Exame Nacional de a chamada

Tamanho: px
Começar a partir da página:

Download "Exame Nacional de 2005 1. a chamada"

Transcrição

1 Exame Naciona de a chamada 1. Na escoa da Rita, fez-se um estudo sobre o gosto dos aunos pea eitura. Um inquérito reaizado incuía a questão seguinte. «Quantos ivros este desde o início do ano ectivo?» As respostas obtidas na turma da Rita, reativamente a esta pergunta, estão representadas no gráfico de barras que se segue. Cotações Percentagem de aunos da turma da Rita Número de ivros idos Escohendo, ao acaso, um auno da turma da Rita, qua dos seguintes acontecimentos é o mais prováve? Ter ido menos do que um ivro. Ter ido mais do que dois ivros. Ter ido menos do que três ivros. Ter ido mais do que quatro ivros. 2. Considera o conjunto A = [- 1, +?[ Qua das quatro iguadades que se seguem é verdadeira? A = [- 1, 1[ A = [- 1, 1[ A = [- 1, 1[ A = [- 1, 1[ - 3 2, +? 3-1 2, +? 3-3 2, +? 3-1 2, +? Considera a seguinte inequação: x Será A o conjunto-soução desta inequação? Justifica a tua resposta e apresenta todos os cácuos que efectuares.

2 Exame Naciona de a chamada 3. Dois amigos, o Caros e o João, participaram numa corrida de 800 metros. Logo após o sina de partida, o João estava à frente do Caros, mas, ao fim de agum tempo, o Caros conseguiu utrapassá-o. Na parte fina da corrida, o João fez um sprint, utrapassou o Caros e cortou a meta em primeiro ugar. Os gráficos que se seguem representam a reação entre o tempo e a distância percorrida, ao ongo desta corrida, por cada um dees. 800 Distância (em metros) Tempo (em minutos) 3.1. Quantos metros percorreu o João durante o primeiro minuto e meio da corrida? 3.2. Quanto tempo decorreu entre a chegada de cada um dos dois amigos à meta? Apresenta, na tua resposta, esse tempo expresso em segundos.. Pintaram-se as seis faces de um prisma quadranguar reguar antes de o cortar em cubos iguais, ta como se pode observar na figura. 6 Se escoheres, ao acaso, um desses cubos, qua é a probabiidade de o cubo escohido ter só duas faces pintadas? Apresenta o resutado na forma de uma fracção irredutíve.

3 Exame Naciona de a chamada. Uma tenda de circo (figura 1) está montada sobre uma armação. A figura 2 representa uma parte dessa armação. I K E F G H A J B C D Figura 1 Figura 2 Os pontos A, B, C e D são aguns dos vértices de um poígono reguar, contido no pano do chão da tenda. Os ferros representados peos segmentos de recta [EA], [FB], [GC] e [HD] têm todos o mesmo comprimento e estão coocados perpendicuarmente ao chão. O mastro representado peo segmento de recta [IJ] também está coocado perpendicuarmente ao chão. O ponto K pertence a esse segmento de recta..1. Utiizando as etras da figura 2, indica:.1.1. uma recta paraea ao pano ABF um pano não perpendicuar ao chão..2. Um grupo de 20 crianças foi ao circo. 8 IDADE Até anos (incusive) Mais de anos PREÇO (por bihete) Æ 1 Æ Na tabea podes observar o preço dos bihetes, em euros. Na compra dos 20 bihetes, gastaram 23 Æ. Quantas crianças daquee grupo tinham mais de anos de idade? Apresenta todos os cácuos que efectuares. 6. Escreve um número irraciona compreendido entre e.

4 Exame Naciona de a chamada 7. Na figura está representado um decágono reguar [ABCDEFGHIJ], inscrito numa circunferência de centro O. J A B Os segmentos de recta [ID] e [HC] são diâmetros desta circunferência. I O C 7.1. Após uma rotação de centro em O e de ampitude 1 (sentido contrário ao dos ponteiros do reógio), o ponto A desoca-se para uma posição que, antes da rotação, era ocupada por outro ponto. De que ponto se trata? H G F E D 7.2. Ao observar a figura, a Rita afirmou: 6 «A ampitude do ânguo CDI é igua à ampitude do ânguo CHI.» Uma vez que a Rita não tinha transferidor, como é que ea poderá ter chegado a esta concusão? Justifica a tua resposta Com o auxíio de materia de desenho, inscreve, na circunferência abaixo desenhada, um triânguo equiátero. 7 O ponto que está marcado no interior da circunferência é o seu centro. Não apagues as inhas auxiiares que traçares para construíres o triânguo.

