Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?"

Transcrição

1 A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura pesa 1 mais meia barra de rapadura. Quanto pesa a barra de rapadura? Hoje, Isabe tem 40 anos e seu fiho André tem anos. Daqui a quantos anos a idade de André será igua à metade da idade da mãe? Na Aua 44 você viu que, em inguagem matemática, podemos representar um número, uma quantidade ou até mesmo uma frase, usando etras. Na aua de hoje, vamos aprofundar um pouco mais esse assunto, estudando uma parte da Matemática chamada ágebra. A ágebra se caracteriza fundamentamente peo uso de etras e é uma ferramenta poderosa na soução de muitos probemas. Vamos começar com um exempo bem simpes. Nossa aua

2 A U L A EXEMPLO 1 A soma de dois números consecutivos é 13. Quais são esses números? Este é um probema com quantidades pequenas. Por isso, é possíve cacuar mentamente que os números são 6 e 7. Mas, como na vida rea nós nem sempre trabahamos com quantidades pequenas, vamos aprender a equacionar e a resover probemas como esse. Primeiro, vamos equacionar o probema: dois números consecutivos _ x e x + 1 sua soma é 13 _ x + (x + 1) = 13 Agora, vamos resover a equação: x + (x + 1) = 13 x + x + 1 = 13 Eiminando os parênteses e juntando os termos semehantes. x + 1 = 13 x = 13-1 Subtraindo 1 dos dois membros. x + 0 = 1 x = 1 x = 1 x = 6 Dividindo os dois membros por. Então, x = 6 e x + 1 = 7. Ou seja, os números procurados são 6 e 7. O que é uma equação? Um dos significados apresentados peo dicionário para a paavra equa- ção é este: quaquer iguadade entre seres matemáticos que só é satisfeita para aguns vaores. De um modo mais simpes, podemos dizer que toda equação tem: uma etra que indica um número desconhecido; um sina de iguadade (=). A etra é a incógnita da equação. Por exempo: na equação x + 5 = 1, a etra x é a incógnita, isto é, o termo desconhecido. A paavra incógnita significa desconhecida e a paavra equação significa iguadade (o prefixo -equa, em atim, quer dizer igua). Numa equação, a expressão que fica à esquerda do sina de igua é chamada de 1º membro e a que fica à direita é chamada de º membro. x + 5 = 1 { { 1º membro º membro

3 Resover uma equação sem perder o equiíbrio Podemos comparar uma equação a uma baança em equiíbrio. A U L A 10 Isso significa que os dois pratos devem estar em equiíbrio. Se aguma coisa for acrescentada a um dos pratos, um peso igua deve ser acrescentado ao outro prato, para não se perder o equiíbrio. E o mesmo deve ser feito quando aguma coisa é retirada de um dos pratos. Na baança da figura anterior, as abóboras mais um peso de somam um peso igua a 10. Isso pode ser escrito da seguinte maneira: x + = 10, onde x é a incógnita que representa o peso de cada abóbora. x + 10 Retirando o peso de de um dos pratos, temos que retirar um peso igua do outro prato, que ficará com. x x Substituindo o peso de por dois de 4, podemos perceber que cada abóbora pesa 4. x 4 Portanto, x = 4.

4 A U L A Traduzindo para a inguagem matemática, fica assim: x + = 10 Subtraindo dos dois membros. x + - = 10-0 x = x = x = 4 Dividindo por os dois membros. Uma das etapas na soução de um probema é verificar se a resposta encontrada está correta. Para isso, devemos substituir na equação o vaor encontrado, no caso x = 4. x + = = 10 + = = 10 Um pouco de História A paavra ágebra tem origem na paavra árabe a-jabr (às vezes também escrita como a-gebr), títuo de um ivro escrito em Bagdá, por vota do ano 5, peo matemático árabe Mohammed A-Khowarizmi: Livro sobre as opera- ções a-jabr e qabaah. O termo a-jabr significa restauração e refere-se à transposição de termos para o outro ado da equação: 6x = x + 6x - x = Subtraindo x dos dois membros. O termo qabaah significa equiíbrio e refere-se à redução de termos semehantes: 6x - x = 4x = x = : 4 x = A-Khowarizmi resovia as equações de modo semehante a nós. A diferença é que tudo era expresso em paavras. O primeiro matemático a escrever as equações usando etras, por vota de 1590, foi François Viète. Por isso, ee é chamado de Pai da Ágebra. A partir de então, as equações passaram a ser interpretadas como as entendemos hoje: Equação é o idioma da ágebra.

