Um Método para o Cálculo da Inversa de Matrizes Simétricas e Positivas Definidas em Bloco

Tamanho: px
Começar a partir da página:

Download "Um Método para o Cálculo da Inversa de Matrizes Simétricas e Positivas Definidas em Bloco"

Transcrição

1 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, 2017 Trabaho apresentado no CNMAC, Gramado - RS, 2016 Proceeding Series of the Braziian Society of Computationa and Appied Mathematics Um Método para o Cácuo da Inversa de Matrizes Simétricas e Positivas Definidas em Boco Moisés Ceni 1 Departamento de Matemática e Desenho, CAp-UERJ, UERJ, Rio de Janeiro, RJ Programa de Pós-Graduação em Engenharia Mecânica, FEN, UERJ, Rio de Janeiro, RJ Luiz Mariano Carvaho 2 Departamento de Matemática Apicada, IME, UERJ, Rio de Janeiro, RJ Michae Souza 3 Departamento de Estatística e Matemática Apicada, UFC, Ceará, CE Resumo Nosso objetivo é propor um novo agoritmo para o cácuo de inversas de matrizes simétricas e positivas definidas (SPD) em boco Em [1], os autores propõem um agoritmo baseado no processo de Gram-Schmidt, utiizando um produto interno induzido por uma matriz SPD, para ser usado como precondicionador para o Método de Gradientes Conjugados Aqui propomos uma generaização desse processo para matrizes SPD em boco, que também será utiizado, posteriormente, como precondicionador Paavras-chave Matriz SPD, Inversa Aproximada, Matriz em Boco, Precondicionador 1 Introdução Durante todo o texto, as matrizes são reais Dada uma matriz quadrada A R n n, o i, j-ésimo boco de A será denotado por A [i,j] Anaogamente, dada uma matriz boco couna b, o i-ésimo boco de b será denotado por b É natura ainda definir o vetor boco onde o i-ésimo boco é a identidade e T := [0 0 I n 0], Definição 11 Dados a matriz A R n n e os vetores bocos u, m n, e v, m n, dizemos que u e v, com u v, são A conjugados se u T Av = 0 (matriz nua de ordem n) Esta reação pode ser escrita como u T Av = δ uv P, onde δ uv é a função deta de Kronecker e P R n n Denote por a T a i-ésima inha boco de A No que se segue, A é uma matriz SPD 1 moisesceni@gmaicom 2 uizmc@imeuerjbr 3 souzamichae@gmaicom DOI: / SBMAC

2 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, Regras Gerais A matriz A m m é uma matriz em bocos e cada boco A [i,j] é n n, onde m = n k, k N Se conseguirmos obter uma coeção {z }, i = 1,, k, de vetores bocos A conjugados, onde cada vetor boco z é uma matriz m n, podemos formar a matriz Z, m m: Z = [z [1] z [2] z [k] ], de modo que Z T AZ = D, onde D é uma matriz m m diagona por bocos Se A e Z forem não singuares, segue que D é não singuar e obteremos A 1 = ZD 1 Z T O agoritmo a seguir constrói as matrizes Z e D Agoritmo 1 - Método da Inversa = e, 1 i k 2: for i = 1,, k do 3: for j = i,, k do 1: z (0) 4: 5: end for 6: if i = k then 7: vá para 13 8: end if 9: for j = i + 1,, k do 10: 11: end for 12: end for 13: z := z (i 1) P (i 1) j := z (i) [j] := z (i 1) [j] and P i := P (i 1) i, 1 i k { (i 1) (z ) T Az (i 1) [j] a T z(i 1) z (i 1) i j i = j (P (i 1) i ) 1 P (i 1) j P 1 0 n n 0 n n 0 n n P 2 0 n n 14: return Z = [z [1] z [2] z [k] ], and D = 0 n n 0 n n P k Lema 21 Se A R n n é SPD, então A é não singuar Demonstração Veja [4], Fact 324 DOI: / SBMAC

3 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, Lema 22 Se A R n n é SPD, então todas as submatrizes íderes principais e o compemento de Schur são matrizes SPD Demonstração Veja [4], Fact 327 Teorema 21 O Agoritmo 1 produz uma matriz D não singuar e uma matriz Z trianguar superior (por bocos), cujas entradas diagonais são a identidade e cujas counas são A conjugadas Demonstração A prova seguirá por indução: mostraremos que a matriz Z é trianguar com entradas diagonais iguais à identidade fazendo a indução sobre as counas de Z, ou seja, mostraremos que z só tem preenchimento não nuo até o i-ésimo boco, o qua é a identidade, com indução em i Juntamente com essa indução, chegaremos à concusão de que as counas z de Z são A conjugadas Finamente, demonstraremos que cada P i gerado é não singuar ETAPA 1 - Primeiro caso A primeira couna z [1] de Z nada mais é que I 0 z [1] = 0 Portanto, z [1] só tem preenchimento não nuo até o primeiro boco, o qua é a identidade Agora, peos Lemas 21 e 22, P 1 = A [1,1] é não singuar Segue ainda que z [1] A conjuga com ee mesmo ETAPA 2 Já provamos que vae o primeiro passo da indução Provaremos agora que os ( 1)-ésimos primeiros passos impicam no -ésimo passo Mas o que dizem os ( 1)-ésimos primeiros passos? São três informações: Se z {z [1],, z [ 1] }, então z só tem preenchimento não nuo até o i-ésimo boco, o qua é a identidade; {z [1],, z [ 1] } são A conjugados; P 1,, P 1 são não singuares Nosso intuito é concuir que: z [] só tem preenchimento não nuo até o -ésimo boco, o qua é a identidade; z [], A conjuga com z {z [1],, z [ 1] }; P é não singuar DOI: / SBMAC

4 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, ETAPA 3 - z [] só tem preenchimento não nuo até o -ésimo boco, o qua é a identidade Podemos escrever, no -ésimo passo do agoritmo: Por sua vez, e, portanto, z [] = z ( 1) [] z ( 2) [] z [] = z ( 3) [] = z ( 2) [] = z ( 3) [] Apicando este mesmo raciocínio, concuímos que: z [] = z (0) [] z [ 1] P 1 1 P ( 2) z [ 2] P 1 2 P ( 3), z [ 2] P 1 2 P ( 3) z [ 1] P 1 1 P ( 2) z [1] P1 1 P (0) z [2] P2 1 P (1) z [ 2] P 1 2 P ( 3) z [ 1] P 1 1 P ( 2) Agora, z (0) [] só tem preenchimento não nuo no -ésimo boco, que é a identidade Por outro ado, os ( 1) passos anteriores impicam que z só tem preenchimento não nuo até o i-ésimo boco, para i = 1,, 1 Segue que z [] = z ( 1) [] não tem preenchimento depois do -ésimo boco e é igua à identidade no -ésimo boco ETAPA 4 - z [], A conjuga com z {z [1],, z [ 1] } Seja z {z [1], z [2],, z [ 1] } Então, z T Az [] = z T A(z( 2) [] = z T Az( 2) [] z [ 1] P 1 1 P ( 2) Agora, se i = 1, então z T Az [ 1] = P 1 e portanto, z T Az [] = z T Az( 2) [] Por outro ado, se i 1, então z T Az [ 1] = 0 e ) z T Az [ 1]P 1 1 P ( 2) P ( 2) = 0 z T Az [] = z T Az( 2) [] = z T A(z( 3) [] z [ 2] P 1 2 P ( 3) = z T Az( 3) [] ) z T Az [ 2]P 1 2 P ( 3) Novamente, se i = 2, então z T Az [ 2] = P 2 e, assim z T Az [] = z T Az( 3) [] Se, por outro ado, i 2, z T Az [ 2] = 0 e teremos: P ( 3) = 0 z T Az [] = z T Az( 3) [] DOI: / SBMAC

5 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, Repetindo este mesmo argumento quantas vezes for necessário, chegaremos no útimo caso possíve, ou seja: z T Az [] = z T Az(0) [] P (0) = 0 ETAPA 5 - P é não singuar Seja B o ( n) ( n) boco íder principa de A Então, B é não singuar peo Lema 21 Se z {z [1], z [2],, z [] } então, pea etapa 3, z tem o i-ésimo boco igua à identidade e só possui bocos não nuos antes do i-ésimo boco, incusive este Logo, anua a T [j] para j > Reciprocamente, anua a couna a [j] de A para j > Portanto, z T [] Az [] é equivaente a: z T [] A Az [] z T [] B z [], onde z [] é a restrição de z [] aos primeiros bocos Pea etapa 4 e peos ( 1) passos anteriores, z [] A conjuga com z {z [1],, z [ 1] } e {z [1],, z [ 1] } são A conjugados Como Z = [ z [1] z [2] z [] ] é não singuar e B também é não singuar Segue que P Z T 0 P 2 0 B Z = D = 0 0 P tem posto competo Então P é não singuar Coroário 21 Sejam B i o boco íder principa (i n) (i n) de A e i = det(b i ) Vae a reação det(p i ) = i, onde 0 = 1, i = 1,, k i 1 Demonstração A reação Z T B Z = D nos diz que det(b ) = det( D) = det(p 1 ) det(p ), pois det( Z) = 1 Assim, det(p 1 ) = det(b 1 ) = 1 0 Agora, se det(p k ) = k, então k 1 k+1 = det(b k+1 ) = det(p 1 ) det(p k+1 ) = 1 2 k det(p k+1 ) = k det(p k+1 ) 0 1 k 1 Portanto, o resutado segue imediatamente DOI: / SBMAC

6 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, No artigo [1] é provado que, se impantarmos uma estrutura arbitrária de zeros na parte estritamente superior de Z ou eiminarmos os termos que tenham uma magnitude menor que um parâmetro previamente estabeecido, o Agoritmo 1 (boco escaar) não quebrará (isto é, P i 0) Para tanto é suficiente que A seja uma matriz H 4 Lembramos que quaquer matriz diagonamente dominante é uma matriz H Considere a matriz 2, 00 0, 40 0, 10 0, 00 A = 0, 40 1, 08 2, 00 0, 00 0, 10 2, 00 3, 96 0, 00, 0, 00 0, 00 0, 00 1, 00 e uma toerância para excusão de T o = 0, 06 para as entradas da parte estritamente superior de Z Apicando o Agoritmo 1 para o caso onde o boco tem ordem um (que coincide com o agoritmo proposto por [1]), há uma quebra em P 3, produzindo: 2, 00 0, 00 0, 00 0, 00 D = 0, 00 1, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 0, 00 NaN Considere novamente a matriz A com uma toerância para excusão de T o = 0, 06 para as entradas da parte estritamente superior de Z Vamos apicar o Agoritmo 1 para o caso onde os bocos tenham ordem 2, ou seja, vamos repartir a matriz A em A[1,1] A A = [1,2], A [2,1] A [2,2] onde A [1,1] = 2, 00 0, 40, A 0, 40 1, 08 [1,2] = e A [2,2] = 0, 10 0, 00, A 2, 00 0, 00 [2,1] = 3, 96 0, 00 0, 00 1, 00 Neste caso, as matrizes produzidas peo Agoritmo 1 são: 2, , , , 0000 D = 0, , , , , , , , , , , , A é uma matriz H se à = ãij é uma matriz M, onde { aij i j, ã ij := a ii i = j 0, 10 2, 00, 0, 00 0, 00 DOI: / SBMAC

7 Proceeding Series of the Braziian Society of Appied and Computationa Mathematics, Vo 5, N 1, e 1, , , , 0000 Z = 0, , , , , , , , , , , , 0000 Repare que neste caso não houve quebra Essa diferença é justificada peo Coroário 21, pois quanto maior for a ordem do boco, menor é a quantidade de menores principais não nuos que são necessários para que o agoritmo funcione 3 Concusões O método proposto estende o resutado apresentado em [1] para matrizes SPD com uma estrutura em bocos A famíia de matrizes para a qua o Agoritmo 1 não quebra é maior do que a famíia de matrizes para a qua o agoritmo proposto em [1] funciona Agradecimentos O primeiro autor agradece à CAPES peo apoio ao projeto de pesquisa Agradecemos ainda a Univesidade do Estado do Rio de Janeiro e, em especia, ao Programa de Pós- Graduação em Engenharia Mecânica Agradecemos ainda aos revisores peo cuidadoso trabaho feito Referências [1] M Benzi, C D Meyer and M Tuma A Sparse Approximate Inverse Preconditioner for the Conjugate Gradiente Method, Soc Ind App Math, 17: , 1996 [2] M Benzi and M Tuma A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems, Soc Ind App Math, 19: , 1998 [3] R A Horn and C R Johnson Matrix Anaysis, Cambridge University Press, New York, 2013 [4] I C F Ipsen Numerica Matrix Anaysis, Linear Systems an Least Squares, Soc Ind App Math, Phiadephia, 2009 [5] M J Tsatsomeros Principa Pivot Transforms: properties and appications, Lin Ag App, 307: , 1999 DOI: / SBMAC

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

Num determinado jogo de fichas, os valores

Num determinado jogo de fichas, os valores A UA UL LA Potências e raízes Para pensar Num determinado jogo de fichas, os vaores dessas fichas são os seguintes: 1 ficha vermeha vae 5 azuis; 1 ficha azu vae 5 brancas; 1 ficha branca vae 5 pretas;

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico

Leia mais

Exercícios e questões de Álgebra Linear

Exercícios e questões de Álgebra Linear CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Aplicação do Teorema de Pitágoras

Aplicação do Teorema de Pitágoras A UA U L L A Apicação do Teorema de Pitágoras Para pensar Uma escada de 5 m de comprimento está apoiada num muro. O pé da escada está afastado 3 m da base do muro. Qua é a atura, no muro, que a escada

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

Aula 8 Variações da Eliminação de Gauss/Fatoração LU.

Aula 8 Variações da Eliminação de Gauss/Fatoração LU. Aula 8 Variações da Eliminação de Gauss/Fatoração LU. MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Determinantes 1 Permutação e Inversão 2 Determinantes de matriz de

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine

Leia mais

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o

Prof a Dr a Ana Paula Marins Chiaradia MATRIZ INVERSA. Menores: O menor de um elemento a ij de uma matriz A de ordem n é definido como sendo o Projeto TEIA DO SABER 006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof Dr José Ricardo Zeni Metodologias de Ensino

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

a 21 a 22... a 2n... a n1 a n2... a nn

a 21 a 22... a 2n... a n1 a n2... a nn Projeto TEIA DO SABER 2006 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo Zeni Metodologias de Ensino

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R

2 Conceitos Básicos. onde essa matriz expressa a aproximação linear local do campo. Definição 2.2 O campo vetorial v gera um fluxo φ : U R 2 R 2 Conceitos Básicos Neste capítulo são apresentados alguns conceitos importantes e necessários para o desenvolvimento do trabalho. São apresentadas as definições de campo vetorial, fluxo e linhas de fluxo.

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

Capítulo 2 - Determinantes

Capítulo 2 - Determinantes Capítulo 2 - Determinantes Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 19 DeMat-ESTiG Sumário

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Aula 03 Inversão de matrizes UNIVERSIDDE FEDERL DO RIO GRNDE DO NORTE Prof. Hector Carrion S. Álgebra Linear ula Inversão de matrizes Resumo Matriz inversa Inversa de matriz elementar Matriz adjunta Inversão de matrizes Uma matriz

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

O Cálculo λ sem Tipos

O Cálculo λ sem Tipos Capítulo 2 O Cálculo λ sem Tipos 21 Síntaxe e Redução Por volta de 1930 o cálculo lambda sem tipos foi introduzido como uma fundação para a lógica e a matemática Embora este objectivo não tenha sido cumprido

Leia mais

Duas aplicações da Topologia à Álgebra Linear. 1 Quando são duas matrizes semelhantes?

Duas aplicações da Topologia à Álgebra Linear. 1 Quando são duas matrizes semelhantes? Duas aplicações da Topologia à Álgebra Linear José Carlos Santos Departamento de Matemática Faculdade de Ciências da Universidade do Porto e-mail: jcsantos@fc.up.pt Resumo: Este artigo contém duas aplicações

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

ENG1000 Introdução à Engenharia

ENG1000 Introdução à Engenharia ENG1000 Introdução à Engenharia Aula 09 Vetores e Matrizes Edirlei Soares de Lima Introdução Até agora nós temos usado variáveis simples para armazenar valores usados por nossos

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

Optimização e Algoritmos (2004/2005)

Optimização e Algoritmos (2004/2005) Optimização e Algoritmos (2004/2005) Instituto Superior Técnico Engenharia Electrotécnica e de Computadores Série de Problemas 3 Regras de Armijo e Wolfe, Introdução às funções convexas Problema 1.[Regras

Leia mais

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Sistemas de Vírgula Flutuante

Sistemas de Vírgula Flutuante Luiz C. G. Lopes Departamento de Matemática e Engenharias Universidade da Madeira MAT 2 05 2007/08 Definição. Diz-se que um número real x R\{0} é um número de vírgula flutuante normalizado se forem verificadas

Leia mais

Matriz de Sensibilidade Modal

Matriz de Sensibilidade Modal Introdução ao Controle Automático de Aeronaves Matriz de Sensibilidade Modal Leonardo Tôrres torres@cpdeeufmgbr Escola de Engenharia Universidade Federal de Minas Gerais/EEUFMG Dep Eng Eletrônica EEUFMG

Leia mais

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc

Álgebra Linear. Bacharelado em Sistemas de Informação. Período 2016.1. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc Bacharelado em Sistemas de Informação Período 26. Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc E-mails: damasceno2@hotmail.com damasceno2@uol.com.br damasceno24@yahoo.com.br Site: www.damasceno.info

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Álgebra Linear Computacional

Álgebra Linear Computacional Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Emparelhamentos Bilineares Sobre Curvas

Emparelhamentos Bilineares Sobre Curvas Emparelhamentos Bilineares Sobre Curvas Eĺıpticas Leandro Aparecido Sangalli sangalli@dca.fee.unicamp.br Universidade Estadual de Campinas - UNICAMP FEEC - Faculdade de Engenharia Elétrica e de Computação

Leia mais

METODOLOGIA DE PROJETO

METODOLOGIA DE PROJETO METODOLOGIA DE PROJETO DE INTERIORES AULA 06: PERSPECTIVA LINEAR DE 1 PONTO. MÃO LIVRE Disciplina do Curso Superior em Design de Interiores da UNAES/Anhanguera Educacional Arq. Urb. Octavio F. Loureiro

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

Registro de Retenções Tributárias e Pagamentos

Registro de Retenções Tributárias e Pagamentos SISTEMA DE GESTÃO DE PRESTAÇÃO DE CONTAS (SiGPC) CONTAS ONLINE Registro de Retenções Tributárias e Pagamentos Atualização: 20/12/2012 A necessidade de registrar despesas em que há retenção tributária é

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de

Leia mais

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID

LABORATÓRIO DE CONTROLE I SINTONIA DE CONTROLADOR PID UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO COLEGIADO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE CONTROLE I Experimento 6: SINTONIA DE CONTROLADOR PID COLEGIADO DE ENGENHARIA ELÉTRICA DISCENTES: Lucas Pires

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. antunes@ibilce.unesp.br, socorro@ibilce.unesp. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos e Algoritmos Preparado a partir do texto: Rangel, Socorro.

Leia mais

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática INDUÇÃO MATEMÁTICA Indução Matemática é um método de prova matemática tipicamente usado para estabelecer que um dado enunciado é verdadeiro para todos os números naturais, ou então que é verdadeiro para

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Método Simplex Revisado

Método Simplex Revisado Método Simplex Revisado Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br Introdução Método

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

Lei da Indução de Faraday

Lei da Indução de Faraday Nesta prática, vamos estudar campos magnéticos que variam entamente no tempo. ntroduziremos a ei de indução de Faraday e a verificaremos experimentamente. ntroduziremos o conceito de indutância, uma nova

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

Lista 7.2 Optimização Livre

Lista 7.2 Optimização Livre Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II 1. Extremante local de uma função escalar f: Ponto do domínio de f cuja imagem é não superior ou não inferior às imagens de

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

Algoritmos e Estruturas de Dados I. Variáveis Indexadas. Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I. Variáveis Indexadas. Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I Variáveis Indexadas Pedro O.S. Vaz de Melo Por que índices são importantes? Como uma loja de sapatos artesanais deve guardar os seus produtos? 1 2 3 4 Tamanhos entre

Leia mais

Manual de Utilização. Ao acessar o endereço www.fob.net.br chegaremos a seguinte página de entrada: Tela de Abertura do Sistema

Manual de Utilização. Ao acessar o endereço www.fob.net.br chegaremos a seguinte página de entrada: Tela de Abertura do Sistema Abaixo explicamos a utilização do sistema e qualquer dúvida ou sugestões relacionadas a operação do mesmo nos colocamos a disposição a qualquer horário através do email: informatica@fob.org.br, MSN: informatica@fob.org.br

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Análise de Sistemas de Controle no Espaço de Estados

Análise de Sistemas de Controle no Espaço de Estados Análise de Sistemas de Controle no Espaço de Estados 9.1 INTRODUÇÃO* (Capítulo 11 do Ogata) Um sistema moderno complexo pode ter muitas entradas e muitas saídas e elas podem ser interrelacionadas de maneira

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Ficha de Exercícios nº 2

Ficha de Exercícios nº 2 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 2 Matrizes, Determinantes e Sistemas de Equações Lineares 1 O produto de duas matrizes, A e B, é a matriz nula (mxn). O que pode

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

2y 2z. x y + 7z = 32 (3)

2y 2z. x y + 7z = 32 (3) UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando

Leia mais

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter.

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter. Leis de Kepler 1. (Ufpe 01) Um planeta realiza uma órbita elíptica com uma estrela em um dos focos. Em dois meses, o segmento de reta que liga a estrela ao planeta varre uma área A no plano da órbita do

Leia mais

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes.

Matrizes. Sumário. 1 pré-requisitos. 2 Tipos de matrizes. Sadao Massago 2011-05-05 a 2014-03-14. 1 pré-requisitos 1. 2 Tipos de matrizes. Matrizes Sadao Massago 20-05-05 a 204-03-4 Sumário pré-requisitos 2 Tipos de matrizes 3 Operações com matrizes 3 4 Matriz inversa e transposta 4 5 Determinante e traço 5 Neste texto, faremos uma breve

Leia mais

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7!

RESUMO ABSTRACT. Vamos supor que uma caixa-preta, representada por uma relação de entrada e saída. f :!! 7! REALIZAÇÃO CANÔNICA DA SEQÜÊNCIA DE FIBONACCI Paulo Franca Bandel (IC) 1 & Marcos Antonio Botelho Labmat Laboratório de Matemática Experimental Departamento de Matemática Instituto Tecnológico de Aeronáutica

Leia mais

Análise de Variância (ANOVA)

Análise de Variância (ANOVA) Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá los digitalmente, devemos: Converter

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 05 matemática Calculando áreas de figuras geométricas planas Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 15

Leia mais