MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
|
|
- Maria Laura Eger Godoi
- 5 Há anos
- Visualizações:
Transcrição
1
2
3 Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical Association of America) Dados um triângulo PQR, onde RS é bissetriz do ângulo ^ interno R do triângulo, PQ é estendida até D e o ângulo n é reto, então 1 1 a) m = (p q) b) m = (p + q) 1 1 c) d = (q + p) d) d = m e) nenhuma das anteriores 1
4 3. (ITA) Considere o triângulo PQR abaixo, circuns - crito a uma circunferência de centro O, cujos pontos de tangências são A, B e C. Sabe-se que os ângulos P^,Q^ e R^ estão, nesta ordem, em progressão aritmética de razão 0. Os ângulos 1,, 3 e 4, conforme mostrado na figura abaixo, medem, nesta ordem: 4. Da figura, sabe-se que D é o pé da bissetriz do ângulo reto  do triângulo retângulo ABC. Se DE é perpendicular a BC, o ângulo a: a) é igual a ^c b) é igual a 90 + ^c c) é igual a 45 d) é maior que 45 e) n.r.a. a) 40, 10, 60, 50 b) 40, 100, 50, 40 c) 60, 140, 60, 40 d) 60, 10, 40, 50 e) n.d.a.
5 5. (OBM) No triângulo ABC, o ângulo ^A mede 60 e o ângulo B mede 50. Sejam M o ponto médio do lado AB e P o ponto sobre o lado BC tal que AC + CP = BP. Qual a medida do ângulo MPC? a) 10 b) 15 c) 130 d) 135 e) 145 MÓDULO 6 Geometria Plana I 1. Se as medidas dos lados de um triângulo são dadas por (x 8), (8x 10) e (x + 3), com x, o perímetro é a) 14. b) um número par. c) um quadrado perfeito. d) múltiplo de 5. e) o dobro do maior lado. 3
6 . (ITA) De dois polígonos convexos, um tem a mais que o outro 6 lados e 39 diagonais. Então, a soma total dos números de vértices e de diagonais dos dois polígonos é igual a: a) 63 b) 65 c) 66 d) 70 e) (ITA) Considere três polígonos regulares tais que os números que expressam a quantidade de lados de cada um constituam uma progressão aritmética. Sabe-se que o produto destes três números é igual a 585 e que a soma de todos os ângulos internos dos três polígonos é igual a O número total das diagonais nestes três polígonos é igual a: a) 63 b) 69 c) 90 d) 97 e) 106 4
7 8. (ITA) Considere as afirmações sobre polígonos convexos: I) Existe apenas um polígono cujo número de diagonais coincide com o número de lados. II) Não existe polígono cujo número de diagonais seja o quádruplo do número de lados. III) Se a razão entre o número de diagonais e o de lados de um polígono é um número natural, então o número de lados do polígono é ímpar. Então: a) Todas as afirmações são verdadeiras. b) Apenas (I) e (III) são verdadeiras. c) Apenas (I) é verdadeira. d) Apenas (III) é verdadeira. e) Apenas (II) e (III) são verdadeiras. MÓDULO 7 Geometria Plana I 1. (ITA) Num triângulo ABC, BC = 4 cm, o ângulo C mede 30 e a projeção do lado AB sobre BC mede,5 cm. O comprimento da mediana que sai do vértice A mede: a) 1 cm b) cm c) 0,9 cm d) 3 cm e) cm 5
8 4. Na figura ABCDE é um pentágono regular. P, Q e R são os centros dos quadrados DEFG, CDHI e ABJK. A medida do ângulo PˆRQé: a) 18 b) 4 c) 30 d) 36 e) 4 3. (ITA) Considere o triângulo ABC isósceles em que o ângulo distinto dos demais, BÂC, mede 40. Sobre o lado AB, tome o ponto E tal que A ^CE = 15. Sobre o lado AC, tome o ponto D tal que D ^BC = 35. Então, o ângulo E ^DB vale a) 35 b) 45 c) 55 d) 75 e) 85 6
9 4. (ITA) Seja P n um polígono regular de n lados, com n >. Denote por a n o apótema e por b n o comprimento de um lado de P n. O valor de n para o qual valem as desigualdades b n a n e b n 1 > a n 1 pertence ao intervalo a) 3 < n < 7 b) 6 < n < 9 c) 8 < n < 11 d) 10 < n < 13 e) 1 < n < 15 7
10 MÓDULO 8 Geometria Plana I 1. (OBM-reTIfIcAdO) Na figura, a reta PQ toca em N o círculo que passa por L, M e N. A reta LM corta a reta PQ em R. Se LM = LN e a medida do ângulo PNL é a, a > 60, quanto mede o ângulo LRP?. Sobre os lados do triângulo ABC são construídos os triângulos equiláteros ABP, BCQ e CAR, não sobrepostos ao triângulo ABC. Demonstre que as retas ÁQ, BR e ĆP se interceptam em um mesmo ponto O. a) 3a 180 b)180 a c) 180 a d) 90 a / e) a 8
11 3. (OBM) Na figura, ABCDE é um pentágono regular e AEF é um triângulo equilátero. Seja P um ponto sobre o segmento BF, no interior de ABCDE, e tal que o ângulo PÊA mede 1, como mostra a figura abaixo. Calcule a medida, em graus, do ângulo PÂC. 9
12 exercícios-tarefa MódulO 5 1. No triângulo ABC, AC = CD e C^AB A^BC = 30. Então, o ângulo B ^AD mede: a) 30 b) 0 c),5 d) 10 e) 15. Na figura, AB é o diâmetro do semi-círculo que forma 0 com a corda AC. Se r é tangente ao círculo e r // AC, os ângulos a e medem, respectivamente: a) 0 e 70 b) 5 e 65 c) 30 e 60 d) 35 e 55 e) 10 e 70 a) n(n ) b) n(n 1) c) n(n 3) n(n 5) d) e) n.d.a. MódulO 7 1. (OBM) Na figura, os dois triângulos são equiláteros. Qual é o valor do ângulo x? a) 30 b) 40 c) 50 d) 60 e) 70. (BIelOrússIA) No losango ABCD, A = 60. Os pontos f, H e g estão sobre os segmentos AD, CD e AC de modo que DFGH é um paralelogramo. Prove que FBH é um triângulo equilátero. MódulO 8 3. (ITA) Seja ABC um triângulo isósceles de base BC. Sobre o lado AC deste triângulo, considere um ponto D tal que os segmentos AD, BD e BC são todos con gruentes entre si. A medida do ângulo B ^AC é igual a: a) 3 b) 3 c) 36 d) 40 e) 45 MódulO 6 1. (OBM) DEFG é um quadrado no exterior do pentágono regular ABCDE. Quanto mede o ângulo E ^AF? a) 9 b) 1 c) 15 d) 18 e) 1. (colégio NAvAl) Dois lados de um triângulo são iguais a 4cm e 6cm. O terceiro lado é um número inteiro expresso por x + 1, com x. O seu perímetro é: a) 13 cm b) 14 cm c) 15 cm d) 16 cm e) 0 cm 3. (ITA) O número de diagonais de um polígono regular de n lados, que não passam pelo centro da circunferência circunscrita a esse polígono, é dado por: (ITA) Considere uma circunferência de centro em O e diâmetro AB. Tome um segmento BC tangente à circunferência, de modo que o ângulo BCA meça 30. Seja D o ponto de encontro da circun ferên cia com o segmento AC e DE o segmento para lelo a AB, com extre - mi da des sobre a cir cun ferên cia. A medida do segmento DE será igual a) a metade da medida de AB. b) a um terço da medida de AB. c) a metade da medida de DC. d) a dois terços da medi da de AB. e) a metade da medida de AE.. (OBM) O canto de um quadrado de cartolina foi cortado com uma tesoura. A soma dos comprimentos dos catetos do triângulo recor - tado é igual ao comprimento do lado do quadrado. Qual o valor da soma dos ângulos a e marcados na figura ao lado?
13 MódulO 5 1) conforme a figura, x + y = a do enunciado c ^AB A^Bc = (a + x) y = 30 desta forma, resposta: e ) resolução dos exercícios-tarefa x + y = a x y = 30 a x = 15 1) seja a a medida do ângulo BA^c. como o triângulo AdB é isósceles de base AB, temos: da^b = db^a = a ) Bd^c = a, pois é ângulo externo do triângulo ABd. 3) cbd é isósceles de base cd Bc^d = Bd^c = a 4) ABc é isósceles de base Bc AB^c = Ac^B = a Assim, no triângulo cbd, temos: a + a + a = 180 a = 36 resposta: c MódulO 6 1) lembrando que o ângulo interno de um pentágono (5 ). 180 regular é igual a = 108, temos que 5 A^ef = = 16 como o triângulo Aef é isósceles com Ae = ef, temos e^af = = 9 conforme a figura, = x + 0 a = x, pois correspondem ao mesmo arco AT. Assim, = a + 0 a + = 90 resposta: d 3) a = 35 = 55 resposta: A ) I) x + 1 < x 9 < 0 3 < x < 3 II) 4 < x x > 3 x III) 6 < x x 1 > 0 x < 1 ou x > 1 de (I), (II) e (III), tem-se 3 < x < 1 ou 1 < x < 3 e portanto x = ou x =. Os lados medem 4 cm, 5 cm e 6 cm e o perímetro é 15 cm. resposta: c 3) O número de diagonais de um polígono de n lados n(n 3) é. 11
14 n destas, passam pelo centro. n(n 3) n Não passam pelo centro = = n. (n 3 1) = n(n ) resposta: A MódulO 7 1) Os triângulos ABc e def são equiláteros e possuem ângulos internos de 60. desta forma os ângulos B ^cf e d ^fc e medem respectivamente 45 e 55, e per mitem obter os demais ângulos assinalados na figura. Assim, x = 180 x = 40 resposta: B ) b) desta forma, ch = gh = fd = a, Af = gf = Hd = = a, onde é a medida do lado do losango. c) Os triângulos cbh e dbf são congruentes, pois cb = db =, BcH = Bdf = 60 e ch = df. do que se conclui cbh = dbf = a e BH = Bf. d) como H ^Bf = H ^Bd + d ^Bf = H ^Bd + c ^BH = 60 e BH = Bf, o triângulo fbh é equilátero. resposta: demonstração MódulO 8 1) Os triângulos dao e deo são equiláteros. Assim, sendo r o raio da circunferência de diâmetro AB, tem-se: 1) AB = r ) OA = Ad = Od = de = Oe = r logo: de r 1 = = AB r 1 de = =. AB ) considere a figura: a) No paralelogramo dfgh temos f ^dh = f ^gh = 10 e d^fg = d ^Hg = 60. Por ser fg // dh os ângulos A^fg e g ^Hc medem 10 e, consequentemente, os ângulos A^gf e H ^gc me - dem 30º, o que prova que os triângulos Afg e ghc são isósceles. 1 a) seja a medida do lado do quadrado e fc = a. como fc + ce =, temos ce = a, df = a, eb = ( a) = a e, portanto, eb = fc e df = ce. b) Os triângulos ABe e Bcf são congruentes pelo critério lal. Pelo mesmo motivo também são congruentes os triângulos Adf e dce. Assim, dâf = a e BÂe =. c) como a = 90, temos a + = 63. resposta: 63
MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical
Aula 4 Ângulos em uma Circunferência
MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.
O conhecimento é a nossa propaganda.
Conhecimentos geométricos II - Triângulos e Quadriláteros Lista de Exercícios 1 Gabaritos Comentados dos Questionários 01) (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus,
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na
Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).
Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio
OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.
META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS
MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.
1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
Aula 5 Quadriláteros Notáveis
Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede
1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.
1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.
I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas
FEIXE DE RETAS PARALELAS TEOREMA DE TALES
222 FEIXE DE RETAS PARALELAS Feixe de retas paralelas é um conjunto de retas distintas de um plano, paralelas entre si. As retas a, d e c da figura constituem um feixe de retas paralelas. r s Transversal
CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES
B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos
NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO Relações métricas envolvendo a circunferência Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... X - RELAÇÕES MÉTRICAS NO DISCO (Potência de Ponto) X.1) Relação
Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso
CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.
CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
Módulo Elementos Básicos de Geometria Plana - Parte 2. Congruência de Triângulos e Aplicações. Professores Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria Plana - Parte 2 Congruência de Triângulos e Aplicações. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria Plana - Parte 2. Congruência
ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br
MATEMÁTICA APLICADA Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Se o ABC é isóscele de base AC, determine x.
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA PROFESSOR MOABI QUESTÃO I Nas figuras abaixo, o CBA é congruente ao CDE. Determine o valor de x e y. QUESTÃO II Num triângulo, o maior lado mede 26 cm,
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também
Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal
Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser
Módulo de Áreas de Figuras Planas. Áreas de Figuras Planas: Mais alguns Resultados. Nono Ano
Módulo de Áreas de Figuras Planas Áreas de Figuras Planas: Mais alguns Resultados Nono Ano Áreas de Figuras Planas: Mais alguns Resultados 1 Exercícios Introdutórios Exercício 1. No desenho abaixo, as
Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ
RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE
MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)
Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação
MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH
MATEMÁTICA Prof. Favalessa 1. Em um aparelho experimental, um feixe laser emitido no ponto P reflete internamente três vezes e chega ao ponto Q, percorrendo o trajeto PFGHQ. Na figura abaixo, considere
(CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CPACN-2014)
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CPACN-2014) NÃO ESTA AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMATICA o 1) Seja x um número real tal
IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :
IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma
Congruência de triângulos
Congruência de triângulos 1 o Caso: Se dois triângulos têm ordenadamente congruentes dois lados e o ângulo compreendido, então eles são congruentes. (LAL) 2 o Caso: Se dois triângulos têm ordenadamente
Geometria Analítica Plana.
Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria
2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2
MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido
1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.
1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que
Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios
valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109
LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
Caderno 1: 35 minutos. Tolerância: 10 minutos
Nome: Ano / Turma: N.º: Data: - - Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido o uso de calculadora) A prova é constituída por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta
CPV 82% de aprovação dos nossos alunos na ESPM
CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1
Atividade 01 Ponto, reta e segmento 01
Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o
Módulo Elementos Básicos de Geometria Plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis. 8 ano E.F.
Módulo Elementos Básicos de Geometria Plana - Parte 3 Quadriláteros Inscritíveis e Circunscritíveis 8 ano E.F. Professores Cleber Assis e Tiago Miranda Elementos Básicos de Geometria Plana - Parte 3 Quadriláteros
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,
QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas
Resolução comentada Lista sobre lei dos senos e lei dos cossenos
Resolução comentada Lista sobre lei dos senos e lei dos cossenos 1 1. A figura mostra o trecho de um rio onde se deseja construir uma ponte AB. De um ponto P, a 100m de B, mediu-se o ângulo APB = 45º e
DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO
DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO PROFESSOR: DENYS YOSHIDA PERÍODO: MANHÃ DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 016 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
1ª Parte Questões de Múltipla Escolha
MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo
Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF
MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A
AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero
MATEMÁTICA 3. Resposta: 29
MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e
A trigonometria do triângulo retângulo
A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e
Arcos na Circunferência
Arcos na Circunferência 1. (Uerj 015) Um tubo cilíndrico cuja base tem centro F e raio r rola sem deslizar sobre um obstáculo com a forma de um prisma triangular regular. As vistas das bases do cilindro
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ângulo BDA é reto (porque está inscrito numa semicircunferência),
Módulo Quadriláteros. Quadriláteros Inscritos e Circunscritos. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Quadriláteros Inscritos e Circunscritos 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Quadriláteros Incritos e Circunscritos Exercício 5. Determine o valor de x
( ) =. GABARITO: LETRA A + ( ) =
) Há 0 anos, em º de julho de 994, entrava em vigor o real, moeda que pôs fim à hiperinflação que assolava a população brasileira. Nesse novo sistema monetário, cada real valia uma URV (Unidade Real de
M t matica d. Geometria Geometria Plana Semelhança de Triângulos Lista 01. BC 15 e DE 7. Os ângulos DEA, ˆ BCA ˆ e BFA ˆ
Mtmaticad Geometria Geometria Plana Semelhança de Triângulos Lista 01 01. (INSPER/1) Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 00 km de extensão. A 160 km de X,
MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA
1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão
AV1 - MA 13-2011 UMA SOLUÇÃO. b x
Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação de Stewart 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação
SIMULADO INTENSIVO MATEMÁTICA
P R É - V E S T I B U L A R 03.09 MATEMÁTICA QUESTÃO 11 (PUC- SP) Em uma urna há 10 cartões, cada qual marcado com apenas um dos números: 2, 5, 6, 7, 9, 13, 14, 19, 21 e 24. Para compor uma potência, devem
Fornecer provas para alguns dos resultados apresentados sem demonstração. http://www.univ-ab.pt/~mjoao/geometrizacao.html
INTRDUÇÃ Este conjunto de testes formativos para a cadeira de Geometrização baseiase na matéria do livro Geometria, Barnett Rich, Schaum s easy outlines, McGraw Hill. Com este conjunto de testes formativos
POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS
http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA
GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B
1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Considere um quadrilátero RSTU, satisfazendo RS = ST = TU = UR, como o exemplo ilustrado abaixo. Considerando esses dados, podemos afirmar que: 0-0) SU é
AVF - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna
PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A
PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A
Lei dos Senos e dos Cossenos
Lei dos Senos e dos Cossenos 1. (G1 - cftrj 014) Considerando que ABC é um triângulo tal que AC 4 cm, BC 1 cm e  60, calcule os possíveis valores para a medida do lado AB.. (Ufpr 014) Dois navios deixam
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista
GEOMETRIA PLANA - FUVEST. Triângulos
GEOMETRIA PLANA - FUVEST Triângulos...1 Teorema de Tales...8 Semelhança de Triângulos...11 Pontos Notáveis...23 Triângulos Retângulos...25 Triângulos 01. (Fuvest/96) Na figura, as retas r e s são paralelas,
A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br
A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se
Euclides - Elementos de Geometria Frederico Commandino São Paulo: Edições Cultura, 1944 ISBN - Não indicado Fonte: Biblioteca do Clube de Engenharia
Euclides - Elementos de Geometria Frederico Commandino São Paulo: Edições Cultura, 1944 ISBN - Não indicado Fonte: Biblioteca do Clube de Engenharia da Bahia Obra digitalizada por: Neuziton Torres Rapadura
Matemática D Extensivo V. 3
Extensivo V. Resolva Aula 9 9.0) C 9.01) B Em AC, temos: 8 x + 7 x = 9 6 = x x = PQRO é um losango. Assim, os ângulos opostos são iguais. + 00 = 60 = 80 o Aula 10 9.0) B 10.01) Comprimento:. = Comprimento:.
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 06 GABARITO COMENTADO 1) De acordo com o texto, 10 alunos gostam de geometria mas não gostam de álgebra, logo
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.
aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
Nível 3 IV FAPMAT 28/10/2007
1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm
LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI
01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.
Construções alternativas para problemas insolúveis com régua e compasso
II BIENAL DA SBM II ENCONTRO DA RPM OFICINA DE PROBLEMAS - I Construções alternativas para problemas insolúveis com régua e compasso Elvia Mureb Sallum Sérgio Alves (Professores do IME-USP) Quatro grandes
Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.
Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
A) A C) I E) U B) E. segundos? D) O. E) Fizeram. Canguru Matemático. Todos os direitos reservados.
Canguru Matemático sem fronteiras 2008 Destinatários: alunos dos 10º e 11º anos de Escolaridade Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente
GEOMETRIA PLANA - FUVEST. Triângulos
GEOMETRIA PLANA - FUVEST Triângulos... Teorema de Tales... 8 Semelhança de Triângulos... Pontos Notáveis... Triângulos Retângulos... 5 Triângulos 0. (Fuvest/96) Na figura, as retas r e s são paralelas,
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO
Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função
MATEMÁTICA PRIMEIRA ETAPA - 1999
MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas
Geometria Plana Noções Primitivas
Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número