5 Exercício 1 A soma de dois números consecutivos é Quais são esses números? Exercício Resova as equações: Exercícios A U L A 5 a) 4x + = 14 b) 4(x - ) = 3 (x - 1) c) x - 1 = 6 Exercício 3 Uma caneta custa R$ 1,00 a mais que um ápis. Comprei canetas e 4 ápis e gastei R$ 3,0. a) Escreva uma equação que soucione o probema. b) Qua o vaor de cada caneta? c) Qua o vaor de cada ápis? Exercício 4 Somando 6 ao tripo de um número, o resutado é 4. Qua é esse número?

A linguagem matemática

A linguagem matemática A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o

Leia mais

Recordando operações

Recordando operações A UA UL LA Recordando operações Introdução Vamos iniciar nosso curso de matemática do 2º grau recordando as quatro operações: adição subtração mutipicação divisão Vamos embrar como essas operações são

Leia mais

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos

Leia mais

11 Sistemas resolvem problemas

11 Sistemas resolvem problemas A UA UL LA Sistemas resovem probemas Introdução Na aua anterior, mostramos como resover sistemas de duas equações de 1º grau com duas incógnitas. Agora vamos usar essa importante ferramenta da matemática

Leia mais

3 Estática das estruturas planas

3 Estática das estruturas planas STÁTI 3674 27 3 stática das estruturas panas 3.1 ácuo das reações vincuares - apoios 3.1.1 ondições de equiíbrio estático O equiíbrio estático de uma estrutura bidimensiona (a estrutura considerada, as

Leia mais

Equacionando problemas - I

Equacionando problemas - I A UA UL LA 70 Equacionando probemas - I Introdução Você já percebeu que a Matemática é um eceente recurso para resover muitos dos probemas do nosso dia-a-dia. Mas a Matemática também pode ser vista sob

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

Calculando áreas. Após terem sido furadas, qual delas possui maior área?

Calculando áreas. Após terem sido furadas, qual delas possui maior área? A UA UL LA 53 5 Cacuando áreas Para pensar Imagine que você vá revestir o piso de sua saa com ajotas. Para saber a quantidade de ajotas necessária, o que é preciso conhecer: a área ou o perímetro da saa?

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações.

As combinações. combinatória que envolviam o princípio multiplicativo e as permutações. Acesse: http://fuvestibuar.com.br/ AUUL AL A As combinações Até agora você estudou probemas de anáise combinatória que envoviam o princípio mutipicativo e as permutações. Introdução Se observar os probemas

Leia mais

Aplicação do Teorema de Pitágoras

Aplicação do Teorema de Pitágoras A UA U L L A Apicação do Teorema de Pitágoras Para pensar Uma escada de 5 m de comprimento está apoiada num muro. O pé da escada está afastado 3 m da base do muro. Qua é a atura, no muro, que a escada

Leia mais

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas

Leia mais

Um dos conceitos mais utilizados em Matemática

Um dos conceitos mais utilizados em Matemática A UA UL LA A noção de função Introdução Um dos conceitos mais utiizados em Matemática é o de função. Ee se apica não somente a esta área, mas também à Física, à Química e à Bioogia, entre outras. Aém disso,

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima

Leia mais

Num determinado jogo de fichas, os valores

Num determinado jogo de fichas, os valores A UA UL LA Potências e raízes Para pensar Num determinado jogo de fichas, os vaores dessas fichas são os seguintes: 1 ficha vermeha vae 5 azuis; 1 ficha azu vae 5 brancas; 1 ficha branca vae 5 pretas;

Leia mais

Precipitar, o que é isso?