5 Exame Naciona de a chamada 8. Existem vários rectânguos, de dimensões diferentes, com 18 cm 2 de área Competa a tabea que se segue, indicando, em cm, o comprimento e a argura de três rectânguos diferentes (A, B e C), com 18 cm 2 de área. 6 Comprimento (cm) Rectânguo A Rectânguo B Rectânguo C Largura (cm) 0, 8.2. Qua dos gráficos seguintes pode representar a reação entre a argura () e o comprimento (c) de rectânguos com 18 cm 2 de área? Gráfico A Gráfico B c 1 c Gráfico C Gráfico D c 1 c 9. O acesso a uma das entradas da escoa da Rita é feito por uma escada de dois degraus iguais, cada um dees com cm de atura. Com o objectivo de faciitar a entrada na escoa a pessoas com mobiidade condicionada, foi construída uma rampa. 8

6 Exame Naciona de a chamada Para respeitar a egisação em vigor, esta rampa foi construída de modo a fazer com o soo um ânguo de 3, como se pode ver no esquema que se segue (o esquema não está à escaa). c cm 3 cm Determina, em metros, o comprimento, c, da rampa. Indica o resutado arredondado às décimas e apresenta todos os cácuos que efectuares. Sempre que, nos cácuos intermédios, procederes a arredondamentos, conserva quatro casas decimais.. Quatro amigos encontraram-se para resover um probema de Matemática que envovia o cácuo do perímetro de um círcuo com cm de diâmetro. Na tabea que se segue, está indicado o vaor que cada um obteve para o perímetro do círcuo. Rita Caros João Sofia 31, cm 31,1 cm 31,2 cm 31,3 cm Qua dos quatro amigos obteve uma mehor aproximação do perímetro daquee círcuo? Rita Caros João Sofia 11. Arrumaram-se três esferas iguais dentro de uma caixa ciíndrica (figura 1). Como se pode observar no esquema (figura 2): a atura da caixa é igua ao tripo do diâmetro de uma esfera; o raio da base do ciindro é igua ao raio de uma esfera. 8 Figura 1 Figura 2 Mostra que: O voume da caixa que não é ocupado peas esferas é igua a metade do voume das três esferas. (Nota: designa por r o raio de uma esfera.) FIM

7 Sugestão de Resoução 1. ter ido mais do que dois ivros [- 1, 1[ - 2, +? x x 8 - x x 1 x -1 Logo, S = [- 1, +?[ = A, então A é o conjunto- -soução da inequação metros. 6. œ16 = ; œ2 =, ogo œ17, por exempo é um número irraciona compreendido entre e : = 36. A circunferência está dividida em arcos geometricamente iguais com 36 de ampitude cada um. 1 : 36 = O ponto A desoca-se para o ponto G. 7.2 Porque os dois ânguos estão inscritos no mesmo arco de circunferência, ogo são geometricamente iguais. 7.3 Um triânguo equiátero divide a circunferência em três arcos de 120 cada um. O raio da circunferência é igua ao ado de um hexágono inscrito na circunferência. CPEN-M9 Porto Editora segundos.. Casos possíveis: 12. Casos favoráveis: Probabiidade pedida:. 12 = HD, por exempo..1.2 KFG, por exempo..2 Seja: x = n. o de crianças com idade até anos (incusive) y = n. o de crianças com idade superior a anos a x + y = 20 b c x + 1y = 23 a y = 20 - x c x + 1 (20 - x) = 23 a y = 20 - x c x x = 23 a y = 20 - x c - x =-6 a y = 7 c x = 13 7 crianças tinham mais de anos de idade Comprimento /cm Largura /cm 8.2 Gráfico C. 9. sin 3 = x x = sin 3 o c = 2x c = ; c = ; c = 382, cm ; c = 3,8 m. sin 3 o 0,023. P = d * p = * p = 31,1 92. o João. A B C 36 6, 0, Seja r o raio de uma esfera. Voume das três esferas: 3 * pr 3 = pr 3 3 Voume da caixa: pr 2 * 6r = 6pr 3 Voume da caixa não ocupado: 6pr 3 - pr 3 = 2pr 3 2 * voume da caixa não ocupado = 2 * 2pr 3 = pr 3 = = voume das três esferas. c. q. m.

Resolvido por Jorge Lagoa, tendo em atenção os Critérios de Classificação do Exame.

Resolvido por Jorge Lagoa, tendo em atenção os Critérios de Classificação do Exame. 1. Na esola da Rita, fez-se um estudo sobre o gosto dos alunos pela leitura. Um inquérito realizado inluía a questão seguinte. COTAÇÕES «Quantos livros leste desde o iníio do ano letivo?» As respostas

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões trigonométricas. Antes, vamos

Leia mais

1 2 CR 2) CM = Assim: 3 2 = CR 2 CR = 3 3) BC = CR + RB Assim: BC = 3 + 4 BC BC = 7. ( 3) x + y + z = 10,00 + 3x + y + 2z = 21,50 ( 3) ( 8)

1 2 CR 2) CM = Assim: 3 2 = CR 2 CR = 3 3) BC = CR + RB Assim: BC = 3 + 4 BC BC = 7. ( 3) x + y + z = 10,00 + 3x + y + 2z = 21,50 ( 3) ( 8) João entrou na anchonete G e pediu hambúrgueres, suco de aranja e cocadas, gastando $,0. Na mesa ao ado, agumas pessoas pediram 8 hambúrgueres, sucos de aranja e cocadas, gastando $ 7,00. Sabendo-se que

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 20/04/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 20/04/13 PROFESSOR: MALTEZ RSLUÇÃ VLIÇÃ MTMÁTI o N NSIN MÉI T: 0/0/1 PRFSSR: MLTZ QUSTÃ 01 Para determinar a atura do edifício, o síndico usou um artifício. Mediu a sombra do prédio que deu 6 metros e a sua própria sombra, que deu

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

Exame Nacional de 2005 2. a chamada

Exame Nacional de 2005 2. a chamada Exame Nacional de 200 2. a chamada 1. Hoje de manhã, a Ana saiu de casa e dirigiu-se para a escola. Fez uma parte desse percurso a andar e a outra parte a correr. Cotações gráfico que se segue mostra a

Leia mais

Quanto mais alto o coqueiro, maior é o tombo

Quanto mais alto o coqueiro, maior é o tombo Quanto mais ato o coqueiro, maior é o tombo A UU L AL A Quanto mais ato o coqueiro, maior é o tombo, pra baixo todo santo ajuda, pra cima é um Deus nos acuda... Essas são frases conhecidas, ditos popuares

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 0 Considere o conjunto de todos os números de cinco agarismos distintos, formados com os agarismos,, 5, 8 e 9. Escoendo,

Leia mais

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica Versão Onine ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica 008 SECRETARIA DE ESTADO DA EDUCAÇÃO DO PARANÁ SUPERINTENDÊNCIA

Leia mais

Calculando a rpm e o gpm a partir da

Calculando a rpm e o gpm a partir da Acesse: http://fuvestibuar.com.br/ Cacuando a rpm e o gpm a partir da veocidade de corte A UU L AL A Para que uma ferramenta corte um materia, é necessário que um se movimente em reação ao outro a uma

Leia mais

11 Sistemas resolvem problemas

11 Sistemas resolvem problemas A UA UL LA Sistemas resovem probemas Introdução Na aua anterior, mostramos como resover sistemas de duas equações de 1º grau com duas incógnitas. Agora vamos usar essa importante ferramenta da matemática

Leia mais

Exame Nacional de 2009 1. a chamada

Exame Nacional de 2009 1. a chamada 1. A agência de viagens ViajEuropa tem como destinos turísticos as capitais europeias. A taela 1 mostra o número de viagens vendidas pela agência nos primeiros três meses do ano. Cotações Meses Taela 1

Leia mais

4. SOLUÇÕES FUNDAMENTAIS

4. SOLUÇÕES FUNDAMENTAIS 4. SOLUÇÕES FUNDAMENAIS Como visto no Capítuo (Seção.), os métodos de anáise de estruturas têm como metodoogia a superposição de casos básicos. No Método das Forças os casos básicos são souções estaticamente

Leia mais

1.7 Tensão superficial, espalhamento de líquidos, ângulo de contato e equação de Laplace.

1.7 Tensão superficial, espalhamento de líquidos, ângulo de contato e equação de Laplace. 1.7 Tensão superficia, espahamento de íquidos, ânguo de contato e equação de Lapace. 1.7.1 Tensão superficia As interfaces 6 entre íquidos e gases (superfícies) e entre diferentes íquidos são regiões de

Leia mais

Leiaute ou arranjo físico

Leiaute ou arranjo físico Leiaute ou arranjo físico A UU L AL A Quaquer posto de trabaho, incusive o nosso, está igado aos demais postos de trabaho, num oca quaquer de uma empresa. Esse oca pode ser uma área grande ou pequena.

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS.

GABARITO LISTA 5 = REVISÃO GEOMETRIA ESPACIAL: PRISMAS, CILINDROS, PIRÂMIDES, CONES E ESFERAS. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL

BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome

Leia mais

UFPa ESTRUTURAS DE CONCRETO II Prof Ronaldson Carneiro - Nov/2006

UFPa ESTRUTURAS DE CONCRETO II Prof Ronaldson Carneiro - Nov/2006 UFPa ESTRUTURAS DE CONCRETO II Prof Ronadson Carneiro - Nov/006 1. INTRODUÇÃO 1. DEFINIÇÃO: Eementos panos (pacas), geramente em posição horizonta, que apresentam uma dimensão, a espessura, muito menor

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO AT VIRTUA GEOMETRIA EPACIAL PRIMA 01) A caixa de água de um cero prédio possui o formao de um prisma reo de ase quadrada com 1,6 m de aura e aresa da ase medindo,5 m. Quanos iros de água há nessa caixa

Leia mais

l 2 l + l após a mundança l l 01 - Marque a alternativa verdadeira. Ano de 2005 Número possível de ações: 20 p 2 p 1 a) Se p +, p *, então x [ ] 1 1 1

l 2 l + l após a mundança l l 01 - Marque a alternativa verdadeira. Ano de 2005 Número possível de ações: 20 p 2 p 1 a) Se p +, p *, então x [ ] 1 1 1 EA CPCAR EXAME DE ADMISSÃO AO 1 o ANO DO CPCAR 009 MATEMÁTICA VERSÃO A 01 - Marque a aternativa verdadeira. Ano de 005 a) Se p 0 x = p p 1 + + +, p *, então x [ ] 1 1 1 + + 10 0 0 b) O vaor de y = é ta

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro

Leia mais

Exame Nacional de 2006 2.a chamada

Exame Nacional de 2006 2.a chamada Exame Nacional de 006.a chamada Cotações 1. Como sabes, a Bandeira Nacional está dividida verticalmente em duas cores fundamentais, verde-escuro e escarlate (vermelho-vivo) e, sobreposta à união das cores,

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO C Curso destinado à preparação para Concursos Púbicos e Aprimoramento Profissiona via INTENET ACIOCÍNIO LÓGICO AULA 10 POLÍGONOS EGULAES TIÂNGULO EQUILÁTEO É o triânguo que apresenta os três ados iguais.

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resoução da ista de eercícios de Resistência dos Materiais Eercício 1) Leandro Lima Rasmussen No intuito de soucionar o probema, deve ser feita a superposição de casos: Um, considerando a chapa BC como

Leia mais

Calculando engrenagens cilíndricas

Calculando engrenagens cilíndricas Cacuando engrenagens ciíndricas A UU L AL A Em uma empresa, o setor de manutenção mecânica desenvove um importante pape na continuidade do fuxo da produção. Após o diagnóstico do defeito, reaizam-se a

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Escola Básica de Santa Catarina

Escola Básica de Santa Catarina Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Abril 2012 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

do trabalho Neste módulo, você vai estudar algumas Apresentação

do trabalho Neste módulo, você vai estudar algumas Apresentação Organização do trabaho Neste móduo, você vai estudar agumas noções básicas de organização do trabaho. Na primeira aua é anaisada a importância do trabaho para o bem de cada um, da sociedade e da nação.

Leia mais

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo!

O que você vai aprender. Seria bom já saber. Isto lhe interessa. entendia nada! Tinha que decorar tudo! A UA UL LA Eu Química O que você vai aprender Ciência Química Matéria Substância Progresso tecnoógico Novos materiais Como faz o cientista Seria bom já saber Para inicar o seu curso de Química, procure

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / 1.ª Chamada / 2009 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007 EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como

Leia mais

o anglo resolve a prova de Matemática do ITA

o anglo resolve a prova de Matemática do ITA o ango resove a prova de Matemática do ITA A cobertura dos vestibuares de 00 está sendo feita peo Ango em parceria com a Foha Onine. É trabaho pioneiro. Prestação de serviços com tradição de confiabiidade.

