Lista 02 - Matemática Básica II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista 02 - Matemática Básica II"

Transcrição

1 Lista 0 - Matemática Básica II Encontre a medida em radianos do ângulo θ, sendo θ o ângulo central de um arco que mede s em um círculo de raio r. (a) r =, s = 9 (b) r = 1, s = π (c) r = 1 4, s = 1. Los Angeles e São Francisco (Estados Unidos) estão separadas por 450 milhas na superfície terrestre. Admitindo que o raio da Terra é de milhas, encontre a medida em radianos do ângulo central com vértice no centro da Terra que tem as cidades citadas no outro lado.. Converta para radianos (a) 60 0 (b) 40 0 (c) Quantos radianos percorre o ponteiro dos minutos de um relógio durante cinco minutos? 5. Converta para graus (a) 4π rad (b) 11π 4 rad (c) 0.5 rad 6. No famoso relógio de Londres, o Big Ben, o ponteiro dos minutos mede cerca de 14 pés 1. Qual a distância em metros que a ponta do ponteiro percorre após 5 minutos? 7. Exprima em radianos as medidas dos arcos a e b tais que a b = 15 0 e a + b = 7π 4 rad. 8. Exprima em graus as medidas dos arcos a, b, c tais que a + b + c = 1 0, a + b + c = π 1 rad e a + b + c = π 9 rad. 9. Calcule a medida do ângulo central aôb que determina em uma circunferência de raio r um arco de comprimento πr. 10. Calcule o comprimento l do arco ÂB definido em uma circunferência de raio 7 cm por um ângulo central de 4,5 rad. 11. Divide-se o ciclo trigonométrico em 8 partes iguais sendo A(1, 0) um dos pontos divisores. Determine o conjunto dos x [0, π] cujas imagens são os pontos divisores. 1 1 pé=0,048m 1

2 1. Dadas as coordenadas geográficas das cidades abaixo e considerando o raio da Terra 671Km, calcule a distância geodésica entre uma cidade brasileira e uma cidade europeia: R. arccos[sen(lt 1 ).sen(lt ) + cos(lt 1 ). cos(lt ). cos(ln 1 LN )] Cidade Latitude Longitude Acaraú (CE) S W Ipueiras (CE) S W Londrina (PR) S W Cuiabá (MT) S W Berlim (ALE) N E Roma (ITA) N E Baku (AZE) N E Copenhage (DIN) N E 1. Utilizando simetria e sabendo que sen π 6 = 1 dê o valor do seno de 5π 6, 7π 6 e 11π 14. Utilizando simetria e sabendo que cos π 6 = dê o valor do cosseno de 5π 6, 7π 6 e 11π 15. Utilizando simetria e sabendo que tg π 6 = dê o valor da tangente de 5π 6, 7π 6 e 11π 16. Utilizando simetria e sabendo que cotg π 6 = dê o valor da cotangente de 5π 6, 7π 6 e 11π 17. Utilizando simetria e sabendo que cossec π 6 = dê o valor da cossecante de 5π 6, 7π 6 e 11π 18. Utilizando simetria e sabendo que sec π 6 = 19. Sabendo que sen π = dê o valor do seno de π, 4π e 5π. 0. Sabendo que cos π = 1 dê o valor do cosseno de π, 4π e 5π. dê o valor da secante de 5π 6, 7π 6 e 11π 1. Sabendo que tg π = dê o valor da tangente de π, 4π e 5π.. Sabendo que cotg π = dê o valor da cotangente de π, 4π e 5π.. Sabendo que sec π = dê o valor da secante de π, 4π e 5π. 4. Sabendo que cossec π = dê o valor da cossecante de π, 4π e 5π.

3 5. Localize os arcos no ciclo trigonométrico e coloque em ordem crescente os números sen60 0, sen150 0, sen40 0, sen0 0. Idem para os números cos 60 0, cos 150 0, cos 40 0, cos 0 0 e também para os números tg60 0, tg10 0, tg10 0 e tg Idem para cotg60 0, cotg10 0, cotg10 0 e cotg0 0, para sec 60 0, sec 10 0, sec 10 0 e sec 0 0 e também para cossec60 0, cossec150 0, cossec40 0 e cossec Sabendo que cossecx = 5 4 e π < x < π, calcule as demais funções circulares de x. 8. Sabendo que tgx = 1 5 e π < x < π, calcule as demais funções circulares de x. 9. Calcule sec x sabendo que senx = ab, com a > b > 0. a + b 0. Sendo senx = 1 e 0 < x < π calcule o valor de y = 1. Sabendo que cotgx = 4 7 e π < x < π 1 cossecx + cotgx + 1 cossecx cotgx, calcule o valor de y = tgx. cos x (1 + cos x)(1 cos x). Dado que cos x = 5 e π < x < π, obtenha o valor de y = (1 + tg x) + (1 tg x). Calcule senx e cos x, sabendo que. cos x + senx = Calcule senx e cos x, sabendo que 5. sec x.tg x = Obtenha tgx, sabendo que sen x 5.senx. cos x + cos x =. 6. Calcule m de modo a obter senx = m + 1 e cos x = 4m Calcule m de modo a obter tgx = m e cotgx = m. 8. Determine a de modo a obter cos x = 1 a + 1 e cossecx = a + 1 a Determine uma relação entre x e y, independente de t, sabendo que x = 5.tg(t) e y =.cossec(t). 40. Se senx + cos x = a e senx. cos x = b, obtenha uma relação entre a e b, independente de x. 41. Dado que senx. cos x = m, calcule o valor de y = sen 4 x + cos 4 x e z = sen 6 x + cos 6 x. 4. Sabendo que senx + cos x = a, calcule y = sen x + cos x.

4 4. Prove as identidades abaixo, válidas para todo x onde as expressões estão definidas: (a) 1 tg x 1 + tg x = 1 sen x (b) cos x senx cos x + senx = 1 tgx 1 + tgx (c) 1 senx = (sec x tgx) 1 + senx senx (d) cossecx cotgx = 1 + cos x 44. Calcule k de modo que as raízes da equação x kx+k +k = 0 sejam o seno e o cosseno de um mesmo ângulo. 45. Prove que sen 6 x + cos 6 x sen 4 x cos 4 x + sen x = Prove que senx sen x cos x cos x = tgx 47. Verifique cada uma das seguintes identidades: (a) cossecx + cotgx. sec x =.cossecx (b) cos x + senx.tgx = sec x cos x.cossecx (c) = tgx cotg x 1 (d) senx + 1 = cossecx + senx cossecx ( ) ( ) π π (e) cos θ.cotgθ + tgθ.sen θ = cos θ + senθ (f) (g) tgx = cos x.senx sec x [ ( )] π tg θ.(1 cos θ). sec θ = senθ (h) (1 sen x).tgx = cotgx sen x [ ( )] π (i) cos θ.(senθ + cotgθ. cos θ) = 1 (j) senx 1 cossecx.(cossecx + 1) = cos x ( ) ( ) π π (k) senθ = sen θ.cotg θ (l) senθ + cos θ.cotgθ = cossecθ (m) cossecθ.tgθ senθ = tgθ sen θ senθ (n) sec θ.tgθ cotgθ = tg θ cos θ senθ (o) sec θ(cos θ 1) = tg θ 4

5 (p) sec x = cossecx(90 0 x) (q) tg x.senx + senx = tgx cos x (r) cos senx. cos x sec x x cossecx = sec x.senx 48. Mostre que cos α = ± 1 + cos α 49. Verifique cada uma das seguintes identidades: e tg α = ± 1 cos α 1 + cos α (a) sec x = 1 + tgx.tgx sec x.cossecx (b) cossecx = cotgx tgx (c) cotgx = (d) tgx = senx 1 + cos x (e).tgx tgx = sec x.tg x (f) senx = 1 + tg x cos x + 1 (g) cotgx = senx (h) senx = senx 4sen x (i) cos x = 4 cos x cos x (j) tgx = tgx tg x 1 tg x 50. Use as identidade de arco-metade para encontrar o valor de cada expressão (a) sen π 1 (b) cos π 1 (c) tg π 1 (d) sen 5π 1 (e) cos 7π Mostre que cos(x y) cos(x + y) senx.seny = cos(x y) + cos(x + y) cos x. cos y = 5

6 5. Mostre que sen(x + y) + sen(x y) senx. cos y = sen(x + y) sen(x y) cos x.seny = (a) cotgx = cos(x + y) + cos(x y) sen(x + y) + sen(x y) (b) senx.tgx =.sen x (c) 1 cos x = 4.sen x. x cos (d) sen9x cos 9x senx cos x = (e). cos x.tgy = senx + cos x.(tgy tgx) (f) 4.senx. cos x.seny. cos y = sen (x + y) sen (x y) (g) tg x. cos x + cos x = sec x (h).senx. cos x = tgx + tgx. cos x (i).sen x. cos x = 1 sen x cos x + sen x. cos x (j) sen x = senx. cos x(1 cos 4x) 5. Encontre seno, cosseno, tangente, secante, cossecante e cotangente, realizando redução ao primeiro quadrante: (a) x = 5π 6 rad (b) x = π 4 rad (c) x = (d) x = (e) x = (f) x = 05 0 (g) x = 88 0 (h) x = 4 0 6

Radianos e Graus. Prof. Márcio Nascimento.

Radianos e Graus. Prof. Márcio Nascimento. Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II - 2015.1

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

EXERCÍCIOS MATEMÁTICA 2

EXERCÍCIOS MATEMÁTICA 2 EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

Matemática Régis Cortes TRIGONOMETRIA

Matemática Régis Cortes TRIGONOMETRIA TRIGONOMETRIA 1 TRIGONOMETRIA A palavra TRIGONOMETRIA é formada por 3 radicais gregos : TRI (três), GONO (ângulos) e METRIA (medida). Atualmente a trigonometria não se limita apenas a estudar triângulos

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

REVISÃO DE CONCEITOS BÁSICOS

REVISÃO DE CONCEITOS BÁSICOS Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 SUMÁRIO APRESENTAÇÃO -------------------------------------------- 3 6. Trigonometria---------------------------------------------4

Leia mais

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG)

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG) (Unimontes-MG) (PUC-RS) Quando um relógio está marcando horas e minutos, o menor ângulo formado pelos seus ponteiros é de: Considere o relógio localizado na entrada do MCT. a) º0 b) º0 c) 7º d) º Considerando

Leia mais

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

Matemática Trigonometria TRIGONOMETRIA

Matemática Trigonometria TRIGONOMETRIA TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Trigonometria - atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado.

TRIGONOMETRIA - I. Envie suas dúvidas e questões para. e saiba como receber o GABARITO comentado. TRIGONOMETRIA - I RESOLUÇÃO DE EXERCÍCIOS RACIOCÍNIO LÓGICO MATEMÁTICA FÍSICA/QUÍMICA E mail gabaritocerto@hotmail.com Envie suas dúvidas e questões para gabaritocerto@hotmail.com e saiba como receber

Leia mais

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (2Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) Matemática (Prof. Lara) Lista de exercícios recuperação semestre (Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então: a) existe

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo 1 - Trigonometria e Funções Trigonométricas 1. Converta de graus para radianos: a) 0 b) 10 c) 45 d) 15 e) 170 f) 70 g) 15 h) 700 i) 1080 j) 6. Converta de

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA 1 Série/Ano: 1º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SANDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados

Leia mais

Trigonometria. 1 História. 2 Aplicações

Trigonometria. 1 História. 2 Aplicações Trigonometria 1 História As origens da trigonometria são incertas. É possível encontrar problemas que envolvem a cotangente no Papiro Rhind e uma notável tábua de secantes na tábua cuneiforme babilônica

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. A figura a seguir ilustra um arco BC de GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma 1 o Bimestre de 016 Data / / Escola Aluno EM Questão 1 A figura a seguir

Leia mais

TRIGONOMETRIA - I. Telefone para contato: (21) Envie suas dúvidas e questões para

TRIGONOMETRIA - I. Telefone para contato: (21) Envie suas dúvidas e questões para TRIGONOMETRIA - I R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c o m Envie suas dúvidas e questões

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 08 Trigonometria. 8. Trigonometria... 8.. Introdução... 8.. Razões Trigonométricas em um Triângulo Retângulo...8 8... Seno, Cosseno, Tangente e Cotangente...8

Leia mais

Exercícios de revisão de Trigonometria 2º EM Matemática 01 Prof.ª Adriana Massucci

Exercícios de revisão de Trigonometria 2º EM Matemática 01 Prof.ª Adriana Massucci Exercícios de revisão de Trigonometria º EM Matemática 01 Prof.ª Adriana Massucci Considerações: Este conteúdo é referente ao módulo 07 do 1º ano. Esta revisão serve de apoio ao conteúdo que será desenvolvido

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

- Cálculo 1: Lista de exercícios 1 -

- Cálculo 1: Lista de exercícios 1 - - Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

1/6 ESTABELECIMENTO DE ENSINO

1/6 ESTABELECIMENTO DE ENSINO FICHA DE TRABALHO N.º EXERCÍCIOS GERAIS_TRIGONOMETRIA ANO LECTIVO / ESTABELECIMENTO DE ENSINO MATEMÁTICA 11.º ANO PROFESSORA: Anabela Cardoso NOME: N.º: TURMA: DATA: / / 1. A ponte móvel e a trigonometria

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Questões. a) Calcule a área de T2 para α = 22,5. b) Para que valores de α a área de T1 é menor que a área de T2?

Questões. a) Calcule a área de T2 para α = 22,5. b) Para que valores de α a área de T1 é menor que a área de T2? Matemática Matemática Avançada 3 os anos João maio/11 Nome: Questões 1. (Unicamp 003) Considere dois triângulos retângulos T1 e T, cada um deles com sua hipotenusa medindo 1 cm. Seja α a medida de um dos

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO E ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo 7 Logaritmos: Definição e Existência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = (

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Atividades Trigonometria. I. Utilizado na Engenharia para a construção de rodas gigantes

Atividades Trigonometria. I. Utilizado na Engenharia para a construção de rodas gigantes Atividades Trigonometria A trigonometria é um ramo da matemática que exerce um papel importantíssimo em vários contextos do nosso dia-a-dia. Graças a ela foi possível o homem criar desde pequenas obras

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Aula 10 Trigonometria

Aula 10 Trigonometria Aula 10 Trigonometria Metas Nesta aula vamos relembrar o teorema de Pitágoras, introduzir e aplicar as importantes razões trigonométricas, obtidas a partir dos lados de um triângulo retângulo. Objetivos

Leia mais

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS

FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS FUNÇÕES TRIGONOMÉTRICAS E FUNÇÕES TRIGONOMÉTRICAS INVERSAS 1. FUNÇÕES TRIGONOMÉTRICAS 1.1. FUNÇÃO SENO Seja P a imagem de um ângulo no ciclo trigonométrico. Já vimos que o seno do ângulo é definido como

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Exresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

As funções Trigonométricas

As funções Trigonométricas Funções Periódicas Uma função diz-se periódica se se repete ao longo da variável independente com um determinado período constante. Quando se observam fenômenos que se repetem periodicamente, como temperatura

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA

FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA FUNÇÕES TRIGONOMÉTRICAS NÉBIA MARA DE SOUZA Vamos lembrar um pouco o ciclo trigonométrico? O eixo y é chamado de eixo das ordenadas e também conhecido como seno, a função seno é positiva no 1º e 2º quadrantes

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria)

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria) ESCOL SECUNDÁRI DE LBERTO SMPIO MTEMÁTIC º NO FICH DE TRBLHO Nº (Trigonometria) ESCOLH MÚLTIPL. De um ângulo α sabe-se que sen( α) é positivo e que cosα é negativo. Então α pertence a: º quadrante B º

Leia mais

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM

Leia mais

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura:

Exemplos: sen(36º)=0.58, cos(36º)=0.80 e tg(36º)=0.72, Calcular o valor de x em cada figura: REVISÃO RELAÇÕES TRIGONOMÉTRICAS E REDUÇÃO AO PRIMEIRO QUADRANTE DO CICLO TRIGONOMÉTRICO TURMA: ª SÉRIE DO ENSINO MÉDIO PROF. LUCAS FACTOR Trigonometria no Triangulo Retângulo Considere o triangulo retângulo

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Matemática: Trigonometria Vestibulares UNICAMP

Matemática: Trigonometria Vestibulares UNICAMP Matemática: Trigonometria Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. a) Para θ

Leia mais