. Quantos metros o observador deverá se afastar da parede, para obter a melhor visão do quadro, isto é, para que o ângulo segundo o qual ele vê o quadro seja o máximo? 68

69 4. Exemplos Seja x m a distância do observador até a parede, θ a medida em radianos do ângulo segundo o qual o observador vê o quadro, α a medida do ângulo em radianos, segundo o qual o observador vê a parte da parede acima do nível dos olhos e abaixo do quadro, e β = α + θ. Queremos encontrar o valor de x que irá tornar θ um máximo absoluto. Como x está no intervalo (0, + ), o valor máximo absoluto de θ será um valor máximo relativo. 69

70 4. Exemplos Vemos, da figura, que: x x cotg β = e cotgα = 3 Como π π 0 < β < e 0 < α < 1 x 1 x β = cotg e α = cotg 3 Substituindo esses valores de α e β na relação θ = β - α. -1 x -1 x θ = cotg cotg 3 70

71 4. Exemplos Derivando com relação a x, teremos: 1 1 dθ 3 3 = + = + dx x x 9 + x 4 + x Equacionando (9 + x ) 3(4 + x ) = 0 x + = dθ = dx (18 1) 0 x 0 = 6 x,45, iremos obter 71

72 4. Exemplos A solução -,45 foi rejeitada por não estar no intervalo (0, + ). Os resultados do teste da derivada primeira estão na tabela abaixo. Como o valor máximo relativo de θ é um valor máximo absoluto, concluímos que o observador deve ficar a aproximadamente,45 m da parede. Conclusão 0 < x <,45 + x =,45 0 (θ tem um valor máximo relativo),45 < x < - 7

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1].

Funções Trigonométricas. A função Seno. Função Seno. Função Seno: Propriedades. f : R R. = medida algébrica do. CD(f ) = R, Im(f ) = [ 1, 1]. Funções Trigonométricas função Seno Função Seno Função Seno: ropriedades (a) sen( + π) = sen() R R f () = sen() segmento (b) sen() = sen( ) Se está no primeiro ou segundo quadrante então sen() é positivo.

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

Funções Hiperbólicas

Funções Hiperbólicas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Hiperbólicas

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

Mais funções e limites

Mais funções e limites Capítulo 3 Mais funções e ites Nesse capítulo, abordaremos as funções invertíveis, além de algumas classes especiais de funções: trignométricas, exponenciais, logarítmicas e hiperbólicas. 3.1 Funções Inversas

Leia mais

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

Medir um arco ou ângulo é compará-lo com outro, unitário.

Medir um arco ou ângulo é compará-lo com outro, unitário. Trigonometria A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos. Historicamente,

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g

CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Algumas Regras para Diferenciação

Algumas Regras para Diferenciação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

PLANO DE AULA 1-IDENTIFICAÇÃO. Instituto Federal Catarinense-Campus Avançado Sombrio. Município: Sombrio, SC. Disciplina: Matemática

PLANO DE AULA 1-IDENTIFICAÇÃO. Instituto Federal Catarinense-Campus Avançado Sombrio. Município: Sombrio, SC. Disciplina: Matemática PLANO DE AULA 1-IDENTIFICAÇÃO Instituto Federal Catarinense-Campus Avançado Sombrio Município: Sombrio, SC. Disciplina: Matemática Série: 2º ano Nível: Ensino Médio Professora: Nébia Mara de Souza Tempo

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE LICENCIATURA EM MATEMÁTICA MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 05 Prof. Márcio Nascimento marcio@matematicauva.org

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Lista 02 - Matemática Básica II

Lista 02 - Matemática Básica II Lista 0 - Matemática Básica II - 016. 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4,

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

A inversa da função seno

A inversa da função seno UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 PARTE III FUNÇÕES TRIGONOMÉTRICAS INVERSAS Funções inversas. O que isso significa? A cada valor da imagem corresponde um e só um valor do domínio

Leia mais

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Matemática Régis Cortes TRIGONOMETRIA

Matemática Régis Cortes TRIGONOMETRIA TRIGONOMETRIA 1 TRIGONOMETRIA A palavra TRIGONOMETRIA é formada por 3 radicais gregos : TRI (três), GONO (ângulos) e METRIA (medida). Atualmente a trigonometria não se limita apenas a estudar triângulos

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Limites, continuidade e diferenciação de funções

Limites, continuidade e diferenciação de funções Matemática 1 Semanas 9, 10 e 11 Professor Luiz Claudio Pereira Faculdade de Planaltina Universidade de Brasília Material Previsto para três semanas 113018 (UNB) Luiz Claudio Pereira 2017 1 / 100 Limites,

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por: A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria

Leia mais

Matemática B Extensivo v. 4

Matemática B Extensivo v. 4 Extensivo v. Exercícios 0) a) S π ; π b) S π π ; c) S π π ; a) (x) x π Portanto, S π π ;. π π 0) B tg x 0 tg x x π. 0) A Portanto, possui uma única solução para x [0, p]. x 0 x x x π. b) Errata: S π π

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Aula 21. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 21. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Correção da Segunda Prova Aula 21 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Coreção

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO 0) Responda aos itens. GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 5/04/06

Leia mais

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina.

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9.3 do livro texto da disciplina: Números e Funções Reais,

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

Apostila Cálculo Diferencial e Integral I: Integral

Apostila Cálculo Diferencial e Integral I: Integral Apostila Cálculo Diferencial e Integral I: Integral Apostila Cálculo Diferencial e Integral I: Integral Sumário 1 Integral 5 1.1 Antidiferenciação......................... 5 1.1.1 Exercícios.........................

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Apostila Cálculo Diferencial e Integral I: Derivada

Apostila Cálculo Diferencial e Integral I: Derivada Instituto Federal de Educação, Ciência e Tecnologia da Bahia Campus Vitória da Conquista Coordenação Técnica Pedagógica Programa de Assistência e Apoio aos Estudantes Apostila Cálculo Diferencial e Integral

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais

Trigonometria no Círculo - Funções Trigonométricas

Trigonometria no Círculo - Funções Trigonométricas Trigonometria no Círculo - Funções Trigonométricas Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 1º Ano 4º Bimestre/2014 Plano de Trabalho Trigonometria na circunferência Tarefa 1 Cursista: Wendel do Nascimento Pinheiro

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Ciclo trigonométrico

Ciclo trigonométrico COLÉGIO PEDRO II CAMPUS REALENGO II 1ª SÉRIE MATEMÁTICA II Ciclo trigonométrico Ciclo trigonométrico Chamamos de ciclo ou circunferência trigonométrica uma circunferência de raio unitário orientada. Na

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA QUINTA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Iniciamos a aula definindo as funções trigonométricas e estabelecendo algumas de suas propriedades básicas. A seguir, calcularemos

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio Material Teórico - Círculo Trigonométrico Secante, cossecante e cotangente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 5 de dezembro de

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 14 a lista de exercícios (0/11/017 a 01/1/017) 1 Resolva as equações abaixo

Leia mais