Agrupamento de Escolas de Rio de Mouro Escola E.B. 2,3 Padre Alberto Neto Ano Letivo 2013/2014. Nome: N.º Turma: 1.ª

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Agrupamento de Escolas de Rio de Mouro Escola E.B. 2,3 Padre Alberto Neto Ano Letivo 2013/2014. Nome: N.º Turma: 1.ª"

Transcrição

1 Agrupamento de Escolas de Rio de Mouro Escola E.B. 2,3 Padre Alberto Neto Ano Letivo 2013/2014 M&M - Mathmais n.º 6 Matemática 8.º Ano Nome: N.º Turma: 1.ª Assunto: Teorema de Pitágoras. Semelhança de triângulos. Nas questões seguintes apresenta o teu raciocínio de forma clara, indicando os cálculos efetuados e as justificações necessárias. 1. Determina em cada caso o valor de. Sempre que necessário, apresenta o valor arredonda às décimas (1 c.d.) cm 15 cm cm 24 cm 26 cm 0,6 cm 12 cm 2 cm cm 13 cm 8 cm 15 cm 2. Observa as figuras e determina o valor dos lados desconhecidos. Sempre que necessário, apresenta o valor arredonda às centésimas ,6cm a 4,2cm 8cm 10cm y 17cm M&M Mathmais n.º 6 Página 1 de 6

2 3. O Rui antes de ir para a Escola passa pela casa da Teresa, percorrendo o caminho indicado na figura ao lado. Que distância percorreria a menos se fosse diretamente para a Escola? Apresenta o resultado com aproimação às décimas. 4. O plasma do Rui mede 112 cm de comprimento e a respetiva diagonal mede 140 cm. Qual é a altura do aparelho? 5. O acesso à garagem de uma casa, situada no subsolo, é feito por uma rampa, conforme nos mostra o desenho. Sabe-se que a rampa tem 10,25 m de comprimento e a altura da garagem é 2,25 m. Qual a distância entre o portão e a casa? 6. A figura ao lado representa a planta de uma casa Determina a área ocupada pelo jardim. 20m 6.2. Determina a área ocupada pela casa (sem jardim). Apresenta o resultado arredondado às décimas. 12m 30m 7. Determina a área da zona sombreada. Apresenta o resultado com aproimação às centésimas M&M Mathmais n.º 6 Página 2 de 6

3 8. Dois barcos deslocaram-se de uma doca em direções perpendiculares. O Barco A encontra-se a 6,2 metros da doca, o Barco B encontra-se a 9,7 metros da doca. Qual a distância, em linha reta, entre os barcos? Apresenta o resultado arredondado às centésimas. B A 9. Observa a figura. Determina a distância da janela ao chão. Apresenta todos os cálculos que efetuares e, na tua resposta, apresenta o resultado arredondado às unidades e indica a unidade de medida. 10. O irmão do Pedro, enquanto brincava, colocou os lápis como sugere a figura. O Pedro, ao observar a figura, ficou curioso sobre a sua forma. Decidiu verificar se o triângulo era retângulo. A que conclusão chegou o Pedro? Justifica a tua resposta. 11,25 cm 9 cm 6,75 cm 11. Na figura está representado o quadrado [ABCD]. Sabe-se que: O lado do quadrado é 10 E, F, G e H são os pontos médios dos lados Qual é a medida de [EF]? Apresenta os cálculos que efetuaste. Escreve o resultado arredondado às décimas Qual é a área da região sombreada [AEFCGH]? Assinala a letra que apresenta a resposta correta. (A) 100 (B) 75 (C) 50 (D) Calcula a área sombreada da figura formada por um trapézio e um semicírculo. Apresenta o resultado arredondado às centésimas. 18 cm 10 cm 3 cm M&M Mathmais n.º 6 Página 3 de 6

4 13. Considera a figura ao lado, onde: G é um ponto do segmento de reta [BF]; [ABGH] é um quadrado; [BCEF] é um quadrado; AH = 6 e FG = Qual é o comprimento da diagonal do quadrado [ABGH]? Apresenta todos os cálculos que efetuares e indica o resultado arredondado às décimas Determina a área do quadrilátero [ACDG], sombreado a cinzento na figura. Apresenta todos os cálculos que efetuares Como se designa o quadrilátero [ACDG]? 14. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F é um ponto do segmento de reta [BE]. (A) 64 (B) 66 (C) 68 (D) Qual é a área total das zonas sombreadas da figura? Determina o valor eato de EG. Apresenta todos os cálculos que efetuares. 15. Um triângulo cujas medidas dos comprimentos dos lados são 21, 28 e 30 é um triângulo retângulo? Mostra como chegaste à tua resposta. 16. Num triângulo retângulo, a hipotenusa mede 15 cm e um dos catetos 10 cm. Calcula a medida do comprimento do outro cateto. Apresenta os cálculos que efetuares e, na tua resposta, escreve o resultado na forma de valor eato. 17. Na figura sabe-se que: [ACDF] é um quadrado de lado 4. B é o ponto médio do segmento de reta [AC]. EF= Qual é a medida do comprimento de [AE]? Apresenta os cálculos que efetuares e, na tua resposta, escreve o resultado arredondado às décimas Qual é a área da região sombreada? Mostra como chegaste à tua resposta. M&M Mathmais n.º 6 Página 4 de 6

5 18. Na figura que se segue, os vértices do quadrado [IJKL] são os pontos médios das semidiagonais do quadrado [ABEF]. A intersecção das diagonais dos dois quadrados é o ponto O. Os lados [CD] e [HG] do retângulo [HCDG] são paralelos aos lados [BE] e [AF] do quadrado [ABEF] e [CD] mede o triplo de [BC] Qual é a amplitude do ângulo BAE? Sabendo que a medida da área do quadrado [ABEF] é 64, calcula a medida do comprimento do segmento de reta [OB]. Na tua resposta, escreve o resultado arredondado às décimas. Apresenta os cálculos que efetuares Em relação à figura, qual das seguintes afirmações é verdadeira? (A) O triângulo [AOB] é escaleno. (C) trapézio [ACDE] é isósceles. (B) O triângulo [AOB] é acutângulo. (D) O trapézio [ACDE] é retângulo. 19. Indica, justificando, se os seguintes pares de triângulos são semelhantes: O Piloto gosta de esconder ossos no quintal, mas também escondeu a bola do Miguel. Observa a figura que mostra o local onde o Piloto escondeu os ossos e a bola. B D Mostra que os triângulos [ABC] e [CDE] são semelhantes. C A que distância se encontra a bola da casota do Piloto? A E 21. Os perímetros de dois triângulos semelhantes são 36 cm e 24 cm respetivamente. Determina a área do triângulo maior, sabendo que a área do outro triângulo é 20 cm 2. M&M Mathmais n.º 6 Página 5 de 6

6 22. Para assegurar a atividade de prevenção, vigilância e deteção de incêndios florestais, eistem torres de vigia. A figura seguinte é uma fotografia de uma dessas torres. Para determinar a altura da plataforma da torre, imaginaram-se dois triângulos retângulos, semelhantes, representados na figura. A figura seguinte representa um esquema desses dois triângulos. O esquema não está desenhado à escala. Sabe-se que: DC = 2,5m EC = 1,6m AB = 4,8m Qual é o comprimento, em metros, de [CB]? Apresenta os cálculos que efetuaste. 23. Na figura estão representados dois heágonos regulares. Sabe-se que: o comprimento do lado do heágono eterior é cinco vezes maior do que o comprimento do lado do heágono interior; a área do heágono interior é 23 cm 2. Determina a área, em cm 2, da parte sombreada a cinzento na figura. Mostra como chegaste à tua resposta. 24. Considera os triângulos [ABC] e [DEF] da figura e as medidas neles inscritas. Nota: Os triângulos não estão desenhados à escala Justifica que os dois triângulos são semelhantes Admite que o triângulo [DEF] é uma redução do triângulo [ABC] de razão 0,8. Qual é o perímetro do triângulo [ABC], sabendo que o perímetro do triângulo [DEF] é 40? (A) 50 (B) 40,8 (C) 39,2 (D) 32 M&M Mathmais n.º 6 Página 6 de 6

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes 1. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Tarefas de exames Teorema de Pitágoras Neste caderno de apoio, encontras alguns exemplos de tarefas de exames de países como Portugal, Austrália, Canadá, Espanha, Finlândia, Inglaterra, Estados Unidos

Leia mais

ESCOLA BÁSICA VASCO DA GAMA - SINES

ESCOLA BÁSICA VASCO DA GAMA - SINES ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala

Leia mais

ESCOLA BÁSICA DE ALFORNELOS COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS. Circunferência. Isometrias.

