(aulas de 14/11/2014 e 18/11/2014) (Observação: esta aula será complementada e ilustrada no quadro de aula)

Tamanho: px
Começar a partir da página:

Download "(aulas de 14/11/2014 e 18/11/2014) (Observação: esta aula será complementada e ilustrada no quadro de aula)"

Transcrição

1 Uiversidade do Estado do Rio de Jaeiro UERJ Istituto de atemática e Estatística Deartameto de Estatística Discilia: Processos Estocásticos I Professor: arcelo Rubes (aulas de 4//24 e 8//24) (Observação: esta aula será comlemetada e ilustrada o quadro de aula) PROCESSOS AROVIAOS DE PARÂETRO DISCRETO: O CASO FIITO E IRREDUTÍVE (caítulo 8 do livro texto) as duas aulas ateriores foram aresetados resultados associados aos Processos Estocásticos (P.E.) maroviaos com robabilidades de trasição de -asso estacioárias e com somete dois estados ossíveis. Esta aula (ca. 8) estede os assutos abordados as aulas ateriores ara o caso dos P.E. maroviaos com robabilidades de trasição de -asso estacioárias, irredutíveis, de estado discreto com mais de 2 estados. A otação é ligeiramete diferete da otação das aulas ateriores e foi adatada ara cosiderar uma ova coveção, ode o temo e o estado iiciais são ambos de valor igual a zero, o lugar de um (). Assim as fórmulas e otações ateriormete derivadas ficam (trocado-se o i elo, o elo e começado do zero o lugar do u: a) P.E.: {X }={X, X, X 2,...} b) ova versão ara a fórmula (5) da aula de 24//24: (,,, ) = ( ) ( ) ( ) (5 ) (eq. 8.4 livro) ode, R X X 2 = {,,2,, }, =,,2,,, são os estados do P.E.; R é também cohecido como esaço de estado, que é o couto que descreve todos os estados ossíveis de um P.E., ou sea, o cotradomíio da variável aleatória X ( fixo); ( ( = X = ) ) = P X são as robabilidades de trasição de -asso c) ova versão ara a fórmula (7) da aula de 24//24: (,,, ) = (7 ) (eq. 8.8 livro) 2 ode,

2 = ( asso estacioárias ) = P X ( = X = ) são as robabilidades de trasição de - Itroduzimos os seguites coceitos e otações: Vetor de robabilidades iicial ( ): = (,,, ) = (,,, ) = ( P(X = ),P(X = ),,P(X = ) ) Vetor de robabilidades (icodicioais) de estado aós -assos ( () ): () () () () = (,,, ) = ( P(X = ),P(X = ),,P(X = ) ) atriz de robabilidades de trasição de -asso (P): P = ( ) i = O (+ ) (+ ) Ilustrações a árvore de ossibilidades: Vetor ihas de P temo X X 2

3 Vetor () () () () ihas de P temo X X + Exemlos de matrizes de trasição: (8. do livro) - Ruía do ogador: 2 ogadores, A e B, ogam um ogo que cosiste uma seqüêcia de artidas ideedetes com aostas de R$, or artida, ode: Probabilidade de A vecer = Probabilidade de B vecer = q Probabilidade de emate = r Riqueza iicial de A = R$ Riqueza iicial de B = R$ => riqueza total em ogo = R$ Sea X a quatia de diheiro (riqueza) que A ossui aós ogos. Teremos: X = e, x +, com robabilidade Se X =x, etão X + = x, com robabilidade q x, com robabilidade r As robabilidades ão deedem de, deedem só do valor do estado aterior x, logo {X } é P.E. de arov com robabilidades de trasição estacioárias: x,x+ =P(X + =x+ X =x)= (se A gaha o ogo realizado em ) x,x =P(X + =x X =x)=q (se A erde o ogo realizado em ) x,x =P(X + =x X =x)=r (se A e B ematam o ogo realizado em ) (Obs: resolução com o vetor de robabilidades iicial e a matriz de trasição de um asso o quadro de aula) (8.4 do livro) exemlo do disaro do taque revisitado (Obs: resolução com o vetor de robabilidades iicial e a matriz de trasição de um asso o quadro de aula) 3