Precipitar, o que é isso? Acesse: http://fuvestibuar.com.br/ A UU L AL A Precipitar, o que é isso? Formação de precipitados Concentrar e diuir souções O que você vai aprender O que significa soúve e insoúve O que são hidróxidos

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

O círculo e o número p

O círculo e o número p A UA UL LA 45 O círcuo e o número p Para pensar O círcuo é uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua vota quantos objetos circuares estão presentes: nas moedas, nos discos,

Leia mais

Calculando engrenagens cilíndricas

Calculando engrenagens cilíndricas Cacuando engrenagens ciíndricas A UU L AL A Em uma empresa, o setor de manutenção mecânica desenvove um importante pape na continuidade do fuxo da produção. Após o diagnóstico do defeito, reaizam-se a

Leia mais

Método dos Deslocamentos

Método dos Deslocamentos Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método

Leia mais

Projeção ortográfica de sólidos geométricos

Projeção ortográfica de sólidos geométricos Projeção ortográfica de sóidos geométricos Na aua anterior você ficou sabendo que a projeção ortográfica de um modeo em um único pano agumas vezes não representa o modeo ou partes dee em verdadeira grandeza.

Leia mais

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

5 Tudo que sobe, desce

5 Tudo que sobe, desce A U A UL LA Tudo que sobe, desce Rio de Janeiro, temperatura atíssima, tumuto na praia, começa o corre-corre! Dizem que é um arrastão! A poícia chega e a correria se torna desordenada, quando aguém dá

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resoução da ista de eercícios de Resistência dos Materiais Eercício 1) Leandro Lima Rasmussen No intuito de soucionar o probema, deve ser feita a superposição de casos: Um, considerando a chapa BC como

Leia mais

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES

CIRCUITOS MAGNÉTICOS LINEARES E NÃO LINEARES 7 9 CIRCUITOS MAGÉTICOS LIEARES E ÃO LIEARES Circuitos magnéticos são usados para concentrar o efeito magnético de uma corrente em uma região particuar do espaço. Em paavras mais simpes, o circuito direciona

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível (6 o e 7 o anos do Ensino Fundamental)

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível (6 o e 7 o anos do Ensino Fundamental) Instruções: XXXV OLIMPÍADA PAULITA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Níve (6 o e 7 o anos do Ensino Fundamenta) Foha de Perguntas A duração da prova é de 3h30min. O tempo mínimo

Leia mais

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS.

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios

Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas incógnitas.

Leia mais

O que acontece quando uma substância se transforma?

O que acontece quando uma substância se transforma? O que acontece quando uma substância se transforma? A UU L AL A O que acontece numa reação química O que são reagentes e produtos O que significa reagir pásticos fibras sintéticas (cordas, tecidos etc.)

Leia mais

Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas de resolução.

Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas de resolução. EIXO TEMÁTICO II: ÁLGEBRA Tema 2: Equações algébricas Tópico 10: Equações do primeiro grau Objetivos: Reconhecer e resolver uma equação do 1º grau com uma incógnita dando significado à definição e às técnicas

Leia mais

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo!

