A linguagem matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A linguagem matemática"

Transcrição

1 A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o texto faa. O que está sendo demonstrado? Para pensar

2 Nossa aua Ao procurar num dicionário a paavra inguagem, você encontra várias definições. Veja duas deas, encontradas no Novo Dicionário Auréio da Língua Portuguesa: inguagem. 1. O uso da paavra articuada ou escrita como meio de expressão ou da comunicação entre pessoas.. O vocabuário específico usado numa ciência, numa arte, numa profissão etc. Como você pode ver, a inguagem é uma forma de expressar determinada idéia. Na vida prática, existem diferentes maneiras de comunicar as idéias: pea inguagem faada, pea escrita, pea musica etc. A Matemática também criou uma forma de comunicação. Ea se utiiza de uma inguagem universa para transmitir suas idéias de maneira simpes, curta e precisa. Simpes e curta porque com apenas aguns símboos ea pode expressar frases que, se escritas na inguagem corrente, usariam maior quantidade de símboos. Por exempo, a frase: Dois somado com três é igua a cinco, se escrita na inguagem matemática, usa apenas cinco símboos, que podem ser compreendidos por quaquer pessoa famiiarizada com os símboos matemáticos: + 3 = 5 Precisa porque deve indicar uma idéia com precisão, com exatidão, isto é, sem fahas. O uso de etras na Matemática Aém dos agarismos e dos sinais de operação (+, -,, :,, etc), a inguagem matemática também utiiza etras em sua comunicação. Veja aguns exempos: EXEMPLO 1 Considere as mutipicações do múmero 1 por outros números: 1. 0 = = 1 1. = 1. 3 = 3 Você já deve ter percebido que o número 1 mutipicado por um número quaquer sempre resuta nesse número. Daí, podemos usar uma etra para representar esse fato: 1. x = x onde a etra x está representando um número quaquer.

3 EXEMPLO Considere dois números quaisquer cuja soma seja igua a 5.Esse fato pode ser representado por: a + b = 5 onde a e b representam os números que somados dão 5. EXEMPLO 3 As propriedades da adição ou da mutipicação também podem ser expressas por etras. É o caso, por exempo, da propriedade distributiva da mutipi- cação sobre a adição, que você já aprendeu e que pode ser representada por: a (b + c) = a b + a c onde as etras a, b e c representam números quaisquer. Vejamos agora uma outra situação. Observe: = =. Será que esses exempos são suficientes para afirmar que x + x = x. x? Basta escoher um exempo bem simpes para verificar que não: não é igua a Portanto, como esse fato não é váido para quaquer número, não podemos escrever que x + x = x x. O uso de etras na geometria As etras também podem ser usadas para indicar agumas fórmuas da geometria. Por exempo: A área de um quadrado pode ser expressa por ² ², onde representa o ado desse quadrado. ado = área =. = ² A área de um retânguo pode ser expressa por a b, onde a e b representam as dimensões do retânguo. O perímetro do retânguo pode ser expresso por a + b ou (a + b). A soma dos ânguos internos de um poígono convexo quaquer pode ser expressa por (n - ) 180º. Vote à Aua 43 e veja o que significam a etra n e a expressão n -.

4 A inguagem matemática e a resoução de probemas A inguagem matemática tornou-se, hoje em dia, um instrumento importante para resover probemas. Com ea podemos traduzir os dados do probema que estão em inguagem corrente, ou seja, podemos equacionar o probema. Nos exempos seguintes, há uma tabea com o probema em inguagem corrente e sua tradução para a inguagem matemática. Veja: EXEMPLO 1 EM LINGUAGEM CORRENTE EM LINGUAGEM MATEMÁTICA A metade de um número é igua a 6. x = 6 Qua é esse número? x =? A soução desse probema é a soução da equação matemática x = 6. No momento, não vamos aprender a resover equações. Nosso objetivo, agora, é apenas saber o que é e para que serve a inguagem matemática. EXEMPLO EM LINGUAGEM CORRENTE EM LINGUAGEM MATEMÁTICA Uma pessoa tinha uma determinada quantia de dinheiro. x No primeiro mês gastou 100 reais. x No segundo mês gastou metade do que sobrou, x ficando com 80 reais. 80 Qua era a quantia inicia? x =? x = x gastou no 1º mês gastou no º mês + 80 sobrou Para descobrir o vaor de x, basta resover a útima equação. Mas, como já dissemos, esse não é o nosso objetivo no momento.

5 Exercício 1 Escreva as seguintes frases em inguagem matemática: a) O dobro de um número. Exercícios b) O tripo de um número. c) Um número menos sete. d) Metade de um número, mais um. Exercício Como você escreveria em inguagem matemática as frases seguintes? a) A ordem dos fatores não atera o produto. b) A ordem das parceas não atera a soma. Exercício 3 Considere um retânguo cujo perímetro é 0 cm. a) Escreva, em inguagem matemática, uma expressão para representar esse fato. b) Dê aguns exempos para as medidas das dimensões desse retânguo. Exercício 4 Compete a frase: Sempre que o desconto é de 50%, pagamos apenas metade do preço. Se o preço é x, pagamos...

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia? A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura

Leia mais

Recordando operações

Recordando operações A UA UL LA Recordando operações Introdução Vamos iniciar nosso curso de matemática do 2º grau recordando as quatro operações: adição subtração mutipicação divisão Vamos embrar como essas operações são

Leia mais

Um dos conceitos mais utilizados em Matemática

Um dos conceitos mais utilizados em Matemática A UA UL LA A noção de função Introdução Um dos conceitos mais utiizados em Matemática é o de função. Ee se apica não somente a esta área, mas também à Física, à Química e à Bioogia, entre outras. Aém disso,

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos

Leia mais

Equacionando problemas - I

Equacionando problemas - I A UA UL LA 70 Equacionando probemas - I Introdução Você já percebeu que a Matemática é um eceente recurso para resover muitos dos probemas do nosso dia-a-dia. Mas a Matemática também pode ser vista sob

Leia mais

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações.

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações. Acesse: http://fuvestibuar.com.br/ AUUL AL A As combinações Até agora você estudou probemas de anáise combinatória que envoviam o princípio mutipicativo e as permutações. Introdução Se observar os probemas

Leia mais

Num determinado jogo de fichas, os valores

Num determinado jogo de fichas, os valores A UA UL LA Potências e raízes Para pensar Num determinado jogo de fichas, os vaores dessas fichas são os seguintes: 1 ficha vermeha vae 5 azuis; 1 ficha azu vae 5 brancas; 1 ficha branca vae 5 pretas;

Leia mais

Calculando áreas. Após terem sido furadas, qual delas possui maior área?

Calculando áreas. Após terem sido furadas, qual delas possui maior área? A UA UL LA 53 5 Cacuando áreas Para pensar Imagine que você vá revestir o piso de sua saa com ajotas. Para saber a quantidade de ajotas necessária, o que é preciso conhecer: a área ou o perímetro da saa?

Leia mais

Projeção ortográfica de sólidos geométricos

Projeção ortográfica de sólidos geométricos Projeção ortográfica de sóidos geométricos Na aua anterior você ficou sabendo que a projeção ortográfica de um modeo em um único pano agumas vezes não representa o modeo ou partes dee em verdadeira grandeza.

Leia mais

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

O círculo e o número p

O círculo e o número p A UA UL LA 45 O círcuo e o número p Para pensar O círcuo é uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua vota quantos objetos circuares estão presentes: nas moedas, nos discos,

Leia mais

3 Estática das estruturas planas

3 Estática das estruturas planas STÁTI 3674 27 3 stática das estruturas panas 3.1 ácuo das reações vincuares - apoios 3.1.1 ondições de equiíbrio estático O equiíbrio estático de uma estrutura bidimensiona (a estrutura considerada, as

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões trigonométricas. Antes, vamos

Leia mais

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES 7 9 CIRCUITOS MAGÉTICOS LIEARES E ÃO LIEARES Circuitos magnéticos são usados para concentrar o efeito magnético de uma corrente em uma região particuar do espaço. Em paavras mais simpes, o circuito direciona

Leia mais

Você já participou da reforma ou da construção de um imóvel?

Você já participou da reforma ou da construção de um imóvel? ÁREA DE POLÍGONOS CONTEÚDOS Área de retânguo Área de paraeogramo Área de triânguo Área de trapézio Área de hexágono AMPLIANDO SEUS CONHECIMENTOS Área do retânguo e quadrado Você já participou da reforma

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima

Leia mais

Exame Nacional de 2005 1. a chamada

Exame Nacional de 2005 1. a chamada Exame Naciona de 200 1. a chamada 1. Na escoa da Rita, fez-se um estudo sobre o gosto dos aunos pea eitura. Um inquérito reaizado incuía a questão seguinte. «Quantos ivros este desde o início do ano ectivo?»

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 09/jun/0 MATEMÁTICA (MÓDULO OBJETIVO PROVA A) 0. No pano cartesiano, a reta (r) intercepta os eixos x e y nos pontos (5; 0) e (0; ); a reta (s) intercepta os

Leia mais

Precipitar, o que é isso?

Precipitar, o que é isso? Acesse: http://fuvestibuar.com.br/ A UU L AL A Precipitar, o que é isso? Formação de precipitados Concentrar e diuir souções O que você vai aprender O que significa soúve e insoúve O que são hidróxidos

Leia mais

Aplicação do Teorema de Pitágoras

Aplicação do Teorema de Pitágoras A UA U L L A Apicação do Teorema de Pitágoras Para pensar Uma escada de 5 m de comprimento está apoiada num muro. O pé da escada está afastado 3 m da base do muro. Qua é a atura, no muro, que a escada

Leia mais

11 Sistemas resolvem problemas

11 Sistemas resolvem problemas A UA UL LA Sistemas resovem probemas Introdução Na aua anterior, mostramos como resover sistemas de duas equações de 1º grau com duas incógnitas. Agora vamos usar essa importante ferramenta da matemática

Leia mais

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS.

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius

Leia mais

Calculando a rpm e o gpm a partir da

Calculando a rpm e o gpm a partir da Acesse: http://fuvestibuar.com.br/ Cacuando a rpm e o gpm a partir da veocidade de corte A UU L AL A Para que uma ferramenta corte um materia, é necessário que um se movimente em reação ao outro a uma

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO C Curso destinado à preparação para Concursos Púbicos e Aprimoramento Profissiona via INTENET ACIOCÍNIO LÓGICO AULA 10 POLÍGONOS EGULAES TIÂNGULO EQUILÁTEO É o triânguo que apresenta os três ados iguais.

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

Método dos Deslocamentos

Método dos Deslocamentos Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Quanto mais alto o coqueiro, maior é o tombo

Quanto mais alto o coqueiro, maior é o tombo Quanto mais ato o coqueiro, maior é o tombo A UU L AL A Quanto mais ato o coqueiro, maior é o tombo, pra baixo todo santo ajuda, pra cima é um Deus nos acuda... Essas são frases conhecidas, ditos popuares

Leia mais

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7 7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com

Leia mais

ou A= d.d' ou A = d'.d Área das figuras planas d d

ou A= d.d' ou A = d'.d Área das figuras planas d d PII 9º no (ns. Fund.) 39 QUIVÊNI FIGUS PNS paavra equivaência deriva de: equi = igua + vaência = vaor. m Geometria, equivaência significa área igua, ou seja, figuras equivaentes são aqueas que possuem

Leia mais

No posto de gasolina

No posto de gasolina A UU L AL A No posto de gasoina Gaspar estava votando para casa, após passar um dia muito agradáve na praia, apesar da dor de ouvido. Ee parou num posto de gasoina para abastecer e verificar as condições

Leia mais

Como os químicos se comunicam?

Como os químicos se comunicam? Como os químicos se comunicam? A UU L AL A Símboos de eementos Fórmuas de compostos O que você vai aprender O que é átomo O que é moécua A matéria é formada de átomos Eemento químico Substância simpes

Leia mais

Todo poder emana da língua

Todo poder emana da língua A U A UL LA Acesse: http://fuvestibuar.com.br/ Todo poder emana da íngua Cenatexto Zé dos Anjos perdeu no desafio com Osias, mas ficou vários dias pensando: Um dia é da caça e outro do caçador. Assim,

Leia mais

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17 Siga as instruções A UU L AL A M Ó D U L O 17 No dia seguinte, o sr. Diermando recebeu a carta de dr. Gaspar recamando da atitude do porteiro. E agora? Que conseqüências ea poderá trazer ao funcionário

Leia mais

Por que o alumínio compete com o aço?

Por que o alumínio compete com o aço? Por que o aumínio compete com o aço? AUUL AL A Sobre carbono Extração do aumínio da bauxita Recicagem do aumínio As propriedades do aumínio Por que o aumínio não enferruja O que você vai aprender O que

Leia mais

Expressões matemáticas

Expressões matemáticas Expressões matemáticas Aula 6 Ricardo Ferreira Paraízo e-tec Brasil Matemática Instrumental Meta Apresentar as expressões numéricas e algébricas, suas propriedades e aplicações. Objetivos Após o estudo

Leia mais

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia Revisão Esta é a útima aua do quarto móduo do curso de ingês! É hora de revisarmos o que aprendemos. Nossa história de hoje é uma história em quadrinhos (HQ). Vamos conferir? Assunto do dia! John F. Kennedy

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resoução da ista de eercícios de Resistência dos Materiais Eercício 1) Leandro Lima Rasmussen No intuito de soucionar o probema, deve ser feita a superposição de casos: Um, considerando a chapa BC como

Leia mais

8.5 Cálculo de indutância e densidade de energia magnética

8.5 Cálculo de indutância e densidade de energia magnética 8.5 Cácuo de indutância e densidade de energia magnética Para agumas geometrias de mahas pode-se cacuar a indutância aproximadamente. Cacuamos aqui a indutância de uma maha que contém um soenoide ciíndrico

Leia mais

O que acontece quando uma substância se transforma?

O que acontece quando uma substância se transforma? O que acontece quando uma substância se transforma? A UU L AL A O que acontece numa reação química O que são reagentes e produtos O que significa reagir pásticos fibras sintéticas (cordas, tecidos etc.)

Leia mais

5 Tudo que sobe, desce

5 Tudo que sobe, desce A U A UL LA Tudo que sobe, desce Rio de Janeiro, temperatura atíssima, tumuto na praia, começa o corre-corre! Dizem que é um arrastão! A poícia chega e a correria se torna desordenada, quando aguém dá

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Tudo certo, compadre?

Tudo certo, compadre? A U A UL LA M Ó D U L O 10 Tudo certo, compadre? Cenatexto Dr. Danio Peçanha, advogado de Dimas, nasceu numa pequena cidade do interior. Entretanto, reside há muitos anos na capita, onde casou e teve três

Leia mais

Leia e informe-se. www.interaulaclube.com.br

Leia e informe-se. www.interaulaclube.com.br A UU L AL A Leia e informe-se M Ó D U L O 18 Na aua anterior, Gustavo, Miranda e Jeremias se encontraram em uma anchonete para discutir a respeito de um projeto: a pubicação de um jorna na Matrex Construtora,

Leia mais

É número pra todo lado

É número pra todo lado É número pra todo ado A UU L AL A MÓDULO 23 É, parece que nossos amigos da fábrica de produtos eetrônicos votaram à estaca zero. Será que vai ficar tudo por isso mesmo? A quem ees poderiam recorrer? Como

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros Nuno Marreiros EQUAÇÕES 7º ANO Noção de equação Antes de começar Como o Diogo tinha 10 e já só tem 4 é porque gastou 6. Se andou três vezes no Kanguru foi porque cada bilhete custou 2. Representando por

Leia mais

É preciso fabricar adubo?

É preciso fabricar adubo? A U L A A U L A Acesse: http://fuvestibuar.com.br/ É preciso fabricar adubo? O que você vai aprender Eementos essenciais para as pantas Fertiizantes NPK O que é um sa Queima da amônia Produção de ácido

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA 4 ENTECA RESOLUÇÃO DE PÓRTICOS PLANOS ATRAVÉS DA ANÁLISE MATRICIAL DE ESTRUTURAS Marcio Leandro Micheim Acadêmico Engenharia Civi Universidade Estadua de Maringá e-mai: micheim_eng@hotmaicom Ismae Wison

Leia mais

Como se pode proteger o ferro?

Como se pode proteger o ferro? Como se pode proteger o ferro? A UUL AL A Todos os componentes de uma bicieta recebem proteção contra ferrugem. A proteção do aço. Gavanização,cromação, zincagem e estanhagem A importância dos óxidos na

Leia mais

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo!

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo! A UA UL LA Eu Química O que você vai aprender Ciência Química Matéria Substância Progresso tecnoógico Novos materiais Como faz o cientista Seria bom já saber Para inicar o seu curso de Química, procure

Leia mais

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura A UUL AL A O que é água pura? Destiação Condensação Vaporização Ebuição Temperatura de ebuição Método de purificação de um íquido Conservação da matéria Substância pura O que você vai aprender Evaporação

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Módulo 1 Unidade 10 Sistemas de equações lineares Para Início de conversa... Já falamos anteriormente em funções. Dissemos que são relações entre variáveis independentes e dependentes. Às vezes, precisamos

Leia mais

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação? EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.

Leia mais

. a d iza r to u a ia p ó C II

. a d iza r to u a ia p ó C II II Sugestões de avaliação Matemática 8 o ano Unidade 3 5 Unidade 3 Nome: Data: 1. Complete as sentenças a seguir sobre expressões algébricas. Depois, cite um exemplo. a) Expressões algébricas são aquelas

Leia mais

12 A interseção de retas e a solução de sistemas

12 A interseção de retas e a solução de sistemas A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Facudade de Engenharia Transmissão de caor 3º ano 1 12. Transferência de Caor com Mudança de Fase Transferência de Caor na Condensação Condensação em Peícua Condensação em

Leia mais

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de:

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de: A U A UL LA Acesse: http://fuvestibuar.com.br/ Eureca! Ao subir a serra, de vota para casa, Gaspar avistou o mar! Aquea imensidão azu! Como estavam próximos a uma região portuária, viu vários navios aguardando

Leia mais

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11.

A conta do = = 8 Logo, = 385 Como você poderia estabelecer o produto de um número de três algarismos abc por 11. Aula n ọ 05 A conta do 11 Para multiplicar um número de dois algarismos por 11, podemos fazê-lo assim: conservamos a unidade na unidade do resultado; a dezena na centena do resultado; e a dezena do resultado

Leia mais

CIRCUITOS MAGNÉTICOS COM ÍMÃS PERMANENTES

CIRCUITOS MAGNÉTICOS COM ÍMÃS PERMANENTES APOTILA E ELETROMAGNETIMO I 146 16 CIRCUITO MAGNÉTICO COM ÍMÃ PERMANENTE Iniciamente vamos considerar um materia ferromanético iustrado na fiura 16.1, enroado com N espiras condutoras em que circua uma

Leia mais

Capítulo 3: Elementos dos Circuitos Elétricos

Capítulo 3: Elementos dos Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE41 Circuitos Eétricos I Prof. Ewado L. M. Meh Capítuo 3: Eementos dos Circuitos Eétricos 3.1 INTRODUÇÃO O objetivo da Engenharia é projetar e produzir

Leia mais

Siga as. Mais movimento na fábrica Santa Gertrudes. Cenatexto M Ó D U L O 17

Siga as. Mais movimento na fábrica Santa Gertrudes. Cenatexto M Ó D U L O 17 A U A UL LA M Ó D U L O 17 Siga as instruções Cenatexto Mais movimento na fábrica Santa Gertrudes. Mas, o entra-e-sai de hoje não envove apenas os funcionários, há também um importante ciente metido na

Leia mais

Calculando engrenagens cilíndricas

Calculando engrenagens cilíndricas Cacuando engrenagens ciíndricas A UU L AL A Em uma empresa, o setor de manutenção mecânica desenvove um importante pape na continuidade do fuxo da produção. Após o diagnóstico do defeito, reaizam-se a

Leia mais

1.7 Tensão superficial, espalhamento de líquidos, ângulo de contato e equação de Laplace.

1.7 Tensão superficial, espalhamento de líquidos, ângulo de contato e equação de Laplace. 1.7 Tensão superficia, espahamento de íquidos, ânguo de contato e equação de Lapace. 1.7.1 Tensão superficia As interfaces 6 entre íquidos e gases (superfícies) e entre diferentes íquidos são regiões de

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Licenciatura em Matemática MAT1514 Matemática na Educação Básica 2º semestre 2014 TG1 ATIVIDADES COM O SISTEMA BABILÔNIO DE BASE 60 A representação

Leia mais

SISTEMAS DE EQUAÇÕES 2x2

SISTEMAS DE EQUAÇÕES 2x2 SISTEMAS DE EQUAÇÕES x 1 Introdução Em um estacionamento, entre carros e motos, há 14 veículos Qual é o número exato de carros e motos? Se representarmos o número de carros por x e o número de motos por

Leia mais

EDUCAÇÃO DE JOVENS E ADULTOS. Ensino Fundamental. Matemática

EDUCAÇÃO DE JOVENS E ADULTOS. Ensino Fundamental. Matemática EDUCAÇÃO DE JOVENS E ADULTOS Ensino Fundamenta Matemática 2012 Governador do Estado de Pernambuco EDUARDO HENRIQUE ACCIOLY CAMPOS Secretário de Educação do Estado ANDERSON STEVENS LEÔNIDAS GOMES Secretária

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO 4 DEFINIÇÃO DA GEOETRIA, ALHA E PARÂETROS DA SIULAÇÃO 4.1 Fornaha experimenta A fornaha experimenta utiizada como caso teste por Garreton (1994), era de 400kW aimentada com gás natura. Deste trabaho, estão

Leia mais

Apresentação. Bento de Jesus Caraça ( ), matemático português

Apresentação. Bento de Jesus Caraça ( ), matemático português Apresentação A matemática é geralmente considerada uma ciência a parte, desligada da realidade, vivendo na penumbra de um gabinete fechado, onde não entram ruídos do mundo exterior, nem o sol, nem os clamores

Leia mais

O uso de letras na linguagem matemática

O uso de letras na linguagem matemática O uso de letras na linguagem matemática Vimos que a linguagem matemática utiliza letras para representar propriedades, como por exemplo a propriedade distributiva: a(b + c) = ab + ac De fato as letras

Leia mais

Mauá Prev Regime de tributação do Pao de Aposetadoria Mauá Prev será escohido peos próprios participates A Lei º 11.053, de 29/12/2004, dá aos participates de paos de previdêcia compemetar do tipo cotribuição

Leia mais

8 4 = 1 = 1: 2 = 0,5

8 4 = 1 = 1: 2 = 0,5 A Secretaria de Agricultura e Abastecimento do Estado de São Paulo em breve publicará o edital do seu novo concurso público, após dez anos sem uma seleção. Para ajudar os concurseiros que se preparam,

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

Adelaide Maria Vieira Viveiros - Doutora em Química; Professora de Química Inorgânica da Universidade Federal da Bahia.

Adelaide Maria Vieira Viveiros - Doutora em Química; Professora de Química Inorgânica da Universidade Federal da Bahia. Apresentação Se você comprou este Voume 2 de Química do Teecurso 2000, deve ter passado peo Voume 1 sem perder o entusiasmo. Isso é muito bom! Acreditamos que, depois de tudo o que aprendeu na primeira

Leia mais

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos?

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Resolução do capítulo 7 - Progressão Aritmética 1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Sendo n o número de triângulos

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

Jorge começava a se impacientar, neste seu dia de

Jorge começava a se impacientar, neste seu dia de Data venia A UU L AL A M Ó D U L O 9 Jorge começava a se impacientar, neste seu dia de foga semana, com a demora do advogado. Segundo a secretária, fazia quarenta minutos que o doutor havia saído do fórum

Leia mais

Em uma residência, durante seis meses, os gastos com energia elétrica foram os seguintes: 12,60 18A5 21,00 20,08 17AO 16,37

Em uma residência, durante seis meses, os gastos com energia elétrica foram os seguintes: 12,60 18A5 21,00 20,08 17AO 16,37 Em uma residência, durante seis meses, os gastos com energia elétrica foram os seguintes: 12,60 18A5 21,00 20,08 17AO 16,37 Qual foi o gasto médio com energia elétrica nesses seis meses? Qual é o número

Leia mais

Camada de Transporte

Camada de Transporte Camada de Transporte Protocoos UDP e TCP Internetworking with TCP/IP D. Comer Mário Meirees Teixeira. UFMA-DEINF Protocoo UDP Protocoo de transporte não orientado a conexão Funciona sobre o serviço de

Leia mais

2 O Problema do Fluxo de Custo Mínimo

2 O Problema do Fluxo de Custo Mínimo 2 O Probema do Fuo de Custo Mínimo 2.1. O Probema de Transbordo Os Probemas de Fuo de Custo Mínimo, doravante referenciados pea siga PFCM, encerram uma casse de probemas de programação inear ampamente

Leia mais

Passando do português para a linguagem matemática.

Passando do português para a linguagem matemática. 1 Passando do português para a linguagem matemática. Professor Maurício 2 Um grande problema para quem está estudando matemática pela primeira vez é passar o enunciado (na forma de palavras e escrito em

Leia mais

Resolução 10. Resolução básica

Resolução 10. Resolução básica QUÍMICA FUVEST 2005 2 a FASE QUÍMICA 1 Paíndromo Diz-se da frase ou paavra que, ou se eia da esquerda para a direita, ou da direita para a esquerda, tem o mesmo sentido Auréio Novo Dicionário da Língua

Leia mais

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal.

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 1- Calcule x nos triângulos abaixo: a) b) c) 12 13 x 3 x x 5 13 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 4 3- A diagonal de um quadrado tem 7 2 cm. Determine o perímetro do quadrado.

Leia mais

38 Como saber se a chuva é ácida?

38 Como saber se a chuva é ácida? Como saber se a chuva é ácida? O que você vai aprender Ácidos Bases Neutraização de ácidos ph Transporte de substâncias corrosivas Seria bom já saber O que a indústria química produz O que é matéria-prima

Leia mais

A palavra é sua. Ao chegar em casa, Léia beijou as crianças, Cenatexto M Ó D U L O 27

A palavra é sua. Ao chegar em casa, Léia beijou as crianças, Cenatexto M Ó D U L O 27 A U A UL LA M Ó D U L O 27 A paavra é sua Cenatexto Ao chegar em casa, Léia beijou as crianças, que fizeram a maior agazarra, apontando-he uma jarra com fores em cima da mesa. Junto às fores havia um enveope.

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

A álgebra nas profissões

A álgebra nas profissões A álgebra nas profissões A UUL AL A Nesta aula, você vai perceber que, em diversas profissões e atividades, surgem problemas que podem ser resolvidos com o auxílio da álgebra. Alguns problemas são tão

Leia mais