Leia mais

1 O mundo da Física. A curiosidade do homem pode ser compreendida

1 O mundo da Física. A curiosidade do homem pode ser compreendida A U A UL LA O mundo da Física A curiosidade do homem pode ser compreendida de várias maneiras: aguns dizem que vem de uma necessidade de sobrevivência, outros dizem que é uma forma de prazer ou, ainda,

Leia mais

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula

Triângulos. O triângulo é uma figura geométrica muito. Para pensar. Nossa aula U UL L 41 Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na armação do tehado os tipos diferentes

Leia mais

ou A= d.d' ou A = d'.d Área das figuras planas d d

ou A= d.d' ou A = d'.d Área das figuras planas d d PII 9º no (ns. Fund.) 39 QUIVÊNI FIGUS PNS paavra equivaência deriva de: equi = igua + vaência = vaor. m Geometria, equivaência significa área igua, ou seja, figuras equivaentes são aqueas que possuem

Leia mais

Guia de operação para 4334

Guia de operação para 4334 MO1211-PA Prefácio Congratuações por sua escoha deste reógio CASIO. Para obter o máximo de sua compra, certifique-se de er atentamente este manua. Advertência! As funções de medição incorporadas neste

Leia mais

Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO

Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO EXAME NACIONAL DE MATEMÁTICA 2006 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) ASSINATURA DO ESTUDANTE Não escreva o seu nome em

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

ESTABELECIMENTO DE LIMITES DE VIBRAÇÃO EM GRUPOS DIESEL-GERADORES

ESTABELECIMENTO DE LIMITES DE VIBRAÇÃO EM GRUPOS DIESEL-GERADORES ESTABELECIMENTO DE LIMITES DE VIBRAÇÃO EM GRUPOS DIESEL-GERADORES Erb Ferreira Lins Manoe José dos Santos Sena Mauro Guerreiro Veoso José Américo Braga Dutra Universidade Federa do Pará, Centro Tecnoógico,

Leia mais

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de:

O triângulo é uma figura geométrica muito. Você já sabe que o triângulo é uma figura geométrica de: U UL L cesse: http://fuvestibuar.com.br/ Triânguos Para pensar O triânguo é uma figura geométrica muito utiizada em construções. Você já deve ter notado que existem vários tipos de triânguo. Observe na

Leia mais

A linguagem matemática

A linguagem matemática A UUL AL A A inguagem matemática Observe o texto abaixo. Ee foi extraído de um ivro de geometria chinês. Veja se, mesmo sem saber chinês, você consegue entender o tema do texto, ou seja, sobre o que o

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/2.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º

Leia mais

Just-in-time. Podemos dizer que estamos usando a técnica. Conceito

Just-in-time. Podemos dizer que estamos usando a técnica. Conceito A UU L AL A Just-in-time Podemos dizer que estamos usando a técnica ou sistema just-in-time ou, abreviadamente, JIT, quando produzimos ago sem desperdício de matéria-prima; quando soicitamos e utiizamos

Leia mais

A primeira fase da normalização

A primeira fase da normalização U L A A primeira fase da normaização A partir do momento em que o homem entra na era industria e inicia a produção em massa, isto é, a fabricação de um mesmo produto em grande quantidade, surge uma grande

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 30.04.2009 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

Atuais objetivos da normalização

Atuais objetivos da normalização A U L A Atuais objetivos da normaização Você agora vai estudar a útima parte deste assunto: os atuais objetivos da normaização. Pode-se dizer que a primeira fase da normaização, por vota de 1900 até os

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Exame Nacional de 2008 2. a chamada

Exame Nacional de 2008 2. a chamada 1. Qual é o mínimo múltiplo comum entre dois números primos diferentes, a e b? Cotações a * b a + b a b 3 - œ10, - 1 24 2. Qual é o menor número inteiro pertencente ao intervalo? - 4-3 - 2-1 3. Numa aula

Leia mais

Cursos Profissionalizantes

Cursos Profissionalizantes Cursos Profissionaizantes O Teecurso Profissionaizante foi feito para você que está à procura de profissionaização; para você que está desempregado e precisa aprender uma profissão; para você que já estuda

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO AT VIRTUA TRANFORMAÇÃO DE UNIDADE UNIDADE DE COMPRIMENTO UNIDADE DE TEMPO 1h 60min 1min 60seg km hm dam m dm cm mm EXERCÍCIO UNIDADE DE ÁREA km hm dam m dm cm mm UNIDADE DE VOLUME 01) Transforme: a),5km

Leia mais

MINHA VISÃO DO CAP 16 REOLOGIA DOS SISTEMAS COLOIDAIS

MINHA VISÃO DO CAP 16 REOLOGIA DOS SISTEMAS COLOIDAIS 16 REOLOGIA DOS SISTEMAS COLOIDAIS Os processos de ateração da estabiidade à agregação dos sistemas cooidais evam, em aguns casos, à separação em macro fases, isto é, contatos de fase ou coaescência e,

Leia mais

No posto de gasolina

No posto de gasolina A UU L AL A No posto de gasoina Gaspar estava votando para casa, após passar um dia muito agradáve na praia, apesar da dor de ouvido. Ee parou num posto de gasoina para abastecer e verificar as condições

Leia mais

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança

Plantas e mapas. Na Aula 17, aprendemos o conceito de semelhança A UA UL LA Pantas e mapas Introdução Na Aua 7, aprendemos o conceito de semehança de triânguos e vimos, na Aua 0, interessantes apicações desse conceito no cácuo de distâncias difíceis de serem medidas

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 28.05.2008 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Nome do aluno N.º

Leia mais

LISTA DE EXERCÍCIOS GEOM. ESPACIAL MÉTRICA 2º E. M. PROF. MARCO POLO. Nome: Nº: Turma:

LISTA DE EXERCÍCIOS GEOM. ESPACIAL MÉTRICA 2º E. M. PROF. MARCO POLO. Nome: Nº: Turma: LIST DE EXERCÍCIOS GEOM. ESPCIL MÉTRIC º E. M. PROF. MRCO POLO Nome: Nº: Turma: 01. Cacue a diagona, a área tota e o voume de um paraeepípedo de dimensões, 4 e 6. 0. Cacue a diagona, a área tota e o voume

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Ciências Físico-Químicas Teste Intermédio Ciências Físico-Químicas Caderno 2 Duração do Teste: 40 min (Caderno 1) + 10 min (pausa) + 40 min (Caderno 2) 19.05.2011 9.º Ano de Escolaridade

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Versão 2 11.º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 07.05.2009 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica

Leia mais

Cálculo analítico das reações de apoio das lajes maciças de concreto

Cálculo analítico das reações de apoio das lajes maciças de concreto nais do XVI ncontro de Iniciação ientífica e Pós-Graduação do IT XVI NIT / 010 Instituto Tecnoógico de eronáutica São José dos ampos SP rasi 0 de outubro de 010 ácuo anaítico das reações de apoio das ajes

Leia mais

A terra limpa a água?

A terra limpa a água? A UUL AL A A terra impa a água? Souções Misturas Mistura: - homogênea - heterogênea Fenômeno natura Conceito de experiência O que você vai aprender Mistura Dissover Fitrar Seria bom já saber O jornaeiro

Leia mais

ESCOLA BÁSICA VASCO DA GAMA - SINES

ESCOLA BÁSICA VASCO DA GAMA - SINES ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

Os aplicativos e sua utilização

Os aplicativos e sua utilização Os apicativos e sua utiização Baixando, Instaando e usando o Avast A B C D Os Apicativos Tipos de Apicativos Baixando e Instaando Usando o apicativo Tipos de Apicativos/Programas Os apicativos são programas

Leia mais

AS NAÇÕES UNIDAS, A CONVENÇÃO E O COMITÉ

AS NAÇÕES UNIDAS, A CONVENÇÃO E O COMITÉ DIREITOS DA CRIANÇA CATARINA ALBUQUERQUE Técnica Superior no Gabinete de Documentação e Direito Comparado da Procuradoria-Gera da Repúbica AS NAÇÕES UNIDAS, A CONVENÇÃO E O COMITÉ Documentação e Direito

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

RESOLUÇÃO CONSEPE Nº 02/2013

RESOLUÇÃO CONSEPE Nº 02/2013 RESOLUÇÃO CONSEPE Nº 2/213 A Presidente do Conseho Superior de Ensino, Pesquisa e Extensão - CONSEPE, no uso de suas atribuições, consoante o deiberado na 99ª Reunião Ordinária, reaizada no dia 1 de dezembro

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/2013 Ficha de Trabalho Fevereiro 2013 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7

Parábola. Sumário Parábola com vértice V = (x o, y o ) e reta focal. paralela ao eixo OX... 7 7 aráboa Sumário 7.1 Introdução....................... 2 7.2 aráboa........................ 3 7.3 ormas canônicas da paráboa............ 4 7.3.1 aráboa com vértice na origem e reta foca coincidente com

Leia mais

ECV 5220 - ANÁLISE ESTRUTURAL II

ECV 5220 - ANÁLISE ESTRUTURAL II UNIVERSIDDE FEDERL DE SNT CTRIN CENTRO TECNOLÓGICO DEPRTMENTO DE ENGENHRI CIVIL ECV 5 - NÁLISE ESTRUTURL II Prof a Henriette Lebre La Rovere, Ph.D. Prof a Poiana Dias de Moraes, Dr Forianópois, fevereiro

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

Como se pode proteger o ferro?

Como se pode proteger o ferro? Como se pode proteger o ferro? A UUL AL A Todos os componentes de uma bicieta recebem proteção contra ferrugem. A proteção do aço. Gavanização,cromação, zincagem e estanhagem A importância dos óxidos na

Leia mais

34 Ritmos e movimentos da população mundial

34 Ritmos e movimentos da população mundial A U A UL LA Ritmos e movimentos da popuação mundia Nessa aua, vamos estudar o crescimento da popuação mundia reacionando-o com as mudanças ocorridas na sociedade. Vamos conhecer o modeo expicativo da desaceeração

Leia mais

Vamos reciclar plásticos?

Vamos reciclar plásticos? Acesse: http://fuvestibuar.com.br/ Vamos recicar pásticos? O que você vai aprender Poietienos: tipos e obtenção Diferentes tipos de pástico Usos de pásticos Recicagem de pásticos Vantagens dos pásticos

Leia mais

TÉCNICAS DA PESQUISA OPERACIONAL NO PROBLEMA DE HORÁRIOS DE ATENDENTES EM CENTRAIS TELEFÔNICAS

TÉCNICAS DA PESQUISA OPERACIONAL NO PROBLEMA DE HORÁRIOS DE ATENDENTES EM CENTRAIS TELEFÔNICAS TÉCNICAS DA PESQUISA OPERACIONAL NO PROBLEMA DE HORÁRIOS DE ATENDENTES EM CENTRAIS TELEFÔNICAS Angea Oandoski Barboza Departamento de Matemática, Centro Federa de Educação Tecnoógica do Paraná, Av. 7 de

Leia mais

ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA

ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA CAPÍTULO 7 Voume 1 ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA 1 7.1 Ancoragem por aderência R sd τ b = Força de tração de cácuo = tensões de aderência f bd = vaor médio de cácuo das tensões de aderência

Leia mais

ESCOLA SECUNDÁRIA DE JÁCOME RATTON

ESCOLA SECUNDÁRIA DE JÁCOME RATTON ESCOLA SECUNDÁRIA DE JÁCOME RATTON 8º Ano MATEMÁTICA Setembro/2010 Tópico de Aprendizagem Semelhanças Tarefa nº2 Razão de semelhança Nome Razão de semelhança Observa as seguintes figuras, em que uma fotografia

Leia mais

Raio é o segmento de recta que une um ponto da circunferência com o seu centro.

Raio é o segmento de recta que une um ponto da circunferência com o seu centro. Catarina Ribeiro 1 Vamos Recordar: Circunferência de centro C e raio r é o lugar geométrico de todos os pontos do plano que estão à mesma distância r de um ponto fixo C. Círculo de centro C e raio r é

Leia mais

Normalização no Brasil

Normalização no Brasil Normaização no Brasi A ABNT foi fundada em 1940, por iniciativa particuar de um grupo de técnicos e engenheiros, sendo a primeira entidade a disseminar normas técnicas no Brasi. Em 1962, a ABNT foi reconhecida

Leia mais

ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA

ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA CAPÍTULO 7 Voume 1 ANCORAGEM E EMENDAS DAS BARRAS DA ARMADURA Prof. José Miton de Araújo - FURG 1 7.1 Ancoragem por aderência R sd τ b = Força de tração de cácuo = tensões de aderência f bd = vaor médio

Leia mais