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo! A UA UL LA Eu Química O que você vai aprender Ciência Química Matéria Substância Progresso tecnoógico Novos materiais Como faz o cientista Seria bom já saber Para inicar o seu curso de Química, procure

Leia mais

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7 7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com

Leia mais

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de:

Ao subir a serra, de volta para casa, Gaspar. Para realizar esta atividade, você vai precisar de: A U A UL LA Acesse: http://fuvestibuar.com.br/ Eureca! Ao subir a serra, de vota para casa, Gaspar avistou o mar! Aquea imensidão azu! Como estavam próximos a uma região portuária, viu vários navios aguardando

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

10. CARGAS ACIDENTAIS E MÓVEIS; LINHAS DE INFLUÊNCIA

10. CARGAS ACIDENTAIS E MÓVEIS; LINHAS DE INFLUÊNCIA 10. CARGA ACIDENTAI E MÓVEI; LINHA DE INFLUÊNCIA 10.1. Introdução Diversas estruturas são soicitadas por cargas móveis. Exempos são pontes rodoviárias e ferroviárias ou pórticos industriais que suportam

Leia mais

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros

7º ANO EQUAÇÕES. Noção de equação. Nuno Marreiros Nuno Marreiros EQUAÇÕES 7º ANO Noção de equação Antes de começar Como o Diogo tinha 10 e já só tem 4 é porque gastou 6. Se andou três vezes no Kanguru foi porque cada bilhete custou 2. Representando por

Leia mais

8.5 Cálculo de indutância e densidade de energia magnética

8.5 Cálculo de indutância e densidade de energia magnética 8.5 Cácuo de indutância e densidade de energia magnética Para agumas geometrias de mahas pode-se cacuar a indutância aproximadamente. Cacuamos aqui a indutância de uma maha que contém um soenoide ciíndrico

Leia mais

Problemas do 2º grau

Problemas do 2º grau A UUL AL A 6 6 Problemas do º grau Nas Aulas 4 e 5, tratamos de resoluções de equações do º grau. Nesta aula, vamos resolver problemas que dependem dessas equações. Observe que o significado das incógnitas

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

Calculando a rpm e o gpm a partir da

Calculando a rpm e o gpm a partir da Acesse: http://fuvestibuar.com.br/ Cacuando a rpm e o gpm a partir da veocidade de corte A UU L AL A Para que uma ferramenta corte um materia, é necessário que um se movimente em reação ao outro a uma

Leia mais

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis

ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis

Leia mais

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17

Siga as. No dia seguinte, o sr. Dilermando recebeu a. Cenatexto M Ó D U L O 17 Siga as instruções A UU L AL A M Ó D U L O 17 No dia seguinte, o sr. Diermando recebeu a carta de dr. Gaspar recamando da atitude do porteiro. E agora? Que conseqüências ea poderá trazer ao funcionário

Leia mais

Do que se compõe o ar?

Do que se compõe o ar? Não é um aimento, mas não podemos viver sem ee. É invisíve, apesar de ser a mais comum de todas as substâncias. stá sempre conosco, mas só o percebemos quando ee se move, quando tem cheiro ou quando está

Leia mais

No posto de gasolina

No posto de gasolina A UU L AL A No posto de gasoina Gaspar estava votando para casa, após passar um dia muito agradáve na praia, apesar da dor de ouvido. Ee parou num posto de gasoina para abastecer e verificar as condições

Leia mais

Instituto Municipal de Ensino Superior de Catanduva SP Al Khwarizmi al-jabr

Instituto Municipal de Ensino Superior de Catanduva SP Al Khwarizmi al-jabr Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

Exame Nacional de 2005 1. a chamada

Exame Nacional de 2005 1. a chamada Exame Naciona de 200 1. a chamada 1. Na escoa da Rita, fez-se um estudo sobre o gosto dos aunos pea eitura. Um inquérito reaizado incuía a questão seguinte. «Quantos ivros este desde o início do ano ectivo?»

Leia mais

ϕ ( + ) para rotações com o Flechas e deflexões

ϕ ( + ) para rotações com o Flechas e deflexões Fechas e defeões Seja uma barra reta, em euiíbrio, apoiada em suas etremidades, submetida a uma feão norma. Esta barra fetida, deia de ser reta assumindo uma forma, como a mostrada na figura. figura barra

Leia mais

equações do 1 grau a duas variáveis 7 3.(3) = 2

equações do 1 grau a duas variáveis 7 3.(3) = 2 Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemáticaa são resolvidos a partir de soluções

Leia mais

NOÇÕES BÁSICAS DE DIGITAÇÃO

NOÇÕES BÁSICAS DE DIGITAÇÃO 1 NOÇÕES BÁSICAS DE DIGITAÇÃO Desenvolvida exclusivamente para a DÍGITU S INFORMÁTICA & COMÉRCIO, por James Ribeiro Guimarães. 2 NOÇÕES BÁSICA DE DIGITAÇÃO. Nesta aula vamos usar o teclado virtual do Windows,

Leia mais

INTRODUÇÃO AOS EXERCÍCIOS DE RESPIRAÇÃO PARA DESENVOLVER EFICIÊNCIA, FLEXIBILIDADE E COORDENAÇÃO.

INTRODUÇÃO AOS EXERCÍCIOS DE RESPIRAÇÃO PARA DESENVOLVER EFICIÊNCIA, FLEXIBILIDADE E COORDENAÇÃO. EXERCÍCIOS DE RESPIRAÇÃO PARA INSTRUMENTISTAS DE METAL INTRODUÇÃO AOS EXERCÍCIOS DE RESPIRAÇÃO PARA DESENVOLVER EFICIÊNCIA FLEXIBILIDADE E COORDENAÇÃO. POR: Chares Vernon & Roger Bobo ARQUIVO DE: Jorge

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-3 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Começando pelos exemplos. - Existem vários exemplos reais de situações

Leia mais

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO

ADIÇÃO E SUBTRAÇÃO DE ARCOS ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO ADIÇÃO E SUBTRAÇÃO DE ARCOS EXERCÍCIOS DE FIXAÇÃO E0176 Calcule o seno de 345º. RESOLUÇÃO CONJUNTOS AULA ESCRITA EXERCÍCIOS DE FIXAÇÃO EXERCÍCIOS

Leia mais

QUADRADO MÁGICO - ORDEM 3

QUADRADO MÁGICO - ORDEM 3 FORTRAN - LÚDICO CONCEITO Partindo da definição original, os QUADRADOS MÁGICOS devem satisfazer três condições: a) tabela ou matriz quadrada (número de linhas igual ao número de colunas); b) domínio: com

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

A álgebra nas profissões

A álgebra nas profissões A álgebra nas profissões A UUL AL A Nesta aula, você vai perceber que, em diversas profissões e atividades, surgem problemas que podem ser resolvidos com o auxílio da álgebra. Alguns problemas são tão

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura

O que é água pura? Temperatura de ebulição Método de purificação de um líquido Conservação da matéria Substância pura A UUL AL A O que é água pura? Destiação Condensação Vaporização Ebuição Temperatura de ebuição Método de purificação de um íquido Conservação da matéria Substância pura O que você vai aprender Evaporação

Leia mais

Detecção de Infração em faixa de pedestres sem semáforos utilizando visão computacional e redes neurais

Detecção de Infração em faixa de pedestres sem semáforos utilizando visão computacional e redes neurais Detecção de Infração em faixa de pedestres sem semáforos utiizando visão computaciona e redes neurais Aves, B. G. C.; ima, A. C. de C. Departamento de Engenharia Eétrica - Escoa Poitécnica - UFBA, R. Aristides

Leia mais

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS

AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado

Leia mais

Capítulo 3: Elementos dos Circuitos Elétricos

Capítulo 3: Elementos dos Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE41 Circuitos Eétricos I Prof. Ewado L. M. Meh Capítuo 3: Eementos dos Circuitos Eétricos 3.1 INTRODUÇÃO O objetivo da Engenharia é projetar e produzir

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

Circuitos Elétricos I EEL420 16/04/2015

Circuitos Elétricos I EEL420 16/04/2015 Circuitos Elétricos I EE420 16/04/2015 Nome: 1) COOQUE SEU NOME E NUMERE AS FOHAS DOS CADERNOS DE RESPOSTA 2) RESPONDA AS QUESTÕES EM ORDEM UTIIZANDO ATÉ 2 PÁGINAS POR QUESTÃO (NO MÁXIMO 3) 3) REDESENHE

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Por que o alumínio compete com o aço?

Por que o alumínio compete com o aço? Por que o aumínio compete com o aço? AUUL AL A Sobre carbono Extração do aumínio da bauxita Recicagem do aumínio As propriedades do aumínio Por que o aumínio não enferruja O que você vai aprender O que

Leia mais

Matemática Régis Cortes EQUAÇÕES DE GRAUS

Matemática Régis Cortes EQUAÇÕES DE GRAUS EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

Todo poder emana da língua

Todo poder emana da língua A U A UL LA Acesse: http://fuvestibuar.com.br/ Todo poder emana da íngua Cenatexto Zé dos Anjos perdeu no desafio com Osias, mas ficou vários dias pensando: Um dia é da caça e outro do caçador. Assim,

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA (9) 5-0 O EITE ESOVE IME 0 MTEMÁTIC DISCUSIVS MTEMÁTIC QUESTÃO 0 O segundo, o sétimo e o vigésimo sétimo termos de uma rogressão ritmética () de números inteiros, de razão r, formam, nesta ordem, uma rogressão

Leia mais

SISTEMAS DE EQUAÇÕES 2x2

SISTEMAS DE EQUAÇÕES 2x2 SISTEMAS DE EQUAÇÕES x 1 Introdução Em um estacionamento, entre carros e motos, há 14 veículos Qual é o número exato de carros e motos? Se representarmos o número de carros por x e o número de motos por

Leia mais

Lista de Exercícios Glossário Básico

Lista de Exercícios Glossário Básico Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: https://www.youtube.com/watch?v=tnbv2ewa3q8

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Você já participou da reforma ou da construção de um imóvel?

Você já participou da reforma ou da construção de um imóvel? ÁREA DE POLÍGONOS CONTEÚDOS Área de retânguo Área de paraeogramo Área de triânguo Área de trapézio Área de hexágono AMPLIANDO SEUS CONHECIMENTOS Área do retânguo e quadrado Você já participou da reforma

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

Quando pega fogo? O que é fogo O que é queima O que acontece quando uma substância queima Temperatura de ignição Temperatura de fulgor

Quando pega fogo? O que é fogo O que é queima O que acontece quando uma substância queima Temperatura de ignição Temperatura de fulgor A UA UL LA Quando pega fogo? As queimadas propagam-se porque o caor ogo passa para outras pantas da área. O que você vai aprender O que é fogo O que é queima O que acontece quando uma substância queima

Leia mais

6 Comunique-se! No segundo andar daquele prédio funcionavam.

6 Comunique-se! No segundo andar daquele prédio funcionavam. JANELA 6 Comunique-se! No segundo andar daquee prédio funcionavam seis escritórios. Embora cada um cuidasse de negócios diferentes, havia uma comunicação constante entre as pessoas que ai trabahavam. Quanto

Leia mais

Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)

Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17) Gabarito de Matemática do 8º ano do E.F. Lista de Eercícios (L7) Queridos alunos, nesta lista vamos resolver equações fracionárias (aquelas que possuem incógnita nos denominadores) e mais algumas situações-problema

Leia mais

Jogos de Estratégia: Álgebra Linear aplicada aos jogos de 2 jogadores de

Jogos de Estratégia: Álgebra Linear aplicada aos jogos de 2 jogadores de Jogos de stratégia: Ágebra Linear apiada aos jogos de 2 jogadores de soma nua Projeto desenvovido para apresentação na prova ora de Ágebra Linear João Canas Instituto Superior Ténio Mestrado Integrado

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo

CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números

Leia mais

Como os químicos se comunicam?

Como os químicos se comunicam? Como os químicos se comunicam? A UU L AL A Símboos de eementos Fórmuas de compostos O que você vai aprender O que é átomo O que é moécua A matéria é formada de átomos Eemento químico Substância simpes

Leia mais

Como se pode proteger o ferro?

Como se pode proteger o ferro? Como se pode proteger o ferro? A UUL AL A Todos os componentes de uma bicieta recebem proteção contra ferrugem. A proteção do aço. Gavanização,cromação, zincagem e estanhagem A importância dos óxidos na

Leia mais

Resolvendo equações. 2 = 26-3 α φ-1

Resolvendo equações. 2 = 26-3 α φ-1 A UA UL LA Resolvendo equações Introdução À medida que os problemas se tornam mais complicados, o método algébrico vai se impondo naturalmente ao método aritmético. Resolver equações fará parte das nossas

Leia mais

Siga as. Mais movimento na fábrica Santa Gertrudes. Cenatexto M Ó D U L O 17

Siga as. Mais movimento na fábrica Santa Gertrudes. Cenatexto M Ó D U L O 17 A U A UL LA M Ó D U L O 17 Siga as instruções Cenatexto Mais movimento na fábrica Santa Gertrudes. Mas, o entra-e-sai de hoje não envove apenas os funcionários, há também um importante ciente metido na

Leia mais

As equações que pensam

As equações que pensam As equações que pensam Aula 15 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar resoluções de problemas envolvendo sistemas de duas equações e duas variáveis. Objetivos Após

Leia mais

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia

20 Revisão. Esta é a última aula do quarto módulo do A U L A. Assunto do dia Revisão Esta é a útima aua do quarto móduo do curso de ingês! É hora de revisarmos o que aprendemos. Nossa história de hoje é uma história em quadrinhos (HQ). Vamos conferir? Assunto do dia! John F. Kennedy

Leia mais

unidade de milhar Centena dezena unidade ordem

unidade de milhar Centena dezena unidade ordem 1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso

Leia mais

Relação entre setores

Relação entre setores Reação entre setores Na empresa existem outros tipos de trabaho aém daquees que produzem bens, como automóveis, geadeiras etc. Esses trabahos precisam de pessoas especiaizadas para que toda a empresa possa

Leia mais

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos?

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Resolução do capítulo 7 - Progressão Aritmética 1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Sendo n o número de triângulos

Leia mais

5.1. Metodologia de análise pelo Método das Forças

5.1. Metodologia de análise pelo Método das Forças 5. MÉTODO DAS FORÇAS Na soução de uma estrutura hiperestática, conforme introduzido no Capítuo (Seção.), é necessário considerar os três grupos de condições básicas da Anáise Estrutura: condições de equiíbrio,

Leia mais

Quanto mais alto o coqueiro, maior é o tombo

Quanto mais alto o coqueiro, maior é o tombo Quanto mais ato o coqueiro, maior é o tombo A UU L AL A Quanto mais ato o coqueiro, maior é o tombo, pra baixo todo santo ajuda, pra cima é um Deus nos acuda... Essas são frases conhecidas, ditos popuares

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

1E207 - MACROECONOMIA II

1E207 - MACROECONOMIA II LIENIATURA EM EONOMIA (2009-10) 1E207 - MAROEONOMIA II ap. 2 Mercado de Trabaho e Desemprego Exercício 2.1 A empresa típica de uma dada economia dispõe de uma tecnoogia de produção descrita por Y = 20

Leia mais

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA 4 ENTECA RESOLUÇÃO DE PÓRTICOS PLANOS ATRAVÉS DA ANÁLISE MATRICIAL DE ESTRUTURAS Marcio Leandro Micheim Acadêmico Engenharia Civi Universidade Estadua de Maringá e-mai: micheim_eng@hotmaicom Ismae Wison

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais