Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tamanho: px
Começar a partir da página:

Download "Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo."

Transcrição

1 Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para é decrescente n interval se para é cnstante n interval se para tds s pnts em Cresciment e Decresciment Seja definida em um interval e derivável neste interval Entã: Se para qualquer e, entã é crescente em Se para qualquer e, entã é decrescente em Se para qualquer e, entã é cnstante em Entã, para determinar s intervals de cresciment e decresciment da funçã, tems que estudar sinal da primeira derivad 1

2 Máxims e Mínims Relativs Seja definida em um interval e seja um pnt pertencente a este interval de tal frma que trca de sinal em Entã será abscissa u de um pnt de máxim lcal u de um pnt de mínim lcal Estes pnts também sã chamads de extrems relativs Dizer que trca de sinal em significa dizer que há um interval que cntém : a) b) OU N cas descrit n ítem (a) acima pnt será abscissa de um pnt de mínim lcal, e pnt d plan cartesian é um pnt de mínim lcal N cas descrit n ítem (b) acima pnt será abscissa de um pnt de máxim lcal, e pnt d plan cartesian é um pnt de máxim lcal Para determinar s pnts de máxim e mínim lcais de uma funçã, também tems que estudar sinal da primeira derivada desta funçã Assínttas Hrizntais Seja definida em um interval Uma assíntta hrizntal de será uma reta (paralela a eix x) da qual gráfic de se aprxima a medida em que u 2

3 Para determinar as assínttas hrizntais calculams s limites e Se, a calcularms estes limites, encntrarms valres reais, entã a funçã terá assínttas hrizntais dadas pr estes valres Mas, se a calcularms estes limites cncluirms que, e, entã a funçã nã terá assínttas hrizntais Assínttas Verticais Seja uma funçã Uma assíntta vertical de será uma reta (paralela a eix y) da qual gráfic de se aprxima a medida em que u Se existe um pnt de tal frma que e/u Entã a reta (paralela a eix y) será uma assíntta vertical de Se nã huver pnts de descntinuidade da funçã em, entã a funçã nã terá assínttas verticais Se huver pnts de descntinuidade calculams s limites e para verificar se seus valres divergem para u 3

4 Cncavidade Seja definida em um interval Dizems que é côncava para cima n interval se gráfic de está sempre acima de suas retas tangentes neste interval; e, côncava para baix se está sempre abaix de suas retas tangentes neste interval Outra frma de definir cncavidade é dizer que f é côncava para cima se suas retas tangentes a gráfic tem inclinações crescentes em, e côncava para baix se suas retas tangentes a gráfic tem inclinações decrescentes em Se f é duas vezes derivável em : Se em entã f é côncava para cima em Se em entã f é côncava para baix em Entã, para determinar a cncavidade de uma funçã, tems que estudar sinal de sua segunda derivad Pnt de Inflexã Seja definida em um interval e seja um pnt pertencente a este interval de tal frma que trca de sinal em Entã será abscissa u de um pnt de inflexã O pnt de inflexã é pnt n qual a funçã muda de cncavidade Pnt de Inflexã 4

5 Dizer que trca de sinal em significa dizer que há um interval que cntém : a) b) OU Ns dis cass acima pnt será abscissa de um pnt de inflexã, e pnt d plan cartesian é um pnt de inflexã Para determinar s pnts de inflexã de uma funçã, também tems que estudar sinal da primeira derivada desta funçã Estud das raízes de funções plinmiais Funções plinmiais sã funções d tip Se é uma funçã plinmial, entã seu dmíni é td cnjunt ds númers reais, é cntínua em td seu dmíni,, e, Se, entã as raízes d plinômi sã as abscissas ds pnts nde gráfic da crta eix Uma funçã plinmial de grau tem, n máxim, raízes reais, e extrems lcais (máxims u mínims lcais)pdems identificar e determinar um interval nde pdems encntrar a raiz de uma funçã plinmial estudand seus extrems lcais (máxims e mínims relativs) Pdems encntrar uma raiz entre dis extrems lcais cnsecutivs Se é máxim lcal e se é primeir pnt de mínim lcal que crre após, e ainda se (ist é, tem sinais psts ), entã certamente encntrarems uma raiz de n interval Da mesma frma, se é mínim lcal e se é primeir pnt de máxim lcal que crre após, e ainda se, entã certamente encntrarems uma raiz de n interval 5

6 Exercícis 1) Determine s intervals de cresciment e decresciment e esbce gráfic das funções abaix Após esbçar gráfic, diga qual é númer de raízes de cada funçã: d e 2) Mstre que a equaçã admite uma única raiz real e determine um interval de cmpriment 1 que cntenha esta raiz 3) Para as funções dadas abaix, determine s intervals nde elas sã crescentes e decrescentes d 4) Mstre, usand a derivada que a funçã é sempre decrescente, em qualquer pnt de seu dmíni 5) Encntre as assínttas verticais e hrizntais das funções dadas abaix, se existirem: 6

7 6) Determine s pnts de máxim e mínim lcais das funções abaix, se existirem: 7) Mstre que só há um pnt de mínim de uma funçã, cm, que crre quand 8) Determine s intervals de cresciment e decresciment, a cncavidade nestes intervals, s pnts de inflexã, s máxims e mínims lcais (se existirem), e as assínttas verticais e hrizntais (se existirem), das funções dadas abaix: d e 7

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada.

CÁLCULO I Aula 15: Concavidade. Teste da Segunda Derivada. CÁLCULO I Aula 15: Concavidade.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Concavidade 2 Considere um intervalo I e uma função f : I R derivável cujo gráco é dado abaixo.

Leia mais

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Funçã Inversa. Funçã sbrejetra Ntems que

Leia mais

CURSO de ENGENHARIA QUÍMICA - Gabarito

CURSO de ENGENHARIA QUÍMICA - Gabarito UNIVERSIDADE FEDERAL FLUINENSE TRANSFERÊNCIA semestre letiv de 008 e 1 semestre letiv de 009 CURSO de ENGENHARIA QUÍICA - Gabarit INSTRUÇÕES AO CANDIDATO Veriique se este cadern cntém: PROVA DE REDAÇÃO

Leia mais

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma:

A grandeza física capaz de empurrar ou puxar um corpo é denominada de força sendo esta uma grandeza vetorial representada da seguinte forma: EQUILÍBRIO DE UM PONTO MATERIAL FORÇA (F ) A grandeza física capaz de empurrar u puxar um crp é denminada de frça send esta uma grandeza vetrial representada da seguinte frma: ATENÇÃO! N S.I. a frça é

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função;

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 19: Concavidade. Teste da Segunda Derivada. Denir concavidade de uma função; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 19: Concavidade. Teste da Segunda Derivada. Objetivos da Aula Denir concavidade de uma função; Denir ponto de inexão;

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

CAPÍTULO VIII. Análise de Circuitos RL e RC

CAPÍTULO VIII. Análise de Circuitos RL e RC CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

Cálculo Aplicado à Engenharia Elétrica 2 o Semestre de 2013 Prof. Maurício Fabbri. 1 a Série de Exercícios Números complexos

Cálculo Aplicado à Engenharia Elétrica 2 o Semestre de 2013 Prof. Maurício Fabbri. 1 a Série de Exercícios Números complexos Cálcul Aplicad à Engenharia Elétrica Semestre de 013 Prf. Mauríci Fabbri 1 a Série de Exercícis Númers cmplexs 00-13 NÚMEROS COMPLEXOS - DEFINIÇÃO O PLANO COMPLEXO FORMAS RETANGULAR E POLAR 1. Esbce s

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas

Cartografia e Geoprocessamento Parte 1. Geoide, Datum e Sistema de Coordenadas Geográficas Cartgrafia e Geprcessament Parte 1 Geide, Datum e Sistema de Crdenadas Gegráficas Cartgrafia e Geprcessament qual a relaçã? Relaçã através d espaç gegráfic; Cartgrafia representa espaç gegráfic; Geprcessament

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

Administração AULA- 7. Economia Mercados [3] Oferta & Procura

Administração AULA- 7. Economia Mercados [3] Oferta & Procura Administraçã AULA- 7 1 Ecnmia Mercads [3] Oferta & Prcura Prf. Isnard Martins Bibligrafia: Rsseti J. Intrduçã à Ecnmia. Atlas 06 Rbert Heilbrner Micr Ecnmia N.Gregry Mankiw Isnard Martins Pag - 1 Oferta,

Leia mais

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO

PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO PROGRAMA CLIENTE REFERÊNCIA FH REGULAMENTO Última Revisã: 02/06/2014 1. RESUMO CADASTRO Cliente preenche Frmulári de Cadastr CONFIRMAÇÃO DE CADASTRO A FH envia um e-mail de cnfirmaçã de cadastr para cliente

Leia mais

Mais problemas resolvidos! Atrito e força centrípeta:

Mais problemas resolvidos! Atrito e força centrípeta: Mais prblemas reslvids! Atrit e frça centrípeta: Prblema 04. a figura a lad, um prc brincalhã escrrega em uma ο rampa cm uma inclinaçã de 35 e leva dbr d temp que levaria se nã huvesse atrit. Qual é ceficiente

Leia mais

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe.

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo I - 2006 PONTO CRÍTICO ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO Um ponto c do domínio de

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que

Leia mais

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares

J. A. M. Felippe de Souza 3 Sinais Singulares. 3 Sinais Singulares J. A. M. Felippe de Sza 3 Sinais Singlares 3 Sinais Singlares 3. Intrdçã as sinais singlares 3 3. Sinais singlares discrets 4 O sinal impls nitári discret ( nit-implse ) 4 Prpriedades d impls nitári discret

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS 1 INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livrs de cálcul cstumam cnter um capítul u um apêndice dedicad a eplicações de fats básics da matemática e que, em geral, sã abrdads n Ensin

Leia mais

Notas de aula prática de Mecânica dos Solos II (parte 13)

Notas de aula prática de Mecânica dos Solos II (parte 13) Ntas de aula prática de Mecânica ds Sls II (parte ) Héli Marcs Fernandes Viana Cnteúd da aula prática xercíci relacinad a cálcul d empux ativ pel métd de Rankine, qual é causad pr um sl granular (u arens)

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar

M.Sc. Jose Eduardo Ruiz Rosero 1. ENG1116 Tópicos especiais Energia solar 1 ENG1116 Tópics especiais Energia slar M.Sc. Jse Eduard Ruiz Rser 2 Ementa Cnquistas e desafis da energia slar Cnceits básics Radiaçã slar Física das células slares Célula slar Cmpnentes de um sistema

Leia mais

Campos dos Goytacazes/RJ Maio 2015

Campos dos Goytacazes/RJ Maio 2015 Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira

Leia mais

Observação de fenômenos astronômicos. Como e Para Quê ESFERA CELESTE

Observação de fenômenos astronômicos. Como e Para Quê ESFERA CELESTE Observaçã de fenômens astrnômics Pente Nrte Nascente Cm e Para Quê ESFERA CELESTE Esfera e semi-esfera celestes Crdenadas astrnômicas alti-azimutal e equatrial Plan vertical Trópic de Capricórni Equadr

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Concavidade e o Teste da Derivada Segunda

Concavidade e o Teste da Derivada Segunda UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste

Leia mais

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes

Lugar Geométrico das Raízes. Lugar Geométrico das Raízes. Lugar Geométrico das Raízes Cnstruíd dretamente a partr ds póls e zers da funçã de transferênca de malha aberta H(. Os póls de malha fechada sã sluçã da equaçã + H( = 0, u: arg( H( ) = ± 80 (k+), k = 0,,,... H( = Para cada pnt s

Leia mais

Diagramas líquido-vapor

Diagramas líquido-vapor Diagramas líquid-vapr ara uma sluçã líquida cntend 2 cmpnentes vláteis que bedecem (pel mens em primeira aprximaçã) a lei de Rault, e prtant cnsiderada cm uma sluçã ideal, a pressã de vapr () em equilíbri

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

, cujos módulos são 3N. Se F A

, cujos módulos são 3N. Se F A VTB 008 ª ETAPA Sluçã mentada da Prva de Física 0. nsidere duas frças, F A e F B, cujs móduls sã 3N. Se F A e F B fazem, respectivamente, ânguls de 60 e cm eix-x ( ângul é medid n sentid anti-hrári em

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS

EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS COMÉRCIO EXTERIOR - REGULAR TERCEIRA SÉRIE NOME: EXERCÍCIOS DE REVISÃO NÚMEROS COMPLEXOS TESTES 1) Cnjunt sluçã da equaçã z z 0, n cnjunt ds númers cmplexs, é: a), 0, - c) d) e) 0 5 ) O cnjugad d númer

Leia mais

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2

QUARTA EXPERIÊNCIA DO LABORATÓRIO DE ONDAS TRANSFORMADORES DE QUARTO DE ONDA EWALDO ÉDER CARVALHO SANTANA JÚNIOR EE06115-67 TURMA2 UNIVERSIDADE FEDERA DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOOGIA DEPARTAMENTE DE ENGENHARIA DA EETRICIDADE ABORATÓRIO DE ONDAS EETROMAGNÉTICAS QUARTA EXPERIÊNCIA DO ABORATÓRIO DE ONDAS TRANSFORMADORES

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

Aula 02 Álgebra Complexa

Aula 02 Álgebra Complexa Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician Aula 02 Álgebra Cmplexa 1. Númers Cmplexs Intrduçã Circuits CC smas algébricas de tensões e

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE

LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

Lista de exercícios Conceitos Fundamentais

Lista de exercícios Conceitos Fundamentais Curs: Engenharia Industrial Elétrica Disciplina: Análise Dinâmica Prfessr: Lissandr Lista de exercícis Cnceits Fundamentais 1) Em um circuit trifásic balancead a tensã V ab é 173 0 V. Determine tdas as

Leia mais

CANDIDATO: DATA: 20 / 01 / 2010

CANDIDATO: DATA: 20 / 01 / 2010 UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

UML. Diagrama de Classes de Projeto e Diagrama de Objetos Análise e Projeto de Software. Profª. Cibele da Rosa Christ

UML. Diagrama de Classes de Projeto e Diagrama de Objetos Análise e Projeto de Software. Profª. Cibele da Rosa Christ UML Diagrama de Classes de Prjet e Diagrama de Objets Análise e Prjet de Sftware Prfª. Cibele da Rsa Christ cibele@senacrs.cm.br SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL FACULDADE DE TECNOLOGIA SENAC

Leia mais

Aula 03 Circuitos CA

Aula 03 Circuitos CA Campus I Jã Pessa Disciplina: Análise de Circuits Curs Técnic Integrad em Eletrônica Prfª: Rafaelle Felician 1. Elements de Circuits n dmíni de Fasres Intrduçã Para cmpreender a respsta de dispsitivs básics

Leia mais

Algoritmos e Estruturas de Dados 1 Lista de Exercícios 2

Algoritmos e Estruturas de Dados 1 Lista de Exercícios 2 Algritms e Estruturas de Dads 1 Lista de Exercícis 2 Prfessr Paul Gmide Parte Teórica 1 Analisand as 2 estruturas mdificadras d flux de execuçã da linguagem C cnhecidas cm estruturas de seleçã ( ifelse

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado

Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas

Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade

Leia mais

Funções da forma x elevado a menos n

Funções da forma x elevado a menos n Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções da forma x elevado a menos n Parte 5 Parte 5 Pré-Cálculo 1 Parte 5 Pré-Cálculo 2 Funções

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #4 () O circuit a seguir é usad cm pré-amplificadr e

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada

Questão 11. Questão 12. Resposta. Resposta S 600. Um veículo se desloca em trajetória retilínea e sua velocidade em função do tempo é apresentada Questã Um veícul se deslca em trajetória retilínea e sua velcidade em funçã d temp é apresentada na fiura. a) Identifique tip de mviment d veícul ns intervals de temp de 0 a 0 s,de 0 a 30 s e de 30 a 0

Leia mais

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é

Determinação de uma tangente para o gráfico de uma função. O coeficiente angular da reta tangente em P é Revisão Determinação de uma tangente para o gráfico de uma função f '( x 0) = O coeficiente angular da reta tangente em P é Taxas de variação: derivada em um ponto A expressão abaixo é chamada de quociente

Leia mais

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química.

Esta aula nos dará conhecimento para análise e determinação do calor produzido ou absorvido em uma reação química. Aula: 07 emática: ermquímica Esta aula ns dará cnheciment para análise e determinaçã d calr prduzid u absrvid em uma reaçã química. A termquímica é a investigaçã d calr prduzid u cnsumid nas reações químicas.

Leia mais

(i=') FUNÇÃO " ""'" TERCEIRA PARTE. Encerramos, neste número da revista, a publicação do primeiro

(i=') FUNÇÃO  ' TERCEIRA PARTE. Encerramos, neste número da revista, a publicação do primeiro FUNÇÃO TERCEIR PRTE (i=') ' Equipe de Ensin de Matemática /MECC/UN/CMP Encerrams, neste númer da revista, a publicaçã d primeir vlume d text FUNÇÃO, da equipe da UN/CMP. N próxim númer, darems inici à

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil Plano Cartesiano e Retas Vitor Bruno Engenharia Civil Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é o

Leia mais

As propriedades do gás estelar

As propriedades do gás estelar As prpriedades d gás estelar Estrelas sã massas gassas mantidas gravitacinalmente cm uma frma quase esférica e que apresentam prduçã própria de energia. A definiçã acima, além de nã ser a mais precisa

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173

KIT PARA O REPARO DO CIRCUITO ELETRÔNICO DOS PROCESSADORES RI3172 / RI3173 KIT PR O REPRO DO IRUITO ELETRÔNIO DOS PROESSDORES RI3172 / RI3173 Em funçã da descntinuidade de frneciment da placa de circuit ds prcessadres RI3172 e RI3173 e devid a grande quantidade de aparelhs existentes

Leia mais

1. Propósito. Permite definir o custo das operações realizadas por segundo pelo trabalhador, durante todo o dia de trabalho.

1. Propósito. Permite definir o custo das operações realizadas por segundo pelo trabalhador, durante todo o dia de trabalho. Mã de Obra 1 Cnteúd 1. Prpósit 3 2. Criaçã de um Pst de Mã de Obra 4 3. Assciand uma Mã de Obra a um Mdel 6 4. Psts de Mã de Obra Detalhada 10 4.1 Mã de Obra Detalhada 11 2 1. Prpósit Permite definir cust

Leia mais

Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade:

Concavidade e o Teste da Derivada Segunda. Concavidade e o Teste da Derivada Segunda. Definição de Concavidade: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Definição de Concavidade:

Leia mais

INSTALAÇÃO DE PURGAS NA REDE SECUNDÁRIA DE POLIETILENO

INSTALAÇÃO DE PURGAS NA REDE SECUNDÁRIA DE POLIETILENO ESPECIFICAÇÃO TÉCNICA ET 604 ESPECIFICAÇÃO TÉCNICA ET 604 Revisã n.º 2 1 de fevereir de 2011 Revisã n.º 2 Página 2 de 8 ÍNDICE Regist das revisões... 3 Preâmbul... 4 1. Objetiv... 4 2. Âmbit... 4 3. Referências...

Leia mais