4 O exemlo 8. ossui 2 estados absorvetes: o e o, cuas robabilidades de trasição de - asso são uitárias, ou sea, uma vez alcaçado este estado ão será mais ossível sair dele. este exemlo da ruía do ogador, quado um dos ogadores erde todo o seu diheiro, ele ão oderá mais ogar, e ortato ão ode mais sair da ruía. Cadeias de arov com estados absorvetes, como o exemlo 8., são classificadas com a omeclatura de ão-irredutíveis.já as cadeias que ão ossuem estados absorvetes, como o exemlo 8.4, são classificadas com a omeclatura de irredutíveis. O restate das fórmulas aresetadas o caítulo 8 alica-se somete às cadeias irredutíveis Probabilidades de trasição de -assos (seção 4 ca.8) Vimos a aula do dia 7//24 a defiição/otação de robabilidades de trasição de -assos ( ) e a aula assada (//24) um exemlo desevolvido algebricamete ara obter este tio () i de robabilidade como fução das robabilidades de trasição de -asso ara o caso mais simles, ode o esaço de estados do P.E. cotiha somete 2 elemetos, ou sea, = {,},,,2, R X = () esta seção aresetamos uma abordagem geral ara a obteção de em um P.E. cuo esaço i de estados = {,,2,, },,,2, cotém 2 ou mais elemetos ( ), a artir da R X = álgebra liear (matricial) alicada à matriz de robabilidades de trasição de -asso (P). Sea P () a matriz de robabilidades de trasição de -assos que cotém todas as robabilidades () : i P ( ) () () = i = () () () () () () O () () () (+ ) (+ ), ilustração a árvore de ossibilidades: () () () () () () () () () ihas de P () temo X X 4

5 Prova-se que um P.E. maroviao com robabilidades de trasição estacioárias e matriz de robabilidades de trasição de -asso irredutível, temos: () P P P P = P (8) (8.4 do livro) = multilicação de matrizes Decorre de (8) que: P (+ + m m () ( (9) (8.5 do livro) = P 4243 P P 4243 P = P matrizes m matrizes = P P = P P Da relação (9), resulta a equação de Chama-olmogorov: (+ i = (8.6 do livro) = () i ( Ilustração da equação de Chama-olmogorov ela árvore de ossibilidades: iha de P () Estado de origem i Colua de P ( Estado de destio i -assos m-assos temo X X + X +m+ m+-assos Probabilidades (icodicioais) de estado o -ésimo asso (seção 6 ca.8) As robabilidades (icodicioais) de estado são obtidas através da fórmula: ode, (+ = = () ( () () =,, () ( ( 5

6 o vetor colua à direita equivale à colua corresodete ao estado a matriz de robabilidades de trasição de m-assos. Ilustração da fórmula de obteção das robabilidades icodicioais ela árvore de ossibilidades: Vetor () () ( Colua de P ( Estado de destio () ( () ( m-assos temo X X X m+ Fazedo-se variar de a, odemos reuir os resultados da formula acima o vetor de robabilidades (icodicioais) de estado o rimeiro asso: (+ (+ (+ () m ( ) = () ( () ( () (,,,,,, P (+ = = = = = Casos articulares da fórmula de obteção do vetor de robabilidades icodicioais: () = (-) P, () = P, =,2,3,... =,2,3,... (Alicações destas fórmulas serão exemlificadas com os dados do exemlo 8.4 o quadro de aula) 6

Dinâmica Estocástica

Dinâmica Estocástica Diâmica Estocástica Aula matriz Estocástica Balaceameto Detalhado Ifusp setembro de 6 Bibliografia: Capítulo 6 Diâmica estocástica e Irreversibilidade Tâia Tomé e Mário J. de Oliveira Edusp 4. Markov Adrei

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

Problemas de Contagem

Problemas de Contagem Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON Uiversidade Federal do Rio Grade FURG Istituto de Matemática, Estatística e Física IMEF Edital CAPES BINÔMIO DE NEWTON Prof. Atôio Maurício Medeiros Alves Profª Deise Maria Varella Martiez Matemática Básica

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

UTILIZAÇÃO DE CADEIAS DE MARKOV PARA AVALIAÇÃO DE CARTEIRAS DE CRÉDITO. Luiz Carlos Jacob Perera (*)

UTILIZAÇÃO DE CADEIAS DE MARKOV PARA AVALIAÇÃO DE CARTEIRAS DE CRÉDITO. Luiz Carlos Jacob Perera (*) III SEMED UTILIZÇÃO DE CDEIS DE MRKOV PR VLIÇÃO DE CRTEIRS DE CRÉDITO Luiz Carlos Jacob Perera (*) RESUMO valiar carteiras tem sido uma reocuação crucial ara os rofissioais da área de fiaças O resete texto

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte II). Atividades V Profa. Dra. Letícia Maria Bolzai Poehls 8// Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação em

Leia mais

1 Cálculo combinatório e probabilidades

1 Cálculo combinatório e probabilidades álculo combiatório e robabilidades Ficha ara raticar A ( A B A ( A B Leis de De Morga Pág A ( A B B B ( A A B Proriedade associativa U B A A U U Elemeto absorvete ( A B B ( A B B Leis de De Morga ( A B

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proosta de teste de avaliação Matemática A. O ANO DE ESOLARIDADE Duração: 9 miutos Data: adero (é ermitido o uso de calculadora) Na resosta aos ites de escolha múltila, selecioe a oção correta. Escreva,

Leia mais

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o

Leia mais

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos.

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste SEMESTRE PAR /7 Data: 3 de Juho de 7 Duração: h m Tóicos de Resolução.

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

Técnicas de contagem 1 Introdução. 2 Sequências

Técnicas de contagem 1 Introdução. 2 Sequências Istituto Suerior de Egeharia de Lisboa 1 Itrodução Muitos roblemas em Probabilidades e Estatística cosistem em estimar a icerteza associada a um eveto ou acotecimeto, o que imlica frequetemete determiar

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS UIVERIDADE FEDERAL DO RIO GRADE DO ORE CERO DE CIÊCIA EXAA E DA ERRA DEARAEO DE EAÍICA DICILIA: E ROCEO EOCÁICO ROCEO EOCÁICO ª EAA ROFEOR: FERADO CÉAR DE IRADA AAL/R EADO ABORVEE Defção. Um estado de

Leia mais

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico)

CUFSA - FAFIL. Análise Combinatória (Resumo Teórico) A) CONCEITOS: CUFSA - FAFIL Aálise Combiatória (Resumo Teórico) Regras Simles de Cotagem: é a maeira de determiar o úmero de elemetos de um cojuto. Na maioria das vezes é mais imortate cohecer a quatidade

Leia mais

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k

Notas do Curso Inferência em Processos Estocásticos. 1 Estimação de máxima verossimilhança para cadeias de Markov de ordem k Notas do Curso Iferêcia em Processos Estocásticos Prof. Atoio Galves Trascrita por Karia Yuriko Yagiuma 1 Estimação de máxima verossimilhaça para cadeias de Markov de ordem k Seja (X ) =0,1,,... uma cadeia

Leia mais

ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC)

ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC) ANÁLISE MULTIVARIADA DE DADOS: ESTUDOS PRELIMINARES À ANÁLISE FATORIAL CONFIRMATÓRIA (AFC Débora Ferada Satos Datas (; Mylea Baia de Sousa (; Gilberto da Silva Matos (3 ( / ( Uiversidade Federal de Camia

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

1ª LISTA DE EXERCÍCIOS DE PROC. ESTOCÁSTICOS APLICADOS (CE 222) Prof. Benito Olivares 1 o Sem./ 2017

1ª LISTA DE EXERCÍCIOS DE PROC. ESTOCÁSTICOS APLICADOS (CE 222) Prof. Benito Olivares 1 o Sem./ 2017 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA ª LISTA DE EXERCÍCIOS DE PROC. ESTOCÁSTICOS APLICADOS (CE ) Prof. Beito Olivares o Sem./ 7. Classifique e costrua uma trajetória

Leia mais

Distribuição de uma proporção amostral

Distribuição de uma proporção amostral Distribuição de uma roorção amostral Estatística II Antonio Roque Aula 4 Exemlo Ilustrativo: Suonha que se saiba que em uma certa oulação humana uma roorção de essoas igual a = 0, 08 (8%) seja cega ara

Leia mais

pertencente a um plano e um vetor n ( a, do plano [obviamente que P é ortogonal [normal] a qualquer vetor pertencente ao plano.

pertencente a um plano e um vetor n ( a, do plano [obviamente que P é ortogonal [normal] a qualquer vetor pertencente ao plano. ESTUDO DO PLNO NO ESPÇO R 3 euação de um lao [o R 3 ] ode ser escrita de várias formas, sedo ue cada uma delas tem suas vatages uato à sua escolha e alicação. São elas: Euação Geral do Plao Euação Segmetária

Leia mais

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações. Novas perações com atrizes: lgumas de Suas ropriedades e plicações toiel Nogueira da Silva e Valdair Bofim Itrodução: presete trabalho origiou-se durate o desevolvimeto de um projeto do rograma Istitucioal

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

; 2N 2N.! " j %.(1 & q)2 N & j.q j. j!(2n & j)!

; 2N 2N.!  j %.(1 & q)2 N & j.q j. j!(2n & j)! DERIVA GENÉTICA Seja uma população de tamaho fiito N, costate ao logo das gerações; sejam aida p e q as freqüêcias dos alelos A e a de um loco autossômico a geração ; como o tamaho da população é costate,

Leia mais

Lista de Exercícios sobre Otimização de Código

Lista de Exercícios sobre Otimização de Código Exercício 01 Lista de Exercícios sobre Otimização de Código O método dos quadrados míimos ermite ajustar qualquer oliômio da forma y=a 0 +a 1 x++a x a um cojuto de otos (, y i ) miimizado o quadrado do

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Estudo do Binômio de Newton

Estudo do Binômio de Newton Estudo do Biômio de Newto or Salatiel Dias da Silva 2013 Estudo do Biômio de Newto or Salatiel Dias da Silva sob orietação da Prof a. Dr a. Elisadra de Fátima Gloss de Moraes Trabalho de Coclusão de Curso

Leia mais

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos. Formulação clássica do roblema de elasticidade linear.1 Condições no interior. Condições de fronteira.3 ios dos

Leia mais

Análise de dados industriais

Análise de dados industriais Aálise de dados idustriais Escola olitécica Departameto de Eeharia Química Roberto Guardai 4 arte 5. ÉCNICAS DE DISCRIMINAÇÃO E DE CLASSIFICAÇÃO DE DADOS Itrodução écicas estatísticas de aálise baseadas

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab Autovalores a Aálise de odelos atriciais Utilizado o atlab Alessadra Fabia Sostisso 1 Eliete Biasotto Hauser 2 RESUO O pricipal objetivo deste trabalho é aalisar o comportameto de sistemas modelados matricialmete

Leia mais

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA INFRÊNCIA STATÍSTICA: STIMAÇÂO PONTUAL INTRVALOS D CONFIANÇA 0 Problemas de iferêcia Iferir sigifica faer afirmações sobre algo descohecido. A iferêcia estatística tem como objetivo faer afirmações sobre

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...

Leia mais

Passeio aleatório: jogo da roleta e apostas esportivas

Passeio aleatório: jogo da roleta e apostas esportivas Passeio aleatório: jogo da roleta e aostas esortivas Random walk: roulette game and sorts betting ISSN 2316-9664 Volume 8, dez. 2016 Leandro Morgado Universidade Federal de Santa Catarina leandro.morgado@ufsc.br

Leia mais

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1)

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1) AULA 10 VERDADE DE TARSKI (PARTE 1) Iterpretação Uma iterpretação I de uma liguagem de primeira ordem cosiste em: Um domíio D de iterpretação; Para cada costate idividual, atribuímos como seu sigificado

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Aula 5 Teorema central do limite & Aplicações

Aula 5 Teorema central do limite & Aplicações Diâmica Estocástica Aula 5 Teorema cetral do limite & Aplicações Teorema cetral do limite Se x é tal que: x 0 e ( xv é fiita,,..., x x, x,...,, 3 x variáveis aleatórias idepedetes com a mesma distribuição

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

LENTES. Refração em uma superfície esférica

LENTES. Refração em uma superfície esférica LENTES efração em uma suerfície esférica coveção de siais aroximação araxial equação do diotro simles Letes tios de letes, roriedades, coveção de siais, aroximação das letes fias costrução da imagem or

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares..A Dê exemlo de uma sequêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada e decrescete

Leia mais

3. Modelos Constitutivos

3. Modelos Constitutivos 3. Modelos Constitutivos A comlexidade envolvida no estudo da deformação de solos e rochas é um dos grandes desafios da engenharia. No entanto, aesar da diversidade desse comortamento, observações exerimentais

Leia mais

Análisede sistemalit no domínioz

Análisede sistemalit no domínioz álisede sistemalit o domíioz RESPOST DE SISTEMS COM FUNÇÃO DE SISTEM RCIONL B H X N Q maior arte dos siais de iteresse rático tem trasformada Z racioal. Se o sistema é iicialmete relaxado, y-y-...y-n,

Leia mais

Capítulo 4. VERIFICAÇÃO DE ERROS NUMÉRICOS 1D EM MALHAS UNIFORMES

Capítulo 4. VERIFICAÇÃO DE ERROS NUMÉRICOS 1D EM MALHAS UNIFORMES Caítulo 4. Verificação de erros uméricos D em malas uiformes 4 Caítulo 4. VERIFICAÇÃO DE ERROS NMÉRICOS D EM MALHAS NIFORMES Coforme visto o caítulo, três tios de métodos odem ser emregados a solução de

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Conceitos básicos de redes neurais recorrentes Redes eurais e Sistemas Fuzzy Redes eurais Recorrentes A Rede de Hofield A suressão do ruído numa memória auto-associativa linear ode ser obtida colocando-se

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse material é arte itegrate do Aulas Particulares o-lie do IESDE BRASIL S/A, mais iformações www.aulasarticularesiesde.com.br MATEMÁTICA PRÉ-VESTIBULAR LIVRO DO PROFESSOR 006-009 IESDE Brasil S.A. É

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Camus de Lhaguee, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Mauto Cursos de Liceciatura em Esio de Matemática

Leia mais

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos 2. Formulação clássica do roblema de elasticidade linear 2.1 Condições no interior 2.2 Condições de fronteira 2.3

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

Teoria de Filas Aula 10

Teoria de Filas Aula 10 Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...

Leia mais

Exame Final Nacional de Matemática Aplicada às Ciências Sociais a Fase

Exame Final Nacional de Matemática Aplicada às Ciências Sociais a Fase Exame Nacioal de Matemática Aplicada às Ciêcias Sociais 2013-1. a Fase Proposta de resolução 1. 1.1. Aplicado o método descrito, icluido o tema Festas, temos: Potuação do tema Bullig: 3 415 + 1 370 + 2

Leia mais

1 Cálculo combinatório e probabilidades

1 Cálculo combinatório e probabilidades álculo combiatório e robabilidades Atividade de diagóstico.. a) A { x Z: x x 0 0} ± + 0 x x 0 0 x ± x x x A {,,,,, 0,,,,,, } b) B { x R: x x } x x x x x x x + 9 Pág... a) Afirmação verdadeira b) Afirmação

Leia mais

Acréscimos e decréscimos - Resolução

Acréscimos e decréscimos - Resolução 0 (Unicam 5 ª fase) (Acréscimo e decréscimo ercentual) Uma comra no valor de.000 reais será aga com uma entrada de 600 reais e uma mensalidade de 4 reais. A taxa de juros alicada na mensalidade é igual

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Cadeias de Markov Parte I

Cadeias de Markov Parte I Cadeias de Markov arte I Defiições e Notações Defiição : Um rocesso de Markov {X t } é um processo estocástico que, dado o valor X t, os valores de X s para s>t ão são iflueciados pelos valores de X u,

Leia mais

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov Cadeias de Markov. Introdução Nestas notas de aula serão tratados modelos de robabilidade ara rocessos que evoluem no temo de maneira robabilística. Tais rocessos são denominados rocessos Estocásticos...

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA WILKSON LINHARES TEODORO

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA WILKSON LINHARES TEODORO UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA WILKSON LINHARES TEODORO SOLUÇÕES POR SÉRIES E FUNÇÕES ESPECIAIS FORTALEZA 7 WILKSON

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

5 Teoria dos Valores Extremos

5 Teoria dos Valores Extremos Teoria dos Valores Extremos 57 5 Teoria dos Valores Extremos A Teoria dos Valores Extremos vem sedo bastate utilizada em campos ligados a evetos raros. Sua estatística é aplicada a estimação de evetos

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Torre de Hanói. Luís Ricardo da Silva Manoel

Torre de Hanói. Luís Ricardo da Silva Manoel Torre de Haói Luís Ricardo da Silva Maoel História e Leda A torre de Haói, também cohecida por torre de bramaismo ou quebra-cabeças do fim do mudo, foi ivetada e vedida como briquedo, o ao de 1883, pelo

Leia mais

Séries e Equações Diferenciais Lista 02 Séries Numéricas

Séries e Equações Diferenciais Lista 02 Séries Numéricas Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.

Leia mais

CAPITULO V. NOÇÕES TOPOLÓGICAS E SUCESSÕES EM R n

CAPITULO V. NOÇÕES TOPOLÓGICAS E SUCESSÕES EM R n CAPITULO V NOÇÕES TOPOLÓGICAS E SUCESSÕES EM R 1. Distâcias e vizihaças Dado um esaço vectorial E sobre o coro R dos úmeros reais, chama-se orma a qualquer alicação x x de E em R + {0} que verifique as

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia).

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia). Cadeias de Markov Andrei Andreyevich Markov (*856, Ryazan, Russia; 9, São etersburgo, Russia). Acreditar é mais fácil do que ensar. Daí existirem muito mais crentes do que ensadores. - Bruce Calvert .

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

Outras Técnicas que Utilizam o Escore de Propensão

Outras Técnicas que Utilizam o Escore de Propensão Técnicas Econométricas ara Avaliação de Imacto Outras Técnicas que Utilizam o Escore de Proensão Rafael Perez Ribas Centro Internacional de Pobreza Brasília, 28 de maio de 2008 Introdução O Escore de Proensão

Leia mais

O Mistério dos Chocalhos

O Mistério dos Chocalhos O Mistério dos Chocalhos Cláudia Peixoto IME-USP O objetivo desta oficina é introduzir os conceitos de amostragem e estimação. Para tanto iremos utilizar um objeto idealizado ela MTEMTEC (htt://matemateca.ime.us.br/).

Leia mais

O Princípio da Substituição e o Teorema Central do Limite

O Princípio da Substituição e o Teorema Central do Limite O Pricípio da Substituição e o Teorema Cetral do Limite Roberto Imbuzeiro M. F. de Oliveira 6 de Maio de 009 Resumo 1 Prelimiares são variáveis aleatórias idepedetes sat- No que segue {X i } {Y i} isfazedo

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

Roteiro-Relatório da Experiência N o 7

Roteiro-Relatório da Experiência N o 7 . COMPOETES DA EQUIPE: UIVERSIDADE DO ESTADO DE SATA CATARIA - UDESC Roteiro-Relatório da Exeriência o 7 O TRASFORMADOR ALUOS OTA 3 4 Prof.: Celso José Faria de Araújo 5 Data: / / : hs. OBJETIVOS:.. Verificar

Leia mais

Enrico A. Colosimo Depto. Estatística UFMG

Enrico A. Colosimo Depto. Estatística UFMG Bioestatística F Comaração de uas Médias Erico A. Colosimo eto. Estatística UFMG htt//www.est.ufmg.br/~ericoc/ .4 istribuicao Gaussiaa com e σ Tabela t-tudet fx).35.3.5..5. -).5 Graus de liberdade istribuição

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Norma Rodoviária DNER-PRO 277/97 Procedimento Página 1 de 8 Norma Rodoviária DNER-PRO 77/97 Procedimeto Págia de 8 RESUMO Este documeto estabelece o úmero de amostras a serem utilizadas o cotrole estatístico, com base em riscos refixados, em obras e serviços rodoviários.

Leia mais

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n:

1. Em cada caso abaixo, encontre os quatro primeiros termos da sequência: p n (c) cn = ( 1) n n: . SEQUÊNCIAS NUMÉRICAS SÉRIES & EDO - 207.2.. :::: ::::::::::::::::::::::::::::::::::::::: TERMO GERAL & CLASSIFICAÇÃO. Em cada caso abaixo, ecotre os quatro rimeiros termos da sequêcia: (a) a = 2 (b)

Leia mais

O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2

O termo linear significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2 MÓDULO 4 - PROBLEMAS DE TRANSPORTE Baseado em Novaes, Atôio Galvão, Métodos de Otimização: aplicações aos trasportes. Edgar Blücher, São Paulo, 978..CONCEITOS BÁSICOS DE PROGRAMAÇÃO LINEAR É uma técica

Leia mais

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 23. Professora: Mazé Bechara Istituto de Física USP Física V - Aula 3 Professora: Mazé Bechara Aula 3 Alicações de Wilso-Sommerfeld. A roosta de de Broglie de caráter dual das artículas materiais 1. Alicações de Wilso-Sommerfeld:

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferetes Para Números Complexos Capítulo I Cometário Iicial O artigo que aqui apresetamos ão tem como objetivo itroduzir ao leitor o assuto

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 4.1 Decisão Intertemporal do Consumidor

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 4.1 Decisão Intertemporal do Consumidor icroeconomia II Cursos de Economia e de atemática Alicada à Economia e Gestão AULA 4. Decisão Intertemoral do Consumidor Isabel endes 007-008 4//008 Isabel endes/icro II 4. Decisão Intertemoral do Consumidor.

Leia mais

ANÁLISE DA DEFORMAÇÃO CÍCLICA PROGRESSIVA EM TUBULAÇÕES ELASTO-VISCOPLÁSTICAS

ANÁLISE DA DEFORMAÇÃO CÍCLICA PROGRESSIVA EM TUBULAÇÕES ELASTO-VISCOPLÁSTICAS PROGRAMA FRANCISCO EDUARDO MOURÃO SABOYA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL FLUMINENSE Dissertação de Mestrado ANÁLISE DA DEFORMAÇÃO CÍCLICA PROGRESSIVA EM

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 miutos Gruo I Probabilidades e Estatística TODOS OS CURSOS Justifique coveietemete todas as resostas 1 o semestre 2017/2018 30/01/2018 15:00 2 o Teste C 10 valores 1. A variável aleatória X

Leia mais

Preferência Revelada

Preferência Revelada Preferêcia Revelada A teoria da escolha a artir das referêcias do cosumidor tem uma característica iteressate que é sua subjetividade. Dessa maeira, ão é algo observável. No etato, a escolha, em si, é

Leia mais

Grupo I. Qual é a probabilidade de o João acertar sempre no alvo, nas quatro vezes em que tem de atirar?

Grupo I. Qual é a probabilidade de o João acertar sempre no alvo, nas quatro vezes em que tem de atirar? Exames Nacioais EXME NCIONL DO ENSINO SECUNDÁRIO Decreto-Lei. /00, de 6 de Março Prova Escrita de Matemática. ao de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 miutos. Tolerâcia: 0 miutos 008 VERSÃO

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12.

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12. Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Probabilidade condicionada; acontecimentos indeendentes º no Nome: Nº: Turma: Demonstre que se e são acontecimentos indeendentes,

Leia mais