ESCOLA BÁSICA DE ALFORNELOS COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS. Circunferência. Isometrias. ESCOLA BÁSICA DE ALFORNELOS Prof.ª Arminda Pereira COMPILAÇÃO DE EXERCÍCIOS RETIRADOS DOS EXAMES NACIONAIS Circunferência. Isometrias. 1. Na figura está representada uma semicircunferência de diâmetro

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / 0 / 01 Assunto: Triângulos, quadriláteros e outros polígonos Lição nº _ e _ Um Quadrilátero é um polígono com quatro lados. Os quadriláteros

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Exame Nacional de a chamada

Exame Nacional de a chamada Exame Nacional de 008. a chamada. O João foi ao cinema com os amigos. Comprou os bilhetes com os números,, 7, 8,, 7, da fila S, isto é, todos os números entre e 7, inclusive. O João tirou, aleatoriamente,

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Escola Básica de Santa Catarina

Escola Básica de Santa Catarina Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Aula 5 Quadriláteros Notáveis

Aula 5 Quadriláteros Notáveis Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 2008-1 a Chamada Proposta de resolução 1. Como entre o 5 e o 17 existem 17 5 + 1 = 13 números, o número de casos possíveis para o número do bilhete retirado pelo João

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / 1.ª Chamada / 2009 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

Escola Secundária com 3º CEB de Lousada

Escola Secundária com 3º CEB de Lousada Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 8º Ano N.º6 Assunto: Ficha de Preparação para o Teste Intermédio (Parte) Lições nº _ e _ Data: /0/0. Resolva as seguintes equações:..

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

Exame Nacional ª Chamada

Exame Nacional ª Chamada Matemática Nome completo: Bilhete de identidade n.º: Assinatura do Estudante: Prova.ª 1.ª Chamada Exame Nacional 008 1.ª Chamada Emitido em (Localidade): Não escrevas o teu nome em mais nenhum local da

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Construção de funções a partir de problemas geométricos

Construção de funções a partir de problemas geométricos Construção de funções a partir de problemas geométricos Atividade introdutória M. Elisa. E. L. Galvão IME-USP/UNIBAN Problema: entre todos os retângulos de mesmo perímetro, qual é o de maior área? Como

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 30.04.2009 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

Tarefas de exames. Quadriláteros II. Propriedades de quadriláteros convexos. (paralelogramos, trapézios isósceles, papagaios, )

Tarefas de exames. Quadriláteros II. Propriedades de quadriláteros convexos. (paralelogramos, trapézios isósceles, papagaios, ) Tarefas de exames Quadriláteros II Propriedades de quadriláteros convexos (paralelogramos, trapézios isósceles, papagaios, ) Neste caderno de apoio, encontras alguns exemplos de tarefas de exames de países

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Exercício 2. Na figura abaixo, determine as medidas de x e y,

Exercício 2. Na figura abaixo, determine as medidas de x e y, OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 5 Nível 3 Geometria Conteúdo: Teorema de Tales, Semelhança de triângulos,

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 30 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Maio 2012 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço Outra

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães

PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede

Leia mais

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. 1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades.

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. 1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. Braga Porto 2. Onde está a casa do Joaquim se esta dista exatamente 3 km da casa da

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

demorou 1 minuto e 20 segundos a molhar-se com a torneira sempre aberta; demorou 3 minutos e 5 segundos a ensaboar-se com a torneira fechada;

demorou 1 minuto e 20 segundos a molhar-se com a torneira sempre aberta; demorou 3 minutos e 5 segundos a ensaboar-se com a torneira fechada; Matemática 8º Ano Preparação para o Teste Intermédio 010 / 011 1. Num campeonato de futebol cada equipa conquista: 3 pontos por cada vitória; 1 ponto por cada empate; 0 pontos por cada derrota. Na tabela

Leia mais

Desafios Matemáticos! 8º ano

Desafios Matemáticos! 8º ano Desafios Matemáticos! 8º ano Introdução Olá! Eu chamo-me Jaguaretê e sou uma onça. Eu vivo na Amazónia e tenho uma paixão: a Matemática. Neste manual irei ajudar-te a compreender e a admirar esse maravilhoso

Leia mais

Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações: Resposta: (retirado do Teste Intermédio de Matemática 8ºAno Abril 2008)

Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações: Resposta: (retirado do Teste Intermédio de Matemática 8ºAno Abril 2008) ESCOLA BÁSICA INTEGRADA DE PIAS ANO LECTIVO 2011 / 2012 TESTE DE AVALIAÇÃO DE MATEMÁTICA 8º ANO Apreciação: Duração da Prova: 90 minutos Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações:

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é:

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é: MATEMÁTICA Prof. Adilson ANGULOS ENTRE RETAS E TRIÂNGULOS 1. Calcule o valor de x e y observando as figuras abaixo: a) b) 2. Calcule a medida de x nas seguintes figuras: 3. A medida do complemento: a)

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano Escola Secundária/2, da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria Espaço Outra Visão 9.º Ano Nome: N.º: Turma: 1. Na figura, está representado um triângulo retângulo em que: a,

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos

Aula prática. S = a p = 3a. a2 b2 4. 2p = b 2a S = bh 2. 1).- Exercícios didáticos 1 Aula prática 1).- Exercícios didáticos É um tanto surpreendente que, em cada triângulo, as três cevianas de um dado tipo se interceptam num mesmo ponto. Essa característica é ilustrada nas figuras abaixo,

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Colégio Visconde de Porto Seguro

Colégio Visconde de Porto Seguro Colégio Visconde de Porto Seguro Unidade I 2009 Ensino Fundamental e Ensino Médio Nome do (a) Aluno (a): nº Atividade de: Desenho Geométrico Nível: E.Médio Classe: 2-3 Professor (a): 3º Trimestre Data:

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE AVALIAÇÃO MATEMÁTICA Duração: 90 minutos Data: 3 maio de 0 8º C Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/2013 Ficha de Trabalho Fevereiro 2013 Nome: N.º: Turma: Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Circunferência

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações: Resposta: (adaptado do Teste Intermédio de Matemática 8ºAno Abril 2008)

Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações: Resposta: (adaptado do Teste Intermédio de Matemática 8ºAno Abril 2008) ESCOLA BÁSICA INTEGRADA DE PIAS ANO LECTIVO 2011 / 2012 TESTE DE AVALIAÇÃO DE MATEMÁTICA 8º ANO Apreciação: Duração da Prova: 90 minutos Nome: Ano / Turma: N.º Data: / / 20 Encarregado de Educação: Observações:

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado:

2. Na figura, ANM é um triângulo e ABCD é um quadrado. Calcule a área do quadrado: SEMELHANÇA DE TRIÂNGULOS 1. Duas cidades X e Y são interligadas pela rodovia R101, que é retilínea e apresenta 300 km de extensão. A 160 km de X, à beira da R101, fica a cidade Z, por onde passa a rodovia

Leia mais

935 MATEMÁTICA Prova escrita

935 MATEMÁTICA Prova escrita 935 MATEMÁTICA Prova escrita PROVA DE EQUIVALÊNCIA À FREQUÊNCIA Duração: 120 minutos Ano: 2014 2ª fase - julho 11º e 12º anos Identifique claramente os grupos e os itens a que responde e apresente o seu

Leia mais

Exame Nacional de 2009 1. a chamada

Exame Nacional de 2009 1. a chamada 1. A agência de viagens ViajEuropa tem como destinos turísticos as capitais europeias. A taela 1 mostra o número de viagens vendidas pela agência nos primeiros três meses do ano. Cotações Meses Taela 1

Leia mais

GEOMETRIA PLANA - FUVEST. Triângulos

GEOMETRIA PLANA - FUVEST. Triângulos GEOMETRIA PLANA - FUVEST Triângulos...1 Teorema de Tales...8 Semelhança de Triângulos...11 Pontos Notáveis...23 Triângulos Retângulos...25 Triângulos 01. (Fuvest/96) Na figura, as retas r e s são paralelas,

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

2. Na figura ao lado, tem-se que: 2.1 Prova que AC = 10m. . Resolução: 2.2 Mostra que os triângulos [ADC] e [DBC] são semelhantes.

2. Na figura ao lado, tem-se que: 2.1 Prova que AC = 10m. . Resolução: 2.2 Mostra que os triângulos [ADC] e [DBC] são semelhantes. ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Teste de Avaliação do 8º ano de Escolaridade 3º Ciclo do Ensino Básico Duração do Teste: 90 minutos 13. 03. 09 Nome completo Nº Turma Classificação

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Exame Nacional de 2006 2.a chamada

Exame Nacional de 2006 2.a chamada Exame Nacional de 006.a chamada Cotações 1. Como sabes, a Bandeira Nacional está dividida verticalmente em duas cores fundamentais, verde-escuro e escarlate (vermelho-vivo) e, sobreposta à união das cores,

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo.

Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro e Acad. Taís Aline Bruno de Azevedo. 1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA SECRETARIA DE ENSINO À DISTÂNCIA O NÚMERO DE OURO Prof. Dra. Vera Clotilde Garcia, Acad. Fabiana Fattore Serres, Acad. Juliana Zys Magro

Leia mais

Nome: Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE

Nome: Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE Nome: 015 Turma: Unidade: 1º SIMULADO - 9º ANO LÓGICA, CONTEÚDO. 45 Questões Dia: 07 de Maio - quinta-feira EDUCANDO PARA SEMPRE Nome: Turma: Unidade: 3 5 1. A expressão 10 a) 5. 11 b) 5. c) 5 d) 30 5

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais