Método dos Deslocamentos

Tamanho: px
Começar a partir da página:

Download "Método dos Deslocamentos"

Transcrição

1 Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método dos desocamentos pode ser apicado quer as estruturas isostáticas quer a hiperestáticas sendo especiamente úti na anáise das segundas, nomeadamente, quando o grau de indeterminação estático é eevado Este método é mehor adaptáve à programação automática que o método das forças, porque neste todos desocamentos são restringidos ao contrário do que acontece no método das forças em que apenas agumas iberações são introduzidas para se obter a estrutura isostática Mas antes de se proceder a descrição do método vejamos o que se entende por grau de indeterminação cinemática - Noção de indeterminação cinemática Designaremos por indeterminação cinemática o número de restrições (víncuos) necessárias para eiminar os desocamentos dos nós da estrutura or outras paavras, diremos que o grau de indeterminação cinemática é a soma dos graus de iberdade (rotações e transações) independentes, de todos os nós da estrutura, incusive os apoios (não é mais do que o número de graus de iberdade da estrutura) Refere-se que um sistema de desocamentos dos nós é independente se cada desocamento puder variar arbitrariamente e independentemente de todos os outros Vejamos aguns exempos eucidativos do grau de indeterminação cinemática : grau (D, D e D ) ou grau (D e D ) se desprezada a deformação axia

2 grau (D, D, D e D ) ou grau (D e D ) desprezados os efeitos dos esforços normais - Descrição do método a) Numa primeira fase determina-se o grau de indeterminação cinemática e

3 escohe-se um sistema de coordenadas de modo a poder-se identificar a posição e a direcção dos desocamentos dos nós Em seguida são introduzidas forças de restrição (em número igua ao grau de indeterminação cinemática) que impedem os desocamentos dos nós (as forças são do mesmo tipo, sentido e direcção dos desocamentos impedidos) b) Depois determinam-se as forças de restrição somando as forças de fixação dos extremos das barras convergentes nos nós (um a um) Tais forças devem impedir os desocamentos para quaquer tipo de acção externa quer sejam cargas, variações de temperatura, pré-esforços, etc) Estas acções podem ser consideradas separadamente ou em conjunto Se na estrutura que está a ser anaisada existir aí agum desocamento prescrito, por exempo, um assentamento de apoio, as forças de restrição correspondentes ao impedimento deste(s) desocamento(s) devem ser considerados nesta etapa Determina-se ainda nesta fase os esforços internos nas barras correspondentes as forças de restrição (nos impedidos de movimentarem-se) c) estrutura considerada deformada de ta modo que numa das coordenadas generaizadas o desocamento seja aí unitário e nuo em todas as outras s forças necessárias para evar a estrutura a esta configuração são então cacuadas sendo o procedimento repetido para cada uma das restantes coordenadas as generaizadas (restrições impostas iniciamente) d) Os desocamentos necessários para eiminar as forças de restrição (obtida em b)) são determinados apicando a sobreposição dos efeitos para os diversos desocamentos impostos e iguaando às forças de restrição e) Os esforços na estrutura origina são obtidos adicionando aos esforços na estrutura restringida os esforços originados peos desocamentos determinados em d) robema : Determinar os esforços nas barras da estrutura representada na figura devido a acção combinada ) da carga extrema e ) do aongamento no comprimento da barra (motivado por acréscimo de temperatura nesta barra)

4 Resoução O grau de indeterminação estático é, as transações segundo os eixos xx e yy de sentidos positivos arbitrários ara ) o desocamento do nó é impedido introduzindo em uma força igua e oposta a, de componentes F e F nas direcções e (o segundo índice indica a causa, neste caso )) ara ) o aongamento da barra pode ser impedido por uma força ta que apicada em origina na barra um encurtamento da mesma grandeza O vaor da força de compressão correspondente será serão (o segundo índice indica o caso ) E cujas componentes nas direcções e F F E E cos sin

5 força tota de restrição do nó terá as componentes F = F + F ; F = F + F odemos também concuir que quando os desocamentos são restringidos, em ) não há esforços internos em quaquer das barras e em ) aparece somente o esforço de compressão E na barra Representando por { r } os esforços axiais nas barras nas condições de restrição teremos r = r = = r =, r E ; r+ = = rm = Devido ao desocamento unitário de, gera-se na barra genérica i uma força de compressão ie i i cos i e para manter o nó nesta posição teremos de apicar as forças De um modo simiar na hipótese D = e D = teremos de apicar as forças Mas na estrutura rea não existem só forças de restrição, para aém disso sabemos que o nó D experimenta um desocamento determinado de componentes D e D Então a

6 sobreposição das forças de restrição introduzidas e das correspondentes aos desocamentos reais deve ser nua F + D + D = F + D + D = Estas equações podem ser escritas na forma matricia {F} + []{D} = []{D} = {F} em que o vector couna {F} depende do carregamento da estrutura; os eementos da matriz [] são as forças correspondentes a desocamentos unitários e são chamados coeficientes de rigidez matriz [] é a chamada matriz de rigidez Os eementos do vector {D} são os desocamentos desconhecidos {D} = [] {F} Num caso gera de n restrições, a ordem das matrizes {D}, [] e {F} são n, nn e n, respectivamente matriz [] é uma matriz quadrada simétrica O esforço fina em quaquer barra i pode ser obtido por sobreposição do esforço nessa barra nas condições de restrição e dos correspondentes aos desocamentos dos nós i = ri + ( ui D + ui D + + uin D n ) reaização da sobreposição para todas as barras na forma matricia {} m = { r } m + [ u ] mn {D} n onde os eementos de são os esforços finais nas barras; os eementos de r são os esforços nas barras nas condições de restrição e os eementos de u são os esforços nas barras correspondentes aos desocamentos unitários Especificamente os eementos da couna j de [ u ] são os esforços nas barras correspondentes ao desocamento D j =, enquanto todos os outros desocamentos são nuos ara o caso em estudo é fáci de concuir que

7 u E E cos sin E E cos sin me m me m cosm sin m m m Notemos que num pórtico de nós rígidos podemos pretender os esforços em quaquer secção ou as reacções dos apoios or esta razão, consideramos que a rotação representa quaquer acção, podendo ser o esforço axia, transverso, momento fector, torção numa secção genérica ou uma reacção num apoio robema : Trace o diagrama dos momentos fectores na estrutura indicada admitindo que são desprezáveis as variações dos comprimentos da barras devido ao esforço axia Resoução O grau de indeterminação cinemática é correspondente aos desocamentos indicados na figura e as forças de restrição são a soma das forças de fixação nas extremidades das barras

8 F Os vaores dos momentos fectores nas extremidades,,, são r nas condições de restrição Os eementos da matriz de rigidez são as forças necessárias (correspondentes às coordenadas, e ) para manter as deformações a seguir apresentadas

9 ) ( ) ( ) ( ortanto e da equação,5,55,7 D F D É fáci concuir que u O vaor dos momentos finais

10 u O diagrama de momentos virá : robema : Trace o diagrama dos momentos na estrutura indicada desprezando as deformações devidas ao esforço axia e admitindo constante

11 Resoução O grau de indeterminação cinemática é sendo as incógnitas as indicadas, assim como as forças de fixação dos extremos devido às cargas apicadas s forças nas extremidades das barras correspondentes a cada um dos desocamentos unitários dos nós estão indicados nas figuras seguintes

12 Obtidos os eementos da matriz de rigidez, da equação []{D} = {F} 5 57 {D} 5 7 {D} ara traçar o diagrama de momentos fectores precisamos de conhecer os momentos,,, nas extremidades

13 {} Donde o diagrama de momentos fectores robema : Determinar as três componentes da reacção na extremidade da greha horizonta da figura quando submetida a uma carga uniforme q em C Considerar que todas têm a mesma secção e que a reação das rigidezas de torção e de fexão é 5 GY

14 Resoução : O grau de indeterminação cinemática é, correspondente às incógnitas, e indicadas E com faciidade se concui que : 7 q } { ; ; q {F} r Donde : {D} } { de e q {D} r

15 5 {} q q 97 q 5 - náise duma estrutura para diferentes hipóteses de carga Os eementos da matriz de rigidez da estrutura é independente das cargas, depedendo unicamente das propriedades da estrutura (constantes eásticas e geometria) Então para um número p de hipóteses de cargas podemos obter as souções correspondentes a partir da equação matricia [D] np = [] [F] np em que cada couna de [D] e [F] corresponde a uma dada hipótese de carga Vimos já o estudo da estrutura peo método das forças quando as estruturas são submetidas a acções como variações de temperatura, fahas no comprimento das peças, retracção ou pré-esforço, etc equação {D}= [ ][F] é iguamente apicáve no estudo da estrutura submetida a este tipo de acções mas agora {F} representa as forças necessárias para impedir os desocamentos dos nós devido aos efeitos anotados Quando se tratar de um movimento de apoios ainda a referida equação pode ser apicada, mesmo que o movimento de apoio não corresponda a um dos desocamentos desconhecidos da indeterminação cinemática Caro que nesta hipótese é necessário proceder a necessária adaptação robema : Trace o diagrama de momentos fectores quando : () ocorre um assentamento vertica no apoio () ocorre uma rotação no sentido inverso em B

16 Resoução : () O grau de indeterminação cinemática é, correspondentes às incógnitas D e D em B e C s forças de restrição necessárias para manter D = D = Os momentos nas extremidades das barras nas condições de restrição dos nós são : r r r r Os eementos da matriz de rigidez

17 Os momentos fectores nas secções consideradas originados por cada um dos desocamentos unitários (D e D ) são : u Da equação {D}= [] {F} D ou seja : 5 D 5 D forma deformada da viga correspondente ao assentamento : Os momentos correspondentes

18 {} ara o equiíbrio dos nós B e C a soma dos momentos nos extremos que concorrem nesses nós deve ser nuo, donde pode-se utiizar este facto como via de verificação dos resutados O diagrama de momentos será : () Esta hipótese ocorria se a viga BCD estivesse rigidamente igada em B a uma viga transversa horizonta que sofresse uma torção definida peo ânguo em B ara produzir esta rotação deve actuar em B uma força } {F, donde à deformada indicada corresponde as forças externas F } {F

19 Os desocamentos e as forças estão reacionados por : F D D Os eementos da matriz de rigidez já foram determinados em (); D = e D é desconhecido Resovendo : D + D = D = D = Os momentos nos extremos serão obtidos atendendo a que { r } = e a { n } determinado em () 5 5 {} - Efeito de desocamentos prescritos O método usado em () será considerado agora em reação ao caso gera de uma estrutura com um grau de indeterminação cinemática n onde ocorrem m desocamentos,,, m em m pontos Na matriz de rigidez podemos escrever os esforços nas secções correspondentes aos desocamentos conhecidos nas primeiras m inhas e counas

20 m (m) n m (m) n m mm (m)m nm (m) m(m) (m)(m ) n(m ) n mn (m)n nn ou onde os [ ji ] são as submatrizes de [] s ordens de [ ], [ ], [ ] e [ ] são respectivamente mm; m(nm); (nm) m e (nm )(nm) ara produzir desocamentos,,, m devem ser apicadas as forças externas F,, F m nas coordenadas,,, m respectivamente (nas restantes coordenadas não actuam forças) Como consequência daquees desocamentos ocorrem nas restantes coordenadas os desocamentos D m+,, D n equação que reaciona as forças e os desocamentos é : F, {D } {F } {D } {} onde {D } é o vector de desocamentos conhecidos e {D } é o vector de desocamentos desconhecidos D m+,, D n O vector { F } é o vector das forças desconhecidas nas coordenadas,,, m Da ª inha da equação matricia tira-se que : {D } = [ ][ ]{D }

21 Conhecidos os desocamentos das n incógnitas, os esforços em quaquer secção poderão ser determinados por : {} = [ u ]{D} onde {} é quaquer acção e [ u ] é a mesma acção correspondente a um desocamento unitário numa só coordenada Esta equação é a mesma que : {} = { r } + [ u ]{D} com { r } = porque as acções compreendidas são devidas unicamente aos efeitos dos desocamentos {D} s forças { F } são dadas por : {D } {F } equação obtida da ª inha da equação matricia anteriormente escrita entrando com os vaores já determinados de D

, um deslocamento segundo o eixo local l 2. , u l 2. . Para aplicar ou restringir estes deslocamentos aplica-se uma força segundo o eixo local l 1

, um deslocamento segundo o eixo local l 2. , u l 2. . Para aplicar ou restringir estes deslocamentos aplica-se uma força segundo o eixo local l 1 Método dos desocamentos formuado matriciamente 4.1 4 - MATRIZ DE RIGIDEZ NO REFERENCIA OCA 4.1 - Introdução Na figura 4.1 representa-se uma arra com um nó i na sua extremidade esquerda e um nó na sua extremidade

Leia mais

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA 4 ENTECA RESOLUÇÃO DE PÓRTICOS PLANOS ATRAVÉS DA ANÁLISE MATRICIAL DE ESTRUTURAS Marcio Leandro Micheim Acadêmico Engenharia Civi Universidade Estadua de Maringá e-mai: micheim_eng@hotmaicom Ismae Wison

Leia mais

10. CARGAS ACIDENTAIS E MÓVEIS; LINHAS DE INFLUÊNCIA

10. CARGAS ACIDENTAIS E MÓVEIS; LINHAS DE INFLUÊNCIA 10. CARGA ACIDENTAI E MÓVEI; LINHA DE INFLUÊNCIA 10.1. Introdução Diversas estruturas são soicitadas por cargas móveis. Exempos são pontes rodoviárias e ferroviárias ou pórticos industriais que suportam

Leia mais

3 Estática das estruturas planas

3 Estática das estruturas planas STÁTI 3674 27 3 stática das estruturas panas 3.1 ácuo das reações vincuares - apoios 3.1.1 ondições de equiíbrio estático O equiíbrio estático de uma estrutura bidimensiona (a estrutura considerada, as

Leia mais

Análise de Suporte para Televisão e DVD

Análise de Suporte para Televisão e DVD Universidade Federal de Minas Gerais Elementos Finitos para Análise de Estruturas Professor Estevam as Casas Análise de Suporte para Televisão e DVD Carlos Secundino Heleno Santos ucia ima obo eite Willer

Leia mais

ϕ ( + ) para rotações com o Flechas e deflexões

ϕ ( + ) para rotações com o Flechas e deflexões Fechas e defeões Seja uma barra reta, em euiíbrio, apoiada em suas etremidades, submetida a uma feão norma. Esta barra fetida, deia de ser reta assumindo uma forma, como a mostrada na figura. figura barra

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Aula 05. Conteúdo. 1. Introdução 1.1 Grau de indeterminação cinemática: ² Exemplo:

Aula 05. Conteúdo. 1. Introdução 1.1 Grau de indeterminação cinemática: ² Exemplo: Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Disciplina: Análise Matricial de Estruturas Professor: Antônio Macário Cartaxo de Melo Aula 05

Leia mais

Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções

Elementos Finitos 2014/2015 Colectânea de trabalhos, exames e resoluções Curso de Mestrado em Engenharia de Estruturas 1. a Edição (014/015) Elementos Finitos 014/015 Colectânea de trabalhos, exames e resoluções Lista dos trabalhos e exames incluídos: Ano lectivo 014/015 Trabalho

Leia mais

MÉTODOS BÁSICOS DA ANÁLISE DE ESTRUTURAS

MÉTODOS BÁSICOS DA ANÁLISE DE ESTRUTURAS MÉTODOS BÁSICOS DA ANÁLISE DE ESTRUTURAS Luiz Fernando Martha Pontifícia Universidade Catóica do Rio de Janeiro PUC-Rio Departamento de Engenharia Civi Rua Marquês de São Vicente, 5 - Gávea CEP 45-9 Rio

Leia mais

plano da figura seguinte. A rótula r expressa que não háh

plano da figura seguinte. A rótula r expressa que não háh Método das Forças Sistema Principal Consideremos o pórtico p plano da figura seguinte. A rótula r em D expressa que não háh transmissão de momento fletor da barra CD para a extremidade D das barras BD

Leia mais

Relações diferenciais de equilíbrio para vigas

Relações diferenciais de equilíbrio para vigas Reações diferenciais de euiíbrio para vigas Já foi visto ue o euiíbrio de vigas pode ser imposto gobamente, o ue resuta na determinação das reações de apoio (para vigas isostáticas), ou em porções isoadas,

Leia mais

Irineu dos Santos Yassuda

Irineu dos Santos Yassuda MECÂNICA TÉCNICA 2 Curso: Técnico em Automação Industrial Irineu dos Santos Yassuda Revisão de Matemática Conceito de Momento de uma Força O momento de uma força em relação a um ponto ou eixo fornece uma

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

ECV 5220 - ANÁLISE ESTRUTURAL II

ECV 5220 - ANÁLISE ESTRUTURAL II UNIVERSIDDE FEDERL DE SNT CTRIN CENTRO TECNOLÓGICO DEPRTMENTO DE ENGENHRI CIVIL ECV 5 - NÁLISE ESTRUTURL II Prof a Henriette Lebre La Rovere, Ph.D. Prof a Poiana Dias de Moraes, Dr Forianópois, fevereiro

Leia mais

CAPÍTULO 7 INÉRCIA DE SUPERFÍCIES

CAPÍTULO 7 INÉRCIA DE SUPERFÍCIES CPÍTULO 7 NÉRC DE SUPERFÍCES MOMENTO DE NÉRC DE SUPERFÍCES Considere uma viga simpesmente apoiada e soicitada por dois momentos iguais e opostos apicados em suas etremidades, está em um estado de soicitação

Leia mais

Projeção ortográfica de sólidos geométricos

Projeção ortográfica de sólidos geométricos Projeção ortográfica de sóidos geométricos Na aua anterior você ficou sabendo que a projeção ortográfica de um modeo em um único pano agumas vezes não representa o modeo ou partes dee em verdadeira grandeza.

Leia mais

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial

a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular

Leia mais

A linguagem matemática

A linguagem matemática A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia? A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura

Leia mais

PROCESSO DOS ESFORÇOS. Profa. Dra. Rosilene de Fátima Vieira

PROCESSO DOS ESFORÇOS. Profa. Dra. Rosilene de Fátima Vieira PROCESSO DOS ESFORÇOS Profa. Dra. Rosilene de Fátima Vieira 2015 Processo dos Esforços Aplicado a vigas A solução de estruturas hiperestáticas é feita através de uma superposição de efeitos e estabelecimento

Leia mais

Resistência dos. Materiais. Capítulo 3. - Flexão

Resistência dos. Materiais. Capítulo 3. - Flexão Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima

Leia mais

Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática.

Caso zero de carregamento: No caso zero de carregamento, aplicamos à isostática o carregamento da hiperestática. Módulo 4 - Resolução de estruturas uma vez hiperestáticas externamente e com todas as suas barras solicitadas por momento fletor, sem a presença de torção, através do Processo dos Esforços. O Processo

Leia mais

RESISTÊNCIA DE MATERIAIS I

RESISTÊNCIA DE MATERIAIS I SÇÃO STRUTURS RTMNTO NGNHRI IVI FU IÊNIS TNOOGI UNIVRSI NOV ISO RSISTÊNI MTRIIS I roblemas 1. omplementos de stática 2. ascas Finas xissimétricas 3. abos 4. sforço xial em eças ineares 5. Flexão em eças

Leia mais

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula.

duas forças que actuam numa partícula, estas podem ser substituídas por uma única força que produz o mesmo efeito sobre a partícula. Ao longo desta secção será abordada a análise do efeito de forças actuando em partículas. Substituição de duas ou mais forças que actuam na partícula por uma equivalente. A relação entre as várias forças

Leia mais

TEORIA DAS ESTRUTURAS I HIPERESTATICIDADE. Prof. DSc. Renata Machado Soares TEORIA I

TEORIA DAS ESTRUTURAS I HIPERESTATICIDADE. Prof. DSc. Renata Machado Soares TEORIA I TEORIA DAS ESTRUTURAS I HIPERESTATICIDADE Prof. DSc. Renata Machado Soares TEORIA I Teoria das Estruturas - Idéia Básica Estudar métodos de análise de estruturas hiperestáticas e sua aplicação no projeto

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido.

Exercícios de Análise Matricial de Estruturas 1. 1) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Exercícios de Análise Matricial de Estruturas ) Obter a matriz de rigidez [ ] K da estrutura abaixo para o sistema de coordenadas estabelecido. Dicas: - Obtenção da energia de deformação do sistema estrutural

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

CIR CIR CIR m CIR 12 CIR 1. Problema

CIR CIR CIR m CIR 12 CIR 1. Problema roblema C B 4 A 3 4 m Calcule todas as reacções externas. As forças aplicadas actuam no meio das barras. Resolução (verificação da estatia: Estática) H A : libertação e a introdução da reacção incógnita

Leia mais

RESISTÊNCIA DE MATERIAIS II

RESISTÊNCIA DE MATERIAIS II RESISTÊNCIA DE MATERIAIS II - 2014-2015 PROBLEMAS DE VERIFICAÇÃO DA SEGURANÇA Problema 1 (Problema 100 da colectânea, modificado) Considere a estrutura representada na figura, a qual está contida no plano

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica ALGA - Eng. Civil e Eng. Topográ ca - ISE - 010/ - Geometria Analítica Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo

Leia mais

8.5 Cálculo de indutância e densidade de energia magnética

8.5 Cálculo de indutância e densidade de energia magnética 8.5 Cácuo de indutância e densidade de energia magnética Para agumas geometrias de mahas pode-se cacuar a indutância aproximadamente. Cacuamos aqui a indutância de uma maha que contém um soenoide ciíndrico

Leia mais

6. Equilíbrio do Corpo Rígido

6. Equilíbrio do Corpo Rígido 6. Equilíbrio do Corpo Rígido 6.1 Generalidades Um corpo rígido está em equilíbrio sob a acção das forças (aplicadas e reactivas) quando este sistema de forças é equivalente a zero, ou seja (vectorialmente):

Leia mais

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO 4 DEFINIÇÃO DA GEOETRIA, ALHA E PARÂETROS DA SIULAÇÃO 4.1 Fornaha experimenta A fornaha experimenta utiizada como caso teste por Garreton (1994), era de 400kW aimentada com gás natura. Deste trabaho, estão

Leia mais

Anexo 4. Resistência dos Materiais I (2º ano; 2º semestre) Objetivos. Programa

Anexo 4. Resistência dos Materiais I (2º ano; 2º semestre) Objetivos. Programa Resistência dos Materiais I (2º ano; 2º semestre) Objetivos O aluno deverá ficar apto a conhecer os fundamentos do comportamento mecânico de sólidos deformáveis sujeitos a acções exteriores e, em particular

Leia mais

Exercícios Aulas Práticas 2004/2005

Exercícios Aulas Práticas 2004/2005 Exercícios Aulas Práticas 2004/2005 Manuel Teixeira Brás César Mário Nuno Moreira Matos Valente 1/17 2/17 Tema: Corpos Rígidos: Sistemas Equivalentes de Forças 7 - Uma força de 150 N é aplicada à alavanca

Leia mais

Um dos conceitos mais utilizados em Matemática

Um dos conceitos mais utilizados em Matemática A UA UL LA A noção de função Introdução Um dos conceitos mais utiizados em Matemática é o de função. Ee se apica não somente a esta área, mas também à Física, à Química e à Bioogia, entre outras. Aém disso,

Leia mais

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7 7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS ivil Secção de Mecânica strutural e struturas MÂNI I NUNIOS PROLMS evereiro de 2008 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício,

Leia mais

O PROCESSO DOS ESFORÇOS (edição beta abril de 2000)

O PROCESSO DOS ESFORÇOS (edição beta abril de 2000) O PROCESSO DOS ESFORÇOS (edição beta abril de 2000) 1. Introdução O Processo dos Esforços, também chamado Método das Forças, é um processo de cálculo para a determinação dos esforços em estruturas hiperestáticas.

Leia mais

Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto

Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico

Leia mais

Tensões associadas a esforços internos

Tensões associadas a esforços internos Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 2002. Esforços axiais e tensões

Leia mais

5.1. Metodologia de análise pelo Método das Forças

5.1. Metodologia de análise pelo Método das Forças 5. MÉTODO DAS FORÇAS Na soução de uma estrutura hiperestática, conforme introduzido no Capítuo (Seção.), é necessário considerar os três grupos de condições básicas da Anáise Estrutura: condições de equiíbrio,

Leia mais

MÉTODOS DE ENERGIA 1 INTRODUÇÃO

MÉTODOS DE ENERGIA 1 INTRODUÇÃO MÉTODOS DE ENERGIA 1 INTRODUÇÃO Quando não ocorre dissipação de energia, o trabalho realizado pelas cargas aplicadas e a energia são iguais, sendo o trabalho um produto vetorial da força pelo deslocamento.

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações

Leia mais

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações.

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações. Acesse: http://fuvestibuar.com.br/ AUUL AL A As combinações Até agora você estudou probemas de anáise combinatória que envoviam o princípio mutipicativo e as permutações. Introdução Se observar os probemas

Leia mais

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste.

P 2 M a P 1. b V a V a V b. Na grelha engastada, as reações serão o momento torçor, o momento fletor e a reação vertical no engaste. Diagramas de esforços em grelhas planas Professora Elaine Toscano Capítulo 5 Diagramas de esforços em grelhas planas 5.1 Introdução Este capítulo será dedicado ao estudo das grelhas planas Chama-se grelha

Leia mais

Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura.

Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. 52 CAPÍTULO V CÁLCULO DAS REAÇÕES EXTERNAS I. GENERALIDADES Reações externas ou vinculares são os esforços que os vínculos devem desenvolver para manter em equilíbrio estático uma estrutura. Os vínculos

Leia mais

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Leis de Newton (Lei Fundamental da Dinâmica) e Forças de Atrito

Leis de Newton (Lei Fundamental da Dinâmica) e Forças de Atrito Leis de ewton (Lei undamental da Dinâmica) e orças de Atrito Movimentos sob a acção de uma força resultante constante Prof. Luís C. Perna LEI DA IÉRCIA OU 1ª LEI DE EWTO LEI DA IÉRCIA Para que um corpo

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA (9) 5-0 O EITE ESOVE IME 0 MTEMÁTIC DISCUSIVS MTEMÁTIC QUESTÃO 0 O segundo, o sétimo e o vigésimo sétimo termos de uma rogressão ritmética () de números inteiros, de razão r, formam, nesta ordem, uma rogressão

Leia mais

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/8 Resistência dos ateriais 003/004 urso de Gestão e Engenharia Industrial 10ª ula e 11ª ula Duração - Horas Data - 3 de Novembro de 003 Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio

Leia mais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais

Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais MKT-MDL-05 Versão 00 Propriedades Geométricas de um seção Plana e Propriedades Mecânicas dos Materiais Curso: Bacharelado em Engenharia Civil Turma: 5º Docente: Carla Soraia da Silva Pereira MKT-MDL-05

Leia mais

Estruturas de Betão Armado II

Estruturas de Betão Armado II Estruturas de Betão Armado II A. P. Ramos Set. 006 ANÁLISE ELÁSTICA DOS ESFORÇOS Métodos de anáise eástica dos esforços: Métodos anaíticos Séries de Fourier Métodos numéricos: - Diferenças Finitas - Eementos

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

Sumário e Objectivos. Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas.

Sumário e Objectivos. Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Sumário e Objectivos Sumário: Tensões de corte em Secções de parede delgada. Centro de corte. Tensões de corte em peças mistas ou compostas. Objectivos da Aula: Ser capaz de calcular as tensões de corte

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis Resistência dos Materiais 21ªAula

Sumário e Objectivos. Lúcia M.J.S. Dinis Resistência dos Materiais 21ªAula Sumário e Objectivos Sumário: Vigas Hiperestáticas Objectivos da Aula: Apreender a forma como se pode superar a hiperestaticidade por aplicação do Princípio da Sobreposição de Efeitos 1 Satélite 2 Tecto

Leia mais

Física I 2009/2010. Aula02 Movimento Unidimensional

Física I 2009/2010. Aula02 Movimento Unidimensional Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante

Leia mais

6. MÉTODO DOS DESLOCAMENTOS

6. MÉTODO DOS DESLOCAMENTOS 6. MÉTODO DOS DESLOCAMENTOS Conforme foi introduzido na Seção.3 do Capítulo, o Método dos Deslocamentos pode ser considerado como o método dual do Método das Forças. Em ambos os métodos a solução de uma

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque Aula 6 Estudo de Torção, Transmissão de Potência e Torque Definição de Torque Torque é o momento que tende a torcer a peça em torno de seu eixo longitudinal. Seu efeito é de interesse principal no projeto

Leia mais

6.00 m. z (y) 3.00 m. 920 kn. 15 kn/m. Secção transversal do pilar A-B. (x) SHS 200x150x8 mm 1/29

6.00 m. z (y) 3.00 m. 920 kn. 15 kn/m. Secção transversal do pilar A-B. (x) SHS 200x150x8 mm 1/29 VIGA-OLUA Exemo : onsidere a viga-coluna A-B de suporte de um balanço B- representado na Figura abaixo A coluna é engastada na seção da base sendo a seção do topo (seção B) livre de rodar mas impedida

Leia mais

Mecânica Técnica. Aula 15 Reações de Apoio em Vigas e Estruturas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 15 Reações de Apoio em Vigas e Estruturas. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 15 Reações de Apoio em Vigas e Estruturas Tópicos Abordados Nesta Aula Apoios Submetidos a Forças Bidimensionais. Cálculo de Reações de Apoio em Estruturas Isostáticas. Equações de Equilíbrio da Estática

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

1. Ligações em estruturas de aço

1. Ligações em estruturas de aço 1. Ligações em estruturas de aço Bibliografia: ABNT NBR 8800:2008 Projeto de estruturas de aço e de estrutura mista de aço e concreto de edifícios QUEIROZ, G.; VILELA, P. M. L. Ligações, regiões nodais

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul

MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul MECÂNICA GERAL 3º e 4º CICLO (ENGENHARIA MECÂNICA E DE PRODUÇÃO) Profa. Ms. Grace Kelly Quarteiro Ganharul grace.ganharul@aedu.com Graduação em Engenharia Mecânica e Engenharia de Produção Disciplina:

Leia mais

DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar.

DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar. 28 CAPÍTULO III ESTRUTURAS ISOSTÁTICAS - NOÇÕES INICIAIS I. GRAUS DE LIBERDADE (GL) DEFINIÇÃO: Graus de liberdade são o número de movimentos rígidos possíveis e independentes que um corpo pode excecutar.

Leia mais

AULA J EXEMPLO VIGA-BALCÃO

AULA J EXEMPLO VIGA-BALCÃO AULA J INTRODUÇÃO O Projeto de Revisão da Norma NBR-6118 sugere que a descrição do comportamento estrutural seja feita de maneira mais rigorosa possível, utilizando-se programas computacionais baseados

Leia mais

Modelo matemático do comportamento axial e à flexão de barras

Modelo matemático do comportamento axial e à flexão de barras odeo matemático do comportamento aia e à eão de barras Este capítuo resume os principais conceitos matemáticos envovidos na ideaização do comportamento de barras. Ta ideaização baseia-se em hipóteses simpiicadoras

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

TEORIA DAS ESTRUTURAS I. Prof. DSc. Renata Machado Soares TEORIA I

TEORIA DAS ESTRUTURAS I. Prof. DSc. Renata Machado Soares TEORIA I TEORIA DAS ESTRUTURAS I Prof. DSc. Renata Machado Soares TEORIA I Teoria das Estruturas - Idéia Básica Estudar métodos de análise de estruturas hiperestáticas e sua aplicação no projeto de estruturas.

Leia mais

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas I. Programação Linear (PL) 1. Introdução A Programação Linear é, no campo mais vasto da Programação Matemática, uma das variantes de aplicação generalizada em apoio da Decisão. O termo "Programação" deve

Leia mais

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor

Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal

Leia mais

Dinâmica de Estruturas

Dinâmica de Estruturas Dinâica de Estruturas Licenciatura e Engenharia Civi RAIMUNDO DELGADO ANTÓNIO ARÊDE FEU DEC - Estruturas FEU - Raiundo Degado & António Arêde 1 1. 1. INTRODUÇÃO À DINÂMICA DE DE ESTRUTURAS 1.1 INTRODUÇÃO

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO:

I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO: I. TIPOS DE LIGAÇÃO I.1. INTRODUÇÃO: Neste curso estudaremos as ligações usuais em estruturas metálicas. O termo ligações é utilizado para ligações entre componentes de um perfil, emendas de barras, ligações

Leia mais

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC 1. Hierarquia de Mecânica Clássica ou Newtoniana 2. Meio contínuo 3. Objectivos de MMC 3.1 Carregamento 3.2 Resposta ao carregamento 3.3

Leia mais

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO ANÁISE DE ESTRUTURAS APONTAMENTOS DE INHAS DE INFUÊNCIA Eduardo Pereira 1994 NOTA INTRODUTÓRIA Pretende-se com estes apontamentos fornecer aos alunos da disciplina de Análise

Leia mais

3TRU022: Mecânica II Prof.: Roberto Buchaim Exercícios resolvidos

3TRU022: Mecânica II Prof.: Roberto Buchaim Exercícios resolvidos Eercícios de Vigas Isostáticas TRU: Mecânica II Prof.: Roberto Buchaim Eercícios resovidos º Eercício - Determinar para a viga bi-apoiada abaio as reações de apoio, e os diagramas dos esforços soicitantes.

Leia mais

5 Tudo que sobe, desce

5 Tudo que sobe, desce A U A UL LA Tudo que sobe, desce Rio de Janeiro, temperatura atíssima, tumuto na praia, começa o corre-corre! Dizem que é um arrastão! A poícia chega e a correria se torna desordenada, quando aguém dá

Leia mais

Técnicas de Parametrizações na Solução de Sistemas de Equações Não Lineares do Fluxo de Carga Continuado

Técnicas de Parametrizações na Solução de Sistemas de Equações Não Lineares do Fluxo de Carga Continuado Técnicas de Parametrizações na Soução de Sistemas de Equações ão Lineares do Fuxo de Carga Continuado Afredo onini eto Departamento de Engenharia Eétrica, FEIS, UESP 585-, Iha Soteira, SP E-mai: afredoneto@auno.feis.un.br

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

painel sandwich poliuretano fachada

painel sandwich poliuretano fachada paine sandwich poiuretano fachada IRFAC nervurado parafuso à vista O paine de fachada IRFAC é produzido na argura de mm, com junta fechada ou aberta e em três tipos diferentes de acabamento, quer na face

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

LEIS CONSTITUTIVAS 4.1 INTRODUÇÃO

LEIS CONSTITUTIVAS 4.1 INTRODUÇÃO LEIS CONSTITUTIVAS 4. INTRODUÇÃO As tensões foram estabelecidas como grandezas quantificadoras dos esforços transmitidas de ponto para ponto num sólido sujeito a acções exteriores e foram utilizadas no

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA CIVIL - MECÂNICA APLICADA CAPÍTULO V. Fios e Cabos SEMESTRE VERÃO 2004/2005

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA DEPARTAMENTO DE ENGENHARIA CIVIL - MECÂNICA APLICADA CAPÍTULO V. Fios e Cabos SEMESTRE VERÃO 2004/2005 CAPÍTULO V Fios e Cabos SEMESTRE VERÃO 2004/2005 Maria Idália Gomes 1/9 Capitulo V Fios e Cabos 5.1 Considerações Gerais A diferença fundamental entre fio e cabo é sobretudo na área da sua secção, que

Leia mais