Sist. Lin. I. Sistemas Lineares Introdução Definições Geometria Resolução Equivalência Eliminação de Gauss Após Escalonamento. Sist. Lin.

Tamanho: px
Começar a partir da página:

Download "Sist. Lin. I. Sistemas Lineares Introdução Definições Geometria Resolução Equivalência Eliminação de Gauss Após Escalonamento. Sist. Lin."

Transcrição

1 Motivação - 1 o Exempo 1 a Parte Pauo Godfed Marco Cabra Probema: há dois tipos de moeda, indistinguíveis exceto peo peso As de materia X pesam 10 g cada e as de materia Y, 0 g cada Se um conjunto de 100 moedas pesa 15 Kg, quantas são do materia X? { x + y = x + 0y = 150 Departamento de Matemática Apicada Universidade Federa do Rio de Janeiro Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 1 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ / 0 Motivação - o Exempo Motivação - 3 o Exempo Probema: a combustão do propano produz dióxido de carbono e água Encontre a, b, c e d de forma a baancear a equação da reação: a C 3 H 8 + b O c CO + d H O baanço de C: baanço de H: baanço de O: 3a = c 8a = d b = c + d 3a +0b 1c +0d = 0 8a +0b +0c d = 0 0a +b c 1d = 0 Probema: existe uma paráboa γ da forma y = ax + bx + c passando peos pontos (0, 1), (1, 3), (, ) e (3, 9)? (0, 1) γ 1 = a(0 ) + b(0) + c (1, 3) γ 3 = a(1 ) + b(1) + c (, ) γ = a( ) + b() + c (3, 9) γ 9 = a(3 ) + b(3) + c 0a +0b +1c = 1 1a +1b +1c = 3 a +b +1c = 9a +3b +1c = 9 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 3 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ / 0 Motivação - o Exempo Motivação Probema: o vetor (0, 6, 10) é combinação inear de (1,, 3), (, 1, 1) e (, 1, 3)? α(1,, 3) + β(, 1, 1) + γ(, 1, 3) = (α, α, 3α) + (β, β, β) + (γ, γ, 3γ) = (α + β + γ, α + β γ, 3α + β 3γ) = (0, 6, 10) 1α +β +γ = 0 α +1β 1γ = 6 3α +1β 3γ = 10 1 α β = γ 10 Quase todos os probemas da Ágebra Linear recaem na resoução de sistemas ineares As técnicas para resovê-os nos acompanharão por todo o curso A resoução de sistemas ineares está no coração de quase todos os softwares de computação científica Neste caso, os sistemas podem ter centenas de mihões de incógnitas Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 5 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 6 / 0 Sistema m n (m equações em n incógnitas) Matriz m n (m inhas, n counas) a 11 x 1 +a 1 x +a 1n x n = b 1 a 1 x 1 +a x +a n x n = b a m1 x 1 +a m x +a mn x n = b m matriz aumentada {}}{ a 11 a 1 a 1n b 1 a 1 a a n b a m1 a m a mn b m } {{ }}{{} matriz de coeficientes ado direito A m n = = a 11 a 1 a 1n a 1 a a n a m1 a m a mn a 11 a 1 a 1n a 1 a a n a m1 a m a mn m inhas n counas Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 7 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 8 / 0

2 Exempo 1: { 1x +1y = 1x 1y = 0 { 1x +1y = 1x 1y = Exempo : { 1x +1y = x +y = { 1x +1y = x +y = (0, ) (0, ) (0, 1) (, 0) (1, 0) (, 0) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 9 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 10 / 0 Conjunto-Soução Exempo Soução { 3: única Conjunto-soução: { {} 1x +1y = 1x +1y = x +y = x +y = Um sistema inear de equações tem sempre: Sem soução Conjunto-soução: { } = ou uma única soução; ou nenhuma soução; ou infinitas souções Compare com o caso não-inear: (0, ) Infinitas souções Conjunto-soução: {(x, y) x + y = } = {(t, t) t R} (, 0) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 11 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 1 / 0 Fáceis Fáceis Matriz de coeficientes diagona Conjunto-soução: Definição (matriz diagona) 3x 1 = 5 x = x 3 = {( )} 5,, 3 Matriz de coeficientes trianguar x 1 +x +3x 3 = x +x 3 = x 3 = Substituição para trás: x 3 = x 3 = 1 x +( 1) = 5 x = 3x 1 +() +3( 1) = x 1 = 1 A é diagona se a ij = 0 i j Definição (matriz trianguar superior) A é trianguar superior se a ij = 0 i > j Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 13 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 1 / 0 Equivaentes Estratégia para Soução de Definição (sistemas equivaentes) Dois sistemas (nas mesmas variáveis) são equivaentes se têm o mesmo conjunto-soução Buscar sistema equivaente fáci : na forma escaonada ( tipo trianguar) ou na forma totamente escaonada ( tipo diagona) (0, ) ( 0, 3 ) (, 0) ( ) 3, 0 (3, 0) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 15 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 16 / 0

3 Operações Fundamentais 1 Trocar a ordem das inhas b b Mutipicar uma inha por um escaar não-nuo b α αb 3 Substituir inha por sua soma com mútipo de outra b + α 1 b + αb 1 Descartar inhas só de zeros ( 1 ) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 17 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 18 / Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 19 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 0 / Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 1 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ / x 1 = x = x 3 = 1 Conjunto-soução: {(,, 1)} Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 3 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ / 0

4 Segundo Exempo Segundo Exempo 1x 1 + 1x + 1x 3 = 3 (eq 1) 0x 1 + 1x + 1x 3 = (eq ) 1x 1 + 1x + 0x 3 = (eq 3) Mas o que deu errado? operações fundamentais = sistemas equivaentes outras operações sistemas equivaentes x 1 = 1 x 1 = x 3 x 3 = 1 Conj-soução: {(1, t, 1) t R} Isto pode ser suti Examine este exempo até entendê-o É fundamenta ser sistemático! (eq 1) 1 + t + 1 = 3 t R FALSO!!! Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 5 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 6 / 0 Pano de Ação para a Soução de Forma Escaonada Para onde vamos? Forma escaonada e forma totamente escaonada Como vamos? Agoritmo de eiminação de Gauss O que fazer quando chegarmos á? Soução de sistemas na forma totamente escaonada Definição (forma escaonada) Diz-se que uma matriz está (na forma) escaonada se o número de zeros no início de cada inha aumenta estritamente de uma inha para outra e não há inhas só de zeros Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 7 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 8 / 0 Pivot Forma Totamente Escaonada Definição (pivot) Definição (forma totamente escaonada) São denominados pivots os primeiros eementos não nuos de cada inha de uma matriz escaonada Uma matriz escaonada está totamente escaonada se os seus pivots são todos 1 s e são os únicos eementos não-nuos de suas counas Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 9 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 30 / 0 Parte I Forma Escaonada Parte II Forma Totamente Escaonada Descarte inhas só de zeros p (n o de inhas) k 1 Enquanto k < p, repita: Considere apenas as inhas k, k+1,, p Identifique a couna não nua mais à esquerda Troque inhas para obter pivot não nuo Anue as entradas abaixo do pivot, subtraindo de k+1, k+,, p mútipos de k Descarte inhas só de zeros p (n o de inhas) k k + 1 Execute a Parte I do agoritmo Repita, para k = p, p 1,, 1: Divida k peo seu pivot, tornando-o 1 Anue as entradas acima do pivot, subtraindo de 1,,, k 1 mútipos de k Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 31 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 3 / 0

5 Exempo de Existência de Soução { 0 zero não-zero Notação: 1 um quaquer quantidade o caso: sistema totamente escaonado da forma Início da Parte I: escaonamento da matriz Descarte inhas só de zeros p k 1 Início do primeiro aço Considere apenas as inhas 1,, 3 e Identifique a couna não nua mais à esquerda Troque inhas para obter pivot não nuo 0x 1 + 0x + + 0x n = 1 sistema inconsistente conjunto-soução = { } subtraindo de, 3, mútipos de 1 Descarte inhas só de zeros p k Considere apenas as inhas, 3 e Exempos Identifique a couna não nua mais à esquerda Troque inhas para obter pivot não nuo Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 33 / 0 subtraindo Exempo (sistema de 3 e de inconsistente) mútipos de Descarte inhas só de zeros p k Considere apenas as inhas 0 30 e 1 Identifique a couna não nua mais à esquerda Troque inhas para obter pivot não nuo Exempo (sistema inconsistente) subtraindo de um mútipo de 3 Descarte inhas só de1zeros Descarte inhas só de0zeros p (n o de inhas) p k Fim da Parte I: matriz já está escaonada Início da Parte II: escaonamento tota k 3 Divida 3 peo seu pivot Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 35 / 0 Anue as entradas acima do pivot, subtraindo de 1, mútipos de 3 k Divida peo seu pivot Exempos Anue as entradas acima do pivot, subtraindo Exempo (sistema de 1 mútipos com soução de única) k 1 Divida 1 peo seu pivot Anue as entradas acima 0 do1 pivot 0 0 Fim da Parte II: a matriz0 está 0 totamente 1 11 escaonada Exempo (sistema com soução única) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 3 / 0 Soução Única o caso: sistema totamente escaonado da forma x 1 = x = x n = conjunto-soução = {(,,, )} soução única Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 36 / 0 Infinitas Souções 3 o caso: sistema totamente escaonado não se enquadra nos casos anteriores { x = r Suponha conhecidos os vaores de x e x : x = s O sistema pode ser reescrito: 1x 1 = +3r 5s 1x 3 = s 1x 5 = Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 37 / 0 Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 38 / 0 Infinitas Souções cont Infinitas Souções cont 1x 1 = + 3r 5s 1x 3 = s 1x 5 = r e s conhecidos; sistema em 3 incógnitas: x 1, x 3 e x 5 : + 3r 5s s Soução única: ( + 3r 5s, s, ) Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 39 / 0 Sistema em x 1, x 3 e x 5 : Reintroduzindo x e x : x 1 = +3 r x = r 5 s x 3 = s x = s x 5 = x 1 = +3 r 5 s x = 0 +1 r +0 s x 3 = 0 +0 r s x = 0 +0 r +1 s x 5 = +0 r +0 s x 1 = +3 r 5 s x = 0 +1 r +0 s x 3 = 0 +0 r s x = 0 +0 r +1 s x 5 = +0 r +0 s Ágebra Linear II 008/ Prof Marco Cabra & Prof Pauo Godfed DMA / IM / UFRJ 0 / 0

Breve resolução do e-fólio B

Breve resolução do e-fólio B ÁLGEBRA LINEAR I 22 Breve resoução do e-fóio B I. Questões de escoha mútipa. d), pois o vetor nuo pertence a quaquer subespaço, e a intersecção de 2 subespaços ainda é um subespaço. 2. c), os 3 vetores

Leia mais

Podemos utilizar o cálculo do determinante para nos auxiliar a encontrar a inversa de uma matriz, como veremos à seguir.

Podemos utilizar o cálculo do determinante para nos auxiliar a encontrar a inversa de uma matriz, como veremos à seguir. O cácuo da inversa de uma matriz quadrada ou trianguar é importante para ajudar a soucionar uma série probemas, por exempo, a computação gráfica, na resoução de probemas de posicionamento de juntas articuadas

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

ÁLGEBRA LINEAR AULA 2

ÁLGEBRA LINEAR AULA 2 ÁLGEBRA LINEAR AULA 2 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de 1 2 3 4 5 6 7 2 / 14 matrizes Muitos problemas em várias áreas da Ciência recaem na solução

Leia mais

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES

ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma

Leia mais

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia? A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura

Leia mais

(d) Seja W um espaço vetorial de dimensão 4 e sejam U e V subespaços de W tais que U V = 0. Assinale. Gabarito Pág. 1

(d) Seja W um espaço vetorial de dimensão 4 e sejam U e V subespaços de W tais que U V = 0. Assinale. Gabarito Pág. 1 UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 15 de maio de 2013 Primeira Prova 1. Os valores de (a,

Leia mais

Análise matricial de estruturas não-lineares usando o Método de Newton.

Análise matricial de estruturas não-lineares usando o Método de Newton. Anáise matricia de estruturas não-ineares usando o Método de Newton. Exercício Computaciona - MAP3121 1 Primeiro probema 1.1 Descrição da estrutura não-inear Considere um sistema formado por três barras

Leia mais

Um Método para o Cálculo da Inversa de Matrizes Simétricas e Positivas Definidas em Bloco

Um Método para o Cálculo da Inversa de Matrizes Simétricas e Positivas Definidas em Bloco Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, 2017 Trabaho apresentado no CNMAC, Gramado - RS, 2016 Proceeding Series of the Braziian Society of Computationa

Leia mais

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos

Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram

Leia mais

Matemática A Semi-Extensivo V. 1 Exercícios

Matemática A Semi-Extensivo V. 1 Exercícios Semi-Extensivo V. 1 Exercícios Equação do 1 o grau 01) a) (x ) x 7 x 16 x 7 x 9 x S { } b) ( x ) x 5 6 x 9 x 5 6 9x 7 8x 6 x S {} 5 6 c) 5. {. [x. ( x)]} x 7 5. {. [x 8 x]} x 7 5. { x 16 8x} x 7 15 10x

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1.

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE 2A - 15 DE JUNHO DE DAS 11H. Apresente e justifique todos os cálculos. dy dt = y t t ; y(1) = 1. Instituto Superior Técnico Departamento de Matemática Secção de Ágebra e Anáise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTE A - 5 DE JUNHO DE 9 - DAS H ÀS :3H Apresente e justifique todos os cácuos.

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento

Leia mais

Márcio Nascimento. 19 de fevereiro de 2018

Márcio Nascimento. 19 de fevereiro de 2018 Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 19 de fevereiro de 2018 1 / 16 Considere

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Figura : Monitoria. Monitoria Cálculo Numérico

Figura : Monitoria. Monitoria Cálculo Numérico Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes

Leia mais

Lista 1: sistemas de equações lineares; matrizes.

Lista 1: sistemas de equações lineares; matrizes. Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas

Leia mais

3 Estática das estruturas planas

3 Estática das estruturas planas STÁTI 3674 27 3 stática das estruturas panas 3.1 ácuo das reações vincuares - apoios 3.1.1 ondições de equiíbrio estático O equiíbrio estático de uma estrutura bidimensiona (a estrutura considerada, as

Leia mais

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas Lineares. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Sistemas Lineares Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)

Leia mais

Método dos Deslocamentos

Método dos Deslocamentos Método dos Desocamentos formuação matemática do método das forças e dos desocamentos é bastante semehante, devendo a escoha do método de anáise incidir num ou noutro conforme seja mais vantajoso O método

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 84 Equação linear Sistemas de equações lineares A equação 2x + 3y = 6 é chamada linear

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 5 EQUAÇÕES DIFERENCIAIS PARCIAIS E TRANSFORMADA DE LAPLACE

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 5 EQUAÇÕES DIFERENCIAIS PARCIAIS E TRANSFORMADA DE LAPLACE Instituto Superior Técnico Departamento de Matemática Secção de Ágebra e Anáise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 5 EQUAÇÕES DIFERENCIAIS PARCIAIS E TRANSFORMADA DE LAPLACE Séries de Fourier (1 Desenvova

Leia mais

x 1 + b a 2 a 2 : declive da recta ;

x 1 + b a 2 a 2 : declive da recta ; - O que é a Álgebra Linear? 1 - É a Álgebra das Linhas (rectas). Equação geral das rectas no plano cartesiano R 2 : a 1 x 1 + a 2 = b Se a 2 0, = a 1 a 2 x 1 + b a 2 : m = a 1 : declive da recta ; a 2

Leia mais

Introdução à Programação Aula 18 Método de eliminação de Gauss

Introdução à Programação Aula 18 Método de eliminação de Gauss Introdução à Programação Aula 18 Método de eliminação de Gauss Pedro Vasconcelos DCC/FCUP 2015 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 18 Método de eliminação de Gauss 2015 1 / 23 Nesta

Leia mais

Perg 1 2 Val a Perg 2 2 Val a Perg 3 3 Val c Perg 4 3 Val b Perg 5 3 Val d

Perg 1 2 Val a Perg 2 2 Val a Perg 3 3 Val c Perg 4 3 Val b Perg 5 3 Val d Instituto Superior Técnico Departamento de Matemática 1 o semestre 14/15 Nome: Número: Curso: 1 o TESTE DE ÁLGEBRA LINEAR LEE, LEGI, LEIC-T, LERC 13 de outubro de 2014 Teste 101 O Teste que vai realizar

Leia mais

(a) 2 (b) 3 (c) 1 (d) 1. Primeira Prova. 6. Suponha que queiramos escrever u = (1, 1) como combinação

(a) 2 (b) 3 (c) 1 (d) 1. Primeira Prova. 6. Suponha que queiramos escrever u = (1, 1) como combinação Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Milton Lopes

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

(a) 1 (b) 0 (c) 2 (d) 3. (a) 6 (b) 8 (c) 1. (d) H = {p P 2 p(1) = p(2)} (c) H = {p P 2 p(1) + p(2) = 0} 8. Seja H o subespaço definido por

(a) 1 (b) 0 (c) 2 (d) 3. (a) 6 (b) 8 (c) 1. (d) H = {p P 2 p(1) = p(2)} (c) H = {p P 2 p(1) + p(2) = 0} 8. Seja H o subespaço definido por UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Cesar, Flavio, Luiz Carlos, Mario, Milton, Monique e Paulo Data: 25 de setembro de 2013 Primeira Prova 1. Podemos

Leia mais

Sistemas Lineares. Marina Andretta/Franklina Toledo ICMC-USP. 4 de março de 2015

Sistemas Lineares. Marina Andretta/Franklina Toledo ICMC-USP. 4 de março de 2015 Sistemas Lineares Marina Andretta/Franklina Toledo ICMC-USP 4 de março de 2015 Marina Andretta/Franklina Toledo (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia I 4 de março de 2015 1 / 15 Introdução

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica PME-350 MECÂNICA DOS SÓLIDOS II Prof. R. Ramos Jr. 1 a Prova 13/09/01 Duração: 100 minutos 1 a Questão (5,0 pontos):

Leia mais

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1

ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números

Leia mais

Fundamentos de Matemática Curso: Informática Biomédica

Fundamentos de Matemática Curso: Informática Biomédica Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Márcio Antônio de Andrade Bortoloti

Márcio Antônio de Andrade Bortoloti Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia Sumário 1 Definição Uma matriz quadrada de ordem n é definida positiva

Leia mais

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação

Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um

Leia mais

Resolução / Critério de Avaliação

Resolução / Critério de Avaliação FEUP- ENGENRI IIL Exercício omementar TEORI DE ESTRUTURS no ectivo / Resoução / ritério de vaiação onvenção usada para diagramas de esforços: - N - e N - d Nota sobre a vaiação: ada item avaiado ou está

Leia mais

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

Sistema de Equaçõs Lineares

Sistema de Equaçõs Lineares Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações

Leia mais

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Para saber a dimensão disso aqui basta escalonar e resolver o sistema.

Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período Para saber a dimensão disso aqui basta escalonar e resolver o sistema. www.engenhariafacil.net Resolução da 1ª Prova de Álgebra Linear II da UFRJ, período 2013.2 OBS: Todas as alternativas corretas são as letras A. 1) Para saber a dimensão disso aqui basta escalonar e resolver

Leia mais

PME Mecânica dos Sólidos I 5 a Lista de Exercícios

PME Mecânica dos Sólidos I 5 a Lista de Exercícios ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO DEPRTMENTO DE ENGENHRI MECÂNIC PME-00 - Mecânica dos Sóidos I 5 a Lista de Eercícios 1) estrutura treiçada indicada abaio é formada por barras de mesmo materia

Leia mais

Multiplicação por Escalar em R n. Definição (multiplicação por escalar) (αβ)u = α(βu), α, β, u. Álgebra Linear. Introdução à. Gerados.

Multiplicação por Escalar em R n. Definição (multiplicação por escalar) (αβ)u = α(βu), α, β, u. Álgebra Linear. Introdução à. Gerados. (R n ) R n é o conjunto das n-uplas ordenadas de números reais (1, 2) R 2 Paulo Goldfeld Marco Cabral ( 1, 2, 3) R 3 Departamento de Matemática Aplicada Universidade Federal do Rio de Janeiro (1, 2, 3,

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 998/99 Sistemas de Equações Lineares PROBLEMAS Considere o seguinte sistema de equações da forma Ax = b : 3 2 3 2 2 2 2 x x

Leia mais

SEGUNDA LISTA DE EXERCÍCIOS Álgebra III MATEMÁTICA DCET UESC Humberto José Bortolossi. Grupos e Subgrupos H H

SEGUNDA LISTA DE EXERCÍCIOS Álgebra III MATEMÁTICA DCET UESC Humberto José Bortolossi. Grupos e Subgrupos H H SEGUNDA LISTA DE EXERCÍCIOS Ágebra III MATEMÁTICA DCET UESC Humberto José Bortoossi Grupos e Subgrupos (Entregar todos os exercícios até o dia 14/04/2004 [01] Sejam (G, um grupo, a um eemento de G e H

Leia mais

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros

Você já percebeu que os gráficos são cada vez. Relatórios de empresas Análises governamentais Relatórios de pesquisas Balanços financeiros A UA UL LA 66 Gráfico de uma equação Introdução Você já percebeu que os gráficos são cada vez mais usados na comunicação. Podemos encontrá-os em vários tipos de pubicação, expressando os mais diversos

Leia mais

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA

( ) ( ) ( ) ( ) ( ) (19) O ELITE RESOLVE IME 2012 MATEMÁTICA DISCURSIVAS MATEMÁTICA (9) 5-0 O EITE ESOVE IME 0 MTEMÁTIC DISCUSIVS MTEMÁTIC QUESTÃO 0 O segundo, o sétimo e o vigésimo sétimo termos de uma rogressão ritmética () de números inteiros, de razão r, formam, nesta ordem, uma rogressão

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4

x 1 3x 2 2x 3 = 0 2 x 1 + x 2 x 3 6x 4 = 2 6 x x 2 3x 4 + x 5 = 1 ( f ) x 1 + 2x 2 3x 3 = 6 2x 1 x 2 + 4x 3 = 2 4x 1 + 3x 2 2x 3 = 4 INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-47 Álgebra Linear para Engenharia I Primeira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS. Resolva os seguintes sistemas:

Leia mais

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA SISTEMAS LINEARES Aula 8 BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de

Leia mais

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores

(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pea Universidade Federa do Paraná (UFPR). Graduado em Matemática pea UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 199.

Leia mais

Métodos Matemáticos II

Métodos Matemáticos II Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 nbastos@mat.estv.ipv.pt http://www.estv.ipv.pt/paginaspessoais/nbastos.

Leia mais

CM005 Algebra Linear Lista 1

CM005 Algebra Linear Lista 1 CM005 Algebra Linear Lista Alberto Ramos. Para cada um dos sistemas de equações lineares, use o método de Gauss para obter um sistema equivalente cuja matriz de coeficientes esteja na forma escada. Indique

Leia mais

Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan

Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú Curso de Licenciatura em Matemática marcio@matematicauva.org 8

Leia mais

Curso de Álgebra Linear

Curso de Álgebra Linear Curso de Álgebra Linear Fundamentos e Aplicações Terceira Edição 25 de Outubro de 2012 Marco Cabral PhD Indiana University, EUA Paulo Goldfeld PhD Courant Institute, EUA Departamento de Matemática Aplicada

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVII Oimpíada Brasieira de Matemática GBRITO Segunda Fase Souções Níve 3 Segunda Fase Parte CRITÉRIO DE CORREÇÃO: PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima

Leia mais

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão

Notas de Aula Álgebra Linear II IFA Prof. Paulo Goldfeld Versão Notas de Aula Álgebra Linear II IFA 2007.1 Prof. Paulo Goldfeld Versão 2007.03.29 1 2 Contents 2 Espaços Vetoriais 5 2.1 Espaços e Subespaços....................... 5 2.2 Independência Linear.......................

Leia mais

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1

Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1 Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

Álgebra Linear Semana 02

Álgebra Linear Semana 02 Álgebra Linear Semana 2 Diego Marcon 3 de Abril de 27 Conteúdo Vetores Representação matricial para sistemas Lineares 3 2 Combinações lineares de vetores 4 3 Sistemas lineares e combinações lineares das

Leia mais

3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz. Definição 1 Sejam m e n dois números naturais.

3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz. Definição 1 Sejam m e n dois números naturais. 3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz Definição 1 Sejam m e n dois números naturais. Uma matriz real m n é um conjunto de mn números reais distribuídos por m linhas

Leia mais

Informá(ca para as Ciências e Engenharias Versão : C (Engenharia Civil) Aula 10. Pedro Barahona 2016 / 17

Informá(ca para as Ciências e Engenharias Versão : C (Engenharia Civil) Aula 10. Pedro Barahona 2016 / 17 Informá(ca para as Ciências e Engenharias Versão : C (Engenharia Civi) Aua 10 Pedro Barahona 2016 / 17 Sumário Introdução aos sistemas de bases de dados: Interrogações mais compexas em SQL. Simuação de

Leia mais

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014 es Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais Abril de 2014 Matrizes Matrizes Uma matriz A, m n (m por n), é uma tabela de mn números dispostos em m linhas e n colunas.

Leia mais

Estado estacionário condução + convecção

Estado estacionário condução + convecção Universidade de São Paulo Escola de Engenharia de orena Departamento de Engenharia de Materiais Estado estacionário condução + convecção Prof. uiz T. F. Eleno Escola de Engenharia de orena da Universidade

Leia mais

Lista de exercícios 2 Sistemas de equações lineares II

Lista de exercícios 2 Sistemas de equações lineares II Universidade Federal do Paraná 2 semestre 2016. Algebra Linear, CM 005 Olivier Brahic Lista de exercícios 2 Sistemas de equações lineares II Exercício 1: As matrizes aumentadas seguintes estão na forma

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARA

UNIVERSIDADE ESTADUAL VALE DO ACARA UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática - a Avaliação (comentada) - Álgebra Matricial - 5/5/24 Professor: Márcio Nascimento. Classifique cada afirmação como verdadeira ou falsa.

Leia mais

SEM0 M Aul u a l a 14 Sistema de Múltiplos Corpos Sistema Pro r f. D r. r Ma M r a c r elo l Becker SEM - EESC - USP

SEM0 M Aul u a l a 14 Sistema de Múltiplos Corpos Sistema Pro r f. D r. r Ma M r a c r elo l Becker SEM - EESC - USP SEM4 - Aua 4 Sistema de Mútipos Corpos Prof. Dr. Marceo ecker SEM - EESC - USP Sumário da Aua ntrodução Sist. Muti-corpos no Pano Sist. Muti-corpos no Espaço Princípio de Jourdain Apicações /67 ntrodução

Leia mais

Resolvendo algebricamente um PPL

Resolvendo algebricamente um PPL Capítulo 6 Resolvendo algebricamente um PPL 6.1 O método algébrico para solução de um modelo linear A solução de problemas de programação linear com mais de duas variáveis, não pode ser obtida utilizando-se

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios

MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação

Leia mais

Operando com potências

Operando com potências A UA UL LA 71 Operando com potências Introdução Operações com potências são muito utiizadas em diversas áreas da Matemática, e em especia no cácuo agébrico O conhecimento das propriedades operatórias da

Leia mais

diferente do número de variáveis

diferente do número de variáveis Eliminação Gaussiana - Número de equações diferente do número de variáveis Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática

Leia mais

Introdução à Álgebra Linear - MTM 112 Prof. Fabiana Fernandes

Introdução à Álgebra Linear - MTM 112 Prof. Fabiana Fernandes Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática Introdução à Álgebra Linear - MTM 2 Prof. Fabiana Fernandes Lista 02 Sistemas Lineares. Resolva e

Leia mais

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e

Programação Linear M É T O D O S : E S T A T Í S T I C A E M A T E M Á T I C A A P L I C A D A S D e 1 1 d e m a r ç o a 2 9 d e a b r i l d e Programação Linear A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Existe um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento

Leia mais

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07

Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07 Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2016 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser

Leia mais

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA

ENTECA 2003 IV ENCONTRO TECNOLÓGICO DA ENGENHARIA CIVIL E ARQUITETURA 4 ENTECA RESOLUÇÃO DE PÓRTICOS PLANOS ATRAVÉS DA ANÁLISE MATRICIAL DE ESTRUTURAS Marcio Leandro Micheim Acadêmico Engenharia Civi Universidade Estadua de Maringá e-mai: micheim_eng@hotmaicom Ismae Wison

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO

4 DEFINIÇÃO DA GEOMETRIA, MALHA E PARÂMETROS DA SIMULAÇÃO 4 DEFINIÇÃO DA GEOETRIA, ALHA E PARÂETROS DA SIULAÇÃO 4.1 Fornaha experimenta A fornaha experimenta utiizada como caso teste por Garreton (1994), era de 400kW aimentada com gás natura. Deste trabaho, estão

Leia mais

Avaliação e programa de Álgebra Linear

Avaliação e programa de Álgebra Linear Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny 1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações

Leia mais

Operando com potências

Operando com potências A UA UL LA Acesse: http://fuvestibuar.com.br/ Operando com potências Introdução Operações com potências são muito utiizadas em diversas áreas da Matemática, e em especia no cácuo agébrico. O conhecimento

Leia mais

ÁLGEBRA LINEAR: aplicações de sistemas lineares

ÁLGEBRA LINEAR: aplicações de sistemas lineares ÁLGEBRA LINEAR: aplicações de sistemas lineares SANTOS, Cleber de Oliveira dos RESUMO Este artigo apresenta algumas aplicações de sistemas lineares, conteúdo estudado na disciplina de Álgebra linear da

Leia mais

1 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de (b)

1 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de (b) a Lista de Exercícios de MAT457 Escola Politécnica o semestre de 04 Resolva os seguintes sistemas: x + x x 3 + 3x 4 = a 3x + x x 3 + x 4 = 4 3x + 3x + 3x 3 3x 4 = 5 c x + x 3 + x 5 = x + x 3 + x 5 + x

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos:

Resolução de Sistemas Lineares. Método de Gauss. O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Método de Gauss O algoritimo conhecido como Método de Gauss é desenvolvido a partir de dois ingredientes básicos: Resolução de Sistemas Lineares Triangulares Procedimento

Leia mais