A linguagem matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A linguagem matemática"

Transcrição

1 Acesse: A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o texto faa. O que está sendo demonstrado? Para pensar P/ as outras apostias de Matemática, Acesse:

2 Nossa aua Acesse: Ao procurar num dicionário a paavra inguagem, você encontra várias definições. Veja duas deas, encontradas no Novo Dicionário Auréio da Língua Portuguesa: inguagem. 1. O uso da paavra articuada ou escrita como meio de expressão ou da comunicação entre pessoas.. O vocabuário específico usado numa ciência, numa arte, numa profissão etc. Como você pode ver, a inguagem é uma forma de expressar determinada idéia. Na vida prática, existem diferentes maneiras de comunicar as idéias: pea inguagem faada, pea escrita, pea musica etc. A Matemática também criou uma forma de comunicação. Ea se utiiza de uma inguagem universa para transmitir suas idéias de maneira simpes, curta e precisa. Simpes e curta porque com apenas aguns símboos ea pode expressar frases que, se escritas na inguagem corrente, usariam maior quantidade de símboos. Por exempo, a frase: Dois somado com três é igua a cinco, se escrita na inguagem matemática, usa apenas cinco símboos, que podem ser compreendidos por quaquer pessoa famiiarizada com os símboos matemáticos: + 3 = 5 Precisa porque deve indicar uma idéia com precisão, com exatidão, isto é, sem fahas. O uso de etras na Matemática Aém dos agarismos e dos sinais de operação (+, -,, :,, etc), a inguagem matemática também utiiza etras em sua comunicação. Veja aguns exempos: EXEMPLO 1 Considere as mutipicações do múmero 1 por outros números: 1. 0 = = 1 1. = 1. 3 = 3 Você já deve ter percebido que o número 1 mutipicado por um número quaquer sempre resuta nesse número. Daí, podemos usar uma etra para representar esse fato: 1. x = x onde a etra x está representando um número quaquer. P/ as outras apostias de Matemática, Acesse:

3 Acesse: EXEMPLO Considere dois números quaisquer cuja soma seja igua a 5.Esse fato pode ser representado por: a + b = 5 onde a e b representam os números que somados dão 5. EXEMPLO 3 As propriedades da adição ou da mutipicação também podem ser expressas por etras. É o caso, por exempo, da propriedade distributiva da mutipi- cação sobre a adição, que você já aprendeu e que pode ser representada por: a (b + c) = a b + a c onde as etras a, b e c representam números quaisquer. Vejamos agora uma outra situação. Observe: = =. Será que esses exempos são suficientes para afirmar que x + x = x. x? Basta escoher um exempo bem simpes para verificar que não: não é igua a Portanto, como esse fato não é váido para quaquer número, não podemos escrever que x + x = x x. O uso de etras na geometria As etras também podem ser usadas para indicar agumas fórmuas da geometria. Por exempo: A área de um quadrado pode ser expressa por ² ², onde representa o ado desse quadrado. ado = área =. = ² A área de um retânguo pode ser expressa por a b, onde a e b representam as dimensões do retânguo. O perímetro do retânguo pode ser expresso por a + b ou (a + b). A soma dos ânguos internos de um poígono convexo quaquer pode ser expressa por (n - ) 180º. Vote à Aua 43 e veja o que significam a etra n e a expressão n -. P/ as outras apostias de Matemática, Acesse:

4 Acesse: A inguagem matemática e a resoução de probemas A inguagem matemática tornou-se, hoje em dia, um instrumento importante para resover probemas. Com ea podemos traduzir os dados do probema que estão em inguagem corrente, ou seja, podemos equacionar o probema. Nos exempos seguintes, há uma tabea com o probema em inguagem corrente e sua tradução para a inguagem matemática. Veja: EXEMPLO 1 EM LINGUAGEM CORRENTE EM LINGUAGEM MATEMÁTICA A metade de um número é igua a 6. x = 6 Qua é esse número? x =? A soução desse probema é a soução da equação matemática x = 6. No momento, não vamos aprender a resover equações. Nosso objetivo, agora, é apenas saber o que é e para que serve a inguagem matemática. EXEMPLO EM LINGUAGEM CORRENTE EM LINGUAGEM MATEMÁTICA Uma pessoa tinha uma determinada quantia de dinheiro. x No primeiro mês gastou 100 reais. x No segundo mês gastou metade do que sobrou, x ficando com 80 reais. 80 Qua era a quantia inicia? x =? x = x gastou no 1º mês gastou no º mês + 80 sobrou Para descobrir o vaor de x, basta resover a útima equação. Mas, como já dissemos, esse não é o nosso objetivo no momento. P/ as outras apostias de Matemática, Acesse:

5 Acesse: Exercício 1 Escreva as seguintes frases em inguagem matemática: a) O dobro de um número. Exercícios b) O tripo de um número. c) Um número menos sete. d) Metade de um número, mais um. Exercício Como você escreveria em inguagem matemática as frases seguintes? a) A ordem dos fatores não atera o produto. b) A ordem das parceas não atera a soma. Exercício 3 Considere um retânguo cujo perímetro é 0 cm. a) Escreva, em inguagem matemática, uma expressão para representar esse fato. b) Dê aguns exempos para as medidas das dimensões desse retânguo. Exercício 4 Compete a frase: Sempre que o desconto é de 50%, pagamos apenas metade do preço. Se o preço é x, pagamos... P/ as outras apostias de Matemática, Acesse:

A linguagem matemática

A linguagem matemática A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o

Leia mais

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia? A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura

Leia mais

Num determinado jogo de fichas, os valores

Num determinado jogo de fichas, os valores A UA UL LA Acesse: http://fuvestibuar.com.br/ Potências e raízes Para pensar Num determinado jogo de fichas, os vaores dessas fichas são os seguintes: 1 ficha vermeha vae 5 azuis; 1 ficha azu vae 5 brancas;

Leia mais

Recordando operações

Recordando operações A UA UL LA Acesse: http://fuvestibuar.com.br/ Recordando operações Introdução Vamos iniciar nosso curso de matemática do 2º grau recordando as quatro operações: adição subtração mutipicação divisão Vamos

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

Recordando operações

Recordando operações A UA UL LA Recordando operações Introdução Vamos iniciar nosso curso de matemática do 2º grau recordando as quatro operações: adição subtração mutipicação divisão Vamos embrar como essas operações são

Leia mais

Um dos conceitos mais utilizados em Matemática

Um dos conceitos mais utilizados em Matemática A UA UL LA A noção de função Introdução Um dos conceitos mais utiizados em Matemática é o de função. Ee se apica não somente a esta área, mas também à Física, à Química e à Bioogia, entre outras. Aém disso,

Leia mais

Operando com potências

Operando com potências A UA UL LA Acesse: http://fuvestibuar.com.br/ Operando com potências Introdução Operações com potências são muito utiizadas em diversas áreas da Matemática, e em especia no cácuo agébrico. O conhecimento

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Acesse: http://fuvestibuar.com.br/ Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Calculando áreas. Após terem sido furadas, qual delas possui maior área?

Calculando áreas. Após terem sido furadas, qual delas possui maior área? A UA UL LA Cacuando áreas Para pensar Imagine que você vá revestir o piso de sua saa com ajotas. Para saber a quantidade de ajotas necessária, o que é preciso conhecer: a área ou o perímetro da saa? Foram

Leia mais

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos

Leia mais

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações.

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações. Acesse: http://fuvestibuar.com.br/ AUUL AL A As combinações Até agora você estudou probemas de anáise combinatória que envoviam o princípio mutipicativo e as permutações. Introdução Se observar os probemas

Leia mais

Equacionando problemas - I

Equacionando problemas - I A UA UL LA 70 Equacionando probemas - I Introdução Você já percebeu que a Matemática é um eceente recurso para resover muitos dos probemas do nosso dia-a-dia. Mas a Matemática também pode ser vista sob

Leia mais

Do que são formados os átomos?

Do que são formados os átomos? A U L A A U L A Acesse: http://fuvestibuar.com.br/ Do que são formados os átomos? O que você vai aprender Do que o átomo é formado. Partícuas que existem no átomo: prótons, eétrons e nêutrons Como se formam

Leia mais

Na natureza nada se cria, nada se perde, tudo se transforma

Na natureza nada se cria, nada se perde, tudo se transforma Na natureza nada se cria, nada se perde, tudo se transforma A UU L AL A Conservação da matéria na reação química Proporção das substâncias que reagem que você vai aprender que é uma fórmua química significado

Leia mais

Num determinado jogo de fichas, os valores

Num determinado jogo de fichas, os valores A UA UL LA Potências e raízes Para pensar Num determinado jogo de fichas, os vaores dessas fichas são os seguintes: 1 ficha vermeha vae 5 azuis; 1 ficha azu vae 5 brancas; 1 ficha branca vae 5 pretas;

Leia mais

Calculando áreas. Após terem sido furadas, qual delas possui maior área?

Calculando áreas. Após terem sido furadas, qual delas possui maior área? A UA UL LA 53 5 Cacuando áreas Para pensar Imagine que você vá revestir o piso de sua saa com ajotas. Para saber a quantidade de ajotas necessária, o que é preciso conhecer: a área ou o perímetro da saa?

Leia mais

Projeção ortográfica de sólidos geométricos

Projeção ortográfica de sólidos geométricos Projeção ortográfica de sóidos geométricos Na aua anterior você ficou sabendo que a projeção ortográfica de um modeo em um único pano agumas vezes não representa o modeo ou partes dee em verdadeira grandeza.

Leia mais

Os opostos se atraem

Os opostos se atraem A U L A A U L A Acesse: http://fuvestibuar.com.br/ Os opostos se atraem O que você vai aprender Produção de coro Usos do coro Eetróise de soução saturada de coreto de sódio Seria bom já saber Produção

Leia mais

Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos

Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos Definição; Número de diagonais de um poígono convexo; Soma das medidas dos ânguos internos e externos; Poígonos Reguares; Reações Métricas em um poígono reguar; Professores: Eson Rodrigues Marceo Ameida

Leia mais

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas

Leia mais

Precipitar, o que é isso?

Precipitar, o que é isso? Acesse: http://fuvestibuar.com.br/ A UU L AL A Precipitar, o que é isso? Formação de precipitados Concentrar e diuir souções O que você vai aprender O que significa soúve e insoúve O que são hidróxidos

Leia mais

Podemos utilizar o cálculo do determinante para nos auxiliar a encontrar a inversa de uma matriz, como veremos à seguir.

Podemos utilizar o cálculo do determinante para nos auxiliar a encontrar a inversa de uma matriz, como veremos à seguir. O cácuo da inversa de uma matriz quadrada ou trianguar é importante para ajudar a soucionar uma série probemas, por exempo, a computação gráfica, na resoução de probemas de posicionamento de juntas articuadas

Leia mais

A função f(x) = x é a função modular, cujo gráfico. A função g(x) = 1 - x é a função f(x) transformada.

A função f(x) = x é a função modular, cujo gráfico. A função g(x) = 1 - x é a função f(x) transformada. Q uestão 6 - C O número 100.000.000.000 é uma potência inteira de dez igua a 10 11 ; pois 10 10 10... 10 = 100.000.000.000 11 fatores 10 Q uestão 7 - B Todos os números inteiros com o agarismo das unidades

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

O círculo e o número p

O círculo e o número p A UA UL LA 45 O círcuo e o número p Para pensar O círcuo é uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua vota quantos objetos circuares estão presentes: nas moedas, nos discos,

Leia mais

RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO

RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ Consórcio CEDERJ Matemática 1º ano º Bimestre/ 01 Pano de Trabaho RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Acesso em /05/01 educador.brasiescoa.com

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima

Leia mais

3 Estática das estruturas planas

3 Estática das estruturas planas STÁTI 3674 27 3 stática das estruturas panas 3.1 ácuo das reações vincuares - apoios 3.1.1 ondições de equiíbrio estático O equiíbrio estático de uma estrutura bidimensiona (a estrutura considerada, as

Leia mais

Gabarito das aulas 41 a 60

Gabarito das aulas 41 a 60 Acesse: http://fuvestibuar.com.br/ Gabarito das auas 41 a 60 Aua 41 - Triânguo Na figura, existem 46 triânguos. a) retânguo; isóscees b) acutânguo; equiátero c) obtusânguo; escaeno d) obtusânguo; isóscees

Leia mais

Você já participou da reforma ou da construção de um imóvel?

Você já participou da reforma ou da construção de um imóvel? ÁREA DE POLÍGONOS CONTEÚDOS Área de retânguo Área de paraeogramo Área de triânguo Área de trapézio Área de hexágono AMPLIANDO SEUS CONHECIMENTOS Área do retânguo e quadrado Você já participou da reforma

Leia mais

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES 7 9 CIRCUITOS MAGÉTICOS LIEARES E ÃO LIEARES Circuitos magnéticos são usados para concentrar o efeito magnético de uma corrente em uma região particuar do espaço. Em paavras mais simpes, o circuito direciona

Leia mais

Informática para Ciências e Engenharias (B) 2015/16. Teórica 5

Informática para Ciências e Engenharias (B) 2015/16. Teórica 5 Informática para Ciências e Engenharias (B) 2015/16 Teórica 5 Na aua de hoje Controo de execução cicos condicionais whie end Exempos raiz quadrada whie Histograma whie e matrizes fórmua química whie e

Leia mais

Os opostos se atraem A U L A. O que você vai aprender. Seria bom já saber. Isto lhe interessa

Os opostos se atraem A U L A. O que você vai aprender. Seria bom já saber. Isto lhe interessa A U L A A U L A Os opostos se atraem O que você vai aprender Produção de coro Usos do coro Eetróise de soução saturada de coreto de sódio Seria bom já saber Produção de hidróxido de sódio O que são cátions

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões trigonométricas. Antes, vamos

Leia mais

Precipitar, o que é isso?

Precipitar, o que é isso? A UU L AL A Precipitar, o que é isso? Formação de precipitados Concentrar e diuir souções O que você vai aprender O que significa soúve e insoúve O que são hidróxidos e carbonatos O que é reação química

Leia mais

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS

VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS 3 MOMENTOS TECNOLOGIA EM CONSTRUÇÃO DE EDIFÍCIOS CONSTRUÇÕES EM CONCRETO ARMADO VIGAS HIPERESTÁTICAS - EQUAÇÃO DOS MOMENTOS Apostia orgaizada peo professor: Ediberto Vitorio de Borja 6. ÍNDICE CÁLCULO DE MOMENTOS

Leia mais

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS.

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 09/jun/0 MATEMÁTICA (MÓDULO OBJETIVO PROVA A) 0. No pano cartesiano, a reta (r) intercepta os eixos x e y nos pontos (5; 0) e (0; ); a reta (s) intercepta os

Leia mais

Exame Nacional de 2005 1. a chamada

Exame Nacional de 2005 1. a chamada Exame Naciona de 200 1. a chamada 1. Na escoa da Rita, fez-se um estudo sobre o gosto dos aunos pea eitura. Um inquérito reaizado incuía a questão seguinte. «Quantos ivros este desde o início do ano ectivo?»

Leia mais

Aplicação do Teorema de Pitágoras

Aplicação do Teorema de Pitágoras A UA U L L A Apicação do Teorema de Pitágoras Para pensar Uma escada de 5 m de comprimento está apoiada num muro. O pé da escada está afastado 3 m da base do muro. Qua é a atura, no muro, que a escada

Leia mais

Ácido sulfúrico na estrela-d alva?

Ácido sulfúrico na estrela-d alva? Ácido sufúrico na estrea-d ava? O que você vai aprender Existe ácido sufúrico na atmosfera de aguns panetas Existe um satéite de Júpiter que tem muito enxofre Onde existe enxofre na Terra Produção de ácido

Leia mais

11 Sistemas resolvem problemas

11 Sistemas resolvem problemas A UA UL LA Sistemas resovem probemas Introdução Na aua anterior, mostramos como resover sistemas de duas equações de 1º grau com duas incógnitas. Agora vamos usar essa importante ferramenta da matemática

Leia mais

Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática

Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática Caro(a) aluno(a), Você saberia representar a soma dos n primeiros números naturais a partir do 1? Neste Caderno você terá a oportunidade de conhecer esse e outros casos que envolvem sequências e resolvê-los

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO C Curso destinado à preparação para Concursos Púbicos e Aprimoramento Profissiona via INTENET ACIOCÍNIO LÓGICO AULA 10 POLÍGONOS EGULAES TIÂNGULO EQUILÁTEO É o triânguo que apresenta os três ados iguais.

Leia mais

Calculando a rpm e o gpm a partir da

Calculando a rpm e o gpm a partir da Acesse: http://fuvestibuar.com.br/ Cacuando a rpm e o gpm a partir da veocidade de corte A UU L AL A Para que uma ferramenta corte um materia, é necessário que um se movimente em reação ao outro a uma

Leia mais

Todo poder emana da língua

Todo poder emana da língua A U A UL LA Acesse: http://fuvestibuar.com.br/ Todo poder emana da íngua Cenatexto Zé dos Anjos perdeu no desafio com Osias, mas ficou vários dias pensando: Um dia é da caça e outro do caçador. Assim,

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

Método dos Deslocamentos

Método dos Deslocamentos Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método

Leia mais

Prática X PÊNDULO SIMPLES

Prática X PÊNDULO SIMPLES Prática X PÊNDULO SIMPLES OBJETIVO Determinação do vaor da gravidade g em nosso aboratório. A figura abaixo representa um pênduo simpes. Ee consiste de um corpo de massa m, preso à extremidade de um fio

Leia mais

GEOMETRIA ESPACIAL PRISMAS - GABARITO. PRISMAS - Bombeiros

GEOMETRIA ESPACIAL PRISMAS - GABARITO. PRISMAS - Bombeiros GEOMETRI ESPCIL PRISMS - GRITO PRISMS - ombeiros 1) Cacue a área tota de um prisma reto de atura 1 cm e quadrada, com aresta 5 cm ) Cacue a área e o voume de um prisma reto de trianguar, cujas arestas

Leia mais

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17 Siga as instruções A UU L AL A M Ó D U L O 17 No dia seguinte, o sr. Diermando recebeu a carta de dr. Gaspar recamando da atitude do porteiro. E agora? Que conseqüências ea poderá trazer ao funcionário

Leia mais

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7 7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50

Fatorando o número 50 em fatores primos, obtemos a seguinte representação: = 50 FATORAÇÃO DE EXPRESSÃO ALGÉBRICA Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como

Leia mais

Do que se compõe o ar?

Do que se compõe o ar? Não é um aimento, mas não podemos viver sem ee. É invisíve, apesar de ser a mais comum de todas as substâncias. stá sempre conosco, mas só o percebemos quando ee se move, quando tem cheiro ou quando está

Leia mais

ou A= d.d' ou A = d'.d Área das figuras planas d d

ou A= d.d' ou A = d'.d Área das figuras planas d d PII 9º no (ns. Fund.) 39 QUIVÊNI FIGUS PNS paavra equivaência deriva de: equi = igua + vaência = vaor. m Geometria, equivaência significa área igua, ou seja, figuras equivaentes são aqueas que possuem

Leia mais

Expressões numéricas. Exemplos: = Expressões numéricas = = 24 0, =17,5

Expressões numéricas. Exemplos: = Expressões numéricas = = 24 0, =17,5 MATEMÁTICA Revisão Geral Aula 3 - Parte 1 Professor Me. Álvaro Emílio Leite Expressões numéricas Exemplos: 3+2 5 = 3+2 25= 3+50= 3+50=53 Expressões numéricas 2 4 3 1 4+10 64 2= 8 32 4 3 4 8 +10 8 2= 24

Leia mais

Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula

Sistemas do 1º grau. Pedro e José são amigos. Ao saírem do trabalho, Nossa aula A UUL AL A Sistemas do 1º grau Pedro e José são amigos. Ao saírem do trabalho, passaram por uma livraria onde havia vários objetos em promoção. Pedro comprou 2 cadernos e 3 livros e pagou R$ 17,40, no

Leia mais

5.1. Simulações para o Campo Magnético Gerado por um Ímã Permanente.

5.1. Simulações para o Campo Magnético Gerado por um Ímã Permanente. Simuações. No presente capítuo são apresentadas simuações referentes ao comportamento de parâmetros importantes para o desenvovimento do transdutor de pressão. As simuações foram eaboradas com o objetivo

Leia mais

Atuais objetivos da normalização

Atuais objetivos da normalização Acesse: http://fuvestibuar.com.br/ Atuais objetivos da normaização Você agora vai estudar a útima parte deste assunto: os atuais objetivos da normaização. Pode-se dizer que a primeira fase da normaização,

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resoução da ista de eercícios de Resistência dos Materiais Eercício 1) Leandro Lima Rasmussen No intuito de soucionar o probema, deve ser feita a superposição de casos: Um, considerando a chapa BC como

Leia mais

MATEMÁTICA. Equações do Primeiro Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Primeiro Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equações do Primeiro Grau Professor : Dêner Rocha Monster Concursos 1 Equações do primeiro grau Objetivo Definir e resolver equações do primeiro grau. Definição Chama-se equação do 1º grau,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA FUVEST-FASE POR PROFA MARIA ANTÔNIA C GOUVEIA QUESTÕES DO DIA : Q5 Considere uma progressão aritmética cujos três primeiros termos são dados por a +

Leia mais

Por que o alumínio compete com o aço?

Por que o alumínio compete com o aço? Por que o aumínio compete com o aço? AUUL AL A Sobre carbono Extração do aumínio da bauxita Recicagem do aumínio As propriedades do aumínio Por que o aumínio não enferruja O que você vai aprender O que

Leia mais

No posto de gasolina

No posto de gasolina A UU L AL A No posto de gasoina Gaspar estava votando para casa, após passar um dia muito agradáve na praia, apesar da dor de ouvido. Ee parou num posto de gasoina para abastecer e verificar as condições

Leia mais

Na aula de hoje, vamos rever alguns temas

Na aula de hoje, vamos rever alguns temas Acesse: http://fuvestibuar.com.br/ Revisão Assunto do dia Na aua de hoje, vamos rever aguns temas que vimos durante as auas deste seu ivro de ingês. Apresentação Você está convidado a remexer na memória

Leia mais

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5 POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator

Leia mais

Matemática Aplicada à Informática

Matemática Aplicada à Informática Matemática Aplicada à Informática Unidade 10.0 Matrizes Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 MATRIZES... 3 1 O QUE É UMA MATRIZ?... 3 1.1 Exemplos 1 de Matriz... 4 1.2

Leia mais

8.5 Cálculo de indutância e densidade de energia magnética

8.5 Cálculo de indutância e densidade de energia magnética 8.5 Cácuo de indutância e densidade de energia magnética Para agumas geometrias de mahas pode-se cacuar a indutância aproximadamente. Cacuamos aqui a indutância de uma maha que contém um soenoide ciíndrico

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

Como os químicos se comunicam?

Como os químicos se comunicam? Como os químicos se comunicam? A UU L AL A Símboos de eementos Fórmuas de compostos O que você vai aprender O que é átomo O que é moécua A matéria é formada de átomos Eemento químico Substância simpes

Leia mais

O que acontece quando uma substância se transforma?

O que acontece quando uma substância se transforma? O que acontece quando uma substância se transforma? A UU L AL A O que acontece numa reação química O que são reagentes e produtos O que significa reagir pásticos fibras sintéticas (cordas, tecidos etc.)

Leia mais

5 Tudo que sobe, desce

5 Tudo que sobe, desce A U A UL LA Tudo que sobe, desce Rio de Janeiro, temperatura atíssima, tumuto na praia, começa o corre-corre! Dizem que é um arrastão! A poícia chega e a correria se torna desordenada, quando aguém dá

Leia mais

Figura 1: Templo de Apolo em Delphi, Grécia. Fonte: Luarvick/Wikimedia Commons/CC-BY- SA 3.0/GFDL.

Figura 1: Templo de Apolo em Delphi, Grécia. Fonte: Luarvick/Wikimedia Commons/CC-BY- SA 3.0/GFDL. O Probema Deiano Jorge C. Lucero 8 de janeiro de 26 Introdução Conta Eratóstenes [Hea8] que, certa vez na antiga Grécia, os habitantes da iha de Deos perguntaram ao orácuo de Apoo o que fazer para combater

Leia mais

Quanto mais alto o coqueiro, maior é o tombo

Quanto mais alto o coqueiro, maior é o tombo Quanto mais ato o coqueiro, maior é o tombo A UU L AL A Quanto mais ato o coqueiro, maior é o tombo, pra baixo todo santo ajuda, pra cima é um Deus nos acuda... Essas são frases conhecidas, ditos popuares

Leia mais

Expressões matemáticas

Expressões matemáticas Expressões matemáticas Aula 6 Ricardo Ferreira Paraízo e-tec Brasil Matemática Instrumental Meta Apresentar as expressões numéricas e algébricas, suas propriedades e aplicações. Objetivos Após o estudo

Leia mais

Tudo certo, compadre?

Tudo certo, compadre? A U A UL LA M Ó D U L O 10 Tudo certo, compadre? Cenatexto Dr. Danio Peçanha, advogado de Dimas, nasceu numa pequena cidade do interior. Entretanto, reside há muitos anos na capita, onde casou e teve três

Leia mais

EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES II

EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES II EQUAÇÕES DIFERENCIAIS: MÉTODOS DE SÉRIES II MAURICIO A. VILCHES Departamento de Anáise - IME UERJ 2 Copyright by Mauricio A. Viches Todos os direitos reservados Proibida a reprodução parcia ou tota 3 PREFÁCIO

Leia mais

6 Matrizes. Matrizes. Aluno Matemática Eletricidade Básica Desenho Técnico A B C D 3 7 4

6 Matrizes. Matrizes. Aluno Matemática Eletricidade Básica Desenho Técnico A B C D 3 7 4 6 Definição: Chama-se matriz do tipo m x n toda tabela A formada por números reais distribuídos em m linhas e n colunas. Para exemplificar o uso de uma matriz, podemos visualizar a seguir uma tabela representando

Leia mais

5. (UES-PI) As ilustrações a seguir representam um setor circular, com ângulo central de rad

5. (UES-PI) As ilustrações a seguir representam um setor circular, com ângulo central de rad LIST DE CONES Cacue a atura do cone circuar reto cuja geratriz mede 5cm e o diâmetro da mede cm Cacue a área da secção meridiana do cone equiátero cuja tem área cm Cacue a área tota e o voume de um cone

Leia mais

Análise matricial de estruturas não-lineares usando o Método de Newton.

Análise matricial de estruturas não-lineares usando o Método de Newton. Anáise matricia de estruturas não-ineares usando o Método de Newton. Exercício Computaciona - MAP3121 1 Primeiro probema 1.1 Descrição da estrutura não-inear Considere um sistema formado por três barras

Leia mais

É número pra todo lado

É número pra todo lado É número pra todo ado A UU L AL A MÓDULO 23 É, parece que nossos amigos da fábrica de produtos eetrônicos votaram à estaca zero. Será que vai ficar tudo por isso mesmo? A quem ees poderiam recorrer? Como

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia Revisão Esta é a útima aua do quarto móduo do curso de ingês! É hora de revisarmos o que aprendemos. Nossa história de hoje é uma história em quadrinhos (HQ). Vamos conferir? Assunto do dia! John F. Kennedy

Leia mais

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:

FATORAÇÃO. Os métodos de fatoração de expressões algébricas são: FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.

Leia mais

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de:

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de: A U A UL LA Acesse: http://fuvestibuar.com.br/ Eureca! Ao subir a serra, de vota para casa, Gaspar avistou o mar! Aquea imensidão azu! Como estavam próximos a uma região portuária, viu vários navios aguardando

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau Denomina-se equação do 2 grau, qualquer sentença matemática que possa ser reduzida à forma ax 2 + bx + c = 0, onde x é a incógnita e a, b e c são números reais, com a 0. a, b e

Leia mais

Observação: Todas as letras em negrito abaixo (x, y, z, a e b) representam números reais.

Observação: Todas as letras em negrito abaixo (x, y, z, a e b) representam números reais. Para mostrar que menos vezes menos dá mais precisamos admitir alguns fatos relacionados aos números reais. Vamos chamá-los de axiomas e simplesmente aceitá-los como sendo válidos: Observação: Todas as

Leia mais

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?

Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação? EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.

Leia mais

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura A UUL AL A O que é água pura? Destiação Condensação Vaporização Ebuição Temperatura de ebuição Método de purificação de um íquido Conservação da matéria Substância pura O que você vai aprender Evaporação

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Aula 1: Revisando o Conjunto dos Números Reais

Aula 1: Revisando o Conjunto dos Números Reais Aula 1: Revisando o Conjunto dos Números Reais Caro aluno, nesta aula iremos retomar um importante assunto, já estudado em anos anteriores: o conjunto dos números reais. Frequentemente, encontramo-nos

Leia mais

12 A interseção de retas e a solução de sistemas

12 A interseção de retas e a solução de sistemas A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio. ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia

Leia mais

É preciso fabricar adubo?

É preciso fabricar adubo? A U L A A U L A Acesse: http://fuvestibuar.com.br/ É preciso fabricar adubo? O que você vai aprender Eementos essenciais para as pantas Fertiizantes NPK O que é um sa Queima da amônia Produção de ácido

Leia mais