O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2

Tamanho: px
Começar a partir da página:

Download "O termo "linear" significa que todas as funções definidas no modelo matemático que descreve o problema devem ser lineares, isto é, se f( x1,x2"

Transcrição

1 MÓDULO 4 - PROBLEMAS DE TRANSPORTE Baseado em Novaes, Atôio Galvão, Métodos de Otimização: aplicações aos trasportes. Edgar Blücher, São Paulo, 978..CONCEITOS BÁSICOS DE PROGRAMAÇÃO LINEAR É uma técica da Pesquisa Operacioal, utilizada para resolver determiada classe de problemas em que se procura alocar recursos limitados a atividades ou decisões diversas, de maeira ótima. Este tipo de problema aparece freqüetemete os setores de plaejameto e operações de idústrias, empresas de trasporte, órgãos goverametais etc.. A represetação matemática de um problema de Programação Liear (PL) tem a seguite forma: otimizar a fução objetivo (maximizar ou miimizar): z= f x, x, L, x ) ( g( x, x, L, x ) g ( x, x, L, x ) = KKKKKK g m ( x, x, L, x ) b b K bm O termo "liear" sigifica que todas as fuções defiidas o modelo matemático que descreve o problema devem ser lieares, isto é, se f( x,x, L,x ) e cada uma das g i ( x,x, L,x ), para i de até m, forem fuções lieares. Detalhado melhor, esta represetação pode ser expressa de uma outra forma: max Z = c x + c x cx, sujeito às restrições a + a a b a M a m + a + a m a a e mais i 0 para m b b m i =,,..., Nessas expressões, a ij, b i e c j são costates e os x i (i=,,..., ) são as variáveis de decisão do problema. A Programação Liear procura os valores de x i, quado esses valores existirem, de modo a se atigir o máximo ou o míimo da fução objetivo. As restrições idicam as limitações de uma maeira geral, sejam elas físicas, de recursos humaos, moetárias, sócio-ecoômicas etc.. As costates b, b,..., b m devem ser positivas e represetam o ível máximo que se pode atigir para cada um dos recursos. As restrições expressas por i 0, idicam que, por sua atureza, as variáveis de um problema de Programação Liear devem ser ão egativas. As restrições dos tipos a + a a b e a + a a = b são casos especiais e devem ser aalisados separadamete., 5/0/07 - de 0 Módulo 4 - Problemas de Trasporte

2 Os três pricipais grupos de problemas que podem ser resolvidos por Programação Liear são os seguites: a) Misturas de igredietes com composição e preços cohecidos, para ateder a determiadas especificações (de composição ou de estoque), a custo míimo ou lucro máximo. Utilizada para balacear rações para aimais, refeições, abastecimeto de comuidades ou tropas, utilização parcelada de combustíveis, lubrificates, fertilizates e corretivos, defesivos agrícolas, perfumes e cosméticos, ligas metálicas, o auxílio para as idustrias de alimetos etc. b) Trasporte, distribuição ou alocação, em que se procura determiar as quatidades a trasportar, segudo as vias alterativas possíveis, a freqüêcia ou períodos de trasporte e as especificações quato a operação levado em cota os custos (fretes, riscos capital empatado, prêmios e multas, embalagem, armazeameto, capacidade dos meios etc.). Etre as áreas de utilização citam-se: abastecimeto, distribuição de produtos, trasporte de cargas ou pessoas etc.. c) Programas de Produção ou limitação de recursos os setores agrícolas, idustriais ou de serviços, como o seguite modelo típico: uma empresa oferece várias alterativas de serviços ou pode fabricar ou produzir vários bes; cohece-se as quatidades de isumos ecessários para a produção de uma uidade do bem ou serviço; cohece-se as restrições do mercado quato aos limites iferiores e superiores de produção ou demada do bem ou serviço; cohece-se as dispoibilidades dos isumos por parte da empresa; cohece-se o valor ou lucro uitário dos bes ou serviços a serem produzidos; deseja-se obter o melhor programa de produção que pode ser: maximizar os lucros, maximizar o volume de produção, maximizar ou miimizar o emprego de determiado isumo, miimizar o tempo ocioso de pessoas ou equipametos etc... PROBLEMA DE TRANSPORTE O Problema de Trasporte costitui uma das pricipais aplicações da PL para auxiliar o plaejameto e a operação de trasportes. O Problema pode ser formulado iicialmete da seguite forma: Cosiderado-se o trasporte de produtos de m origes, ode estão estocados, para destios, ode são ecessários. Cohecedo-se os custos uitários de trasporte de cada origem para cada destio (C ij custo uitário de trasporte da origem i para o destio j), deve-se decidir quato trasportar de cada origem para cada destio ( ij quatidade a ser trasportada da origem i para o destio j), de modo gastar o meos possível, ou seja, miimizar o custo total de trasporte. Cada uma das origes é dotada de a i uidades dispoíveis e, cada um dos destios requer b j uidades, todos iteiros e positivos. Cosiderar-se-á iicialmete que a oferta total é igual a demada total, isto é: a i = 5/0/07 - de 0 Módulo 4 - Problemas de Trasporte m O modelo matemático para este problema pode ser expresso da seguite forma: Miimizar: Sujeito a: z = j= m i= m i= j= ij ij = a = b C ij ij i j b j (i =,...,m) ( j =,...,) Com: todos os ij ão egativos e iteiros

3 Este modelo matemático pode ser represetado em forma de tabular coforme exposto a tabela.. Tabela. - Represetação do Problema de Trasporte O R I G E N S DESTINOS 3... Oferta C C C 3... C a 3 C C C 3... C a m C m C m C m3... C m a m m m m3 m Demada b b b 3... b Exemplo: Uma empresa tem fábricas em três locais diferetes, que abastecem quatro armazés distates us dos outros. As capacidades das fábricas em um certo período de tempo são, 90 e 5 e as ecessidades dos armazés, o mesmo período de tempo, são 50, 60, e 95. Os custos uitários para cada ecamihameto fábricaarmazém estão expostos a tabela a seguir. Tabela. - Tabela dos custos uitários de trasporte das origes para os destios Origes Destios A B C D Figura. - Represetação gráfica do problema Dispoibilidades das origes 90 5 Total = 75 3 C A =5 C C =6 C D =5 C 3A =5 C A =7 C 3D =7 C B =0 C B = C 3B =4 C 3C =5 C C =3 Dispoibilidades dos destios C D = A B C D 95 Total = 75 5/0/07-3 de 0 Módulo 4 - Problemas de Trasporte

4 A solução dos Problemas de Trasporte passa por quatro etapas:. Determiação de uma solução iicial básica;. Teste de solução quato à codição de ótimo; 3. Melhoria da solução quado ão é ótima; 4. Repetição das etapas e 3 até se obter a solução ótima... Métodos para determiação da Solução Iicial... Método do Cato Noroeste Começado-se pela célula superior esquerda (cato oroeste), aloca-se a tatas uidades quatas sejam possíveis, sem violar as restrições. Isto correspoderá ao meor dos dois valores a e b. Após, cotiua-se o algoritmo deslocado-se para a célula imediatamete à direita se aida restar alguma oferta ou, caso cotrário, para a célula imediatamete abaixo. A cada etapa aloca-se à célula em cosideração, tatas uidades quatas sejam possíveis sem violar as restrições: a soma das alocações da liha i ão pode exceder o valor de a i, a soma da colua j ão pode exceder o valor de b j e ehuma alocação pode ser egativa. Exemplo : Utilizado-se os dados do exemplo, determiar uma solução iicial utilizado o método do Cato Noroeste. A B C D Oferta Método de Vogel ou Método das Pealidades O método fucioa da seguite forma:. Calcula-se a pealidade para cada uma das lihas e coluas. Escolhe-se a liha ou colua que apreseta a maior pealidade. Caso haja mais de uma, escolhese qualquer uma delas;. Aloca-se o máximo possível de quatidade para a célula de meor custo da liha ou colua escolhida o passo aterior. Isso torará a dispoibilidade da liha ou colua a qual tal célula pertece, igual a zero. Elimiar esta liha ou colua do restate do processo e 3. Repetir os passos e até que todos os trasportes teham sido realizados Cosidera-se "pealidade de uma liha ou colua" a difereça positiva etre os dois custos de meor valor a liha ou colua. 5/0/07-4 de 0 Módulo 4 - Problemas de Trasporte

5 Exemplo 3: Utilizado-se os dados do exemplo, determiar uma solução iicial utilizado o método de Vogel. Coforme descreve o primeiro passo, deve-se calcular as pealidades e idetificar as maiores. A B C D Oferta Pealidade (3-) (-5) (5-4) Pealidade 0 (5-5) 6 (0-4) (5-3) 5 (7-) As maiores pealidades estão a liha e a colua B, pois essas obtiveram pealidades iguais a seis. Deve-se etão escolher etre a liha ou a colua, pois as potuações são iguais. Optou-se pela liha. Nesta liha, a célula de meor custo é a que correspode à colua A (quize). Aloca-se, portato, 50 para tal célula e elimia-se a colua A dos passos seguites. Devem-se etão recalcular as pealidades. A B C D Oferta Pealidade (3-) (5-) (5-4) Pealidade 0 (5-5) 6 (0-4) (5-3) 5 (7-) A colua B apreseta a maior pealidade (seis). Nesta colua, a célula de meor custo é a que correspode à liha 3 (custo igual a 4). Aloca-se, portato, 60 para tal célula e elimia-se a colua B dos passos seguites. A B C D Oferta Pealidade (3-) (6-5) (7-5) Pealidade 0 (5-5) 6 (0-4) (5-3) 5 (7-) 5/0/07-5 de 0 Módulo 4 - Problemas de Trasporte

6 As tabelas a seguir represetam os passos seguites até que todos os trasportes estejam fializados. A B C D Oferta Pealidade Pealidade (5-5) (0-4) (6-5) (5-7) (3-) 90 (6-5) 5 (7-5) 3 A B C D Oferta Pealidade Pealidade (5-5) (0-4) (6) (5) (3-) 90 (6-5) 5 (7-5) 3 A B C D Oferta Pealidade Pealidade (5-5) (0-4) (6) (5) (3-) 90 (6-5) 5 (7-5) 5/0/07-6 de 0 Módulo 4 - Problemas de Trasporte

7 3 A B C D Oferta Pealidade /0/07-7 de 0 Módulo 4 - Problemas de Trasporte Pealidade (5-5) (0-4) (6) (5) A solução fial está expressa a tabela a seguir: Tabela.3 - Solução Iicial (3-) 90 (6-5) 5 (7-5) A B C D Oferta Evolução para a Solução Ótima Determiada a solução iicial, ecessita-se verificar se esta pode ser melhorada. Por itermédio da tabela.3 que represeta a solução iicial, devem-se idetificar as variáveis básicas e ão básicas. As primeiras são idetificadas pelas células que têm valores alocados e as segudas, o iverso. Observa-se a tabela.3 que as variáveis básicas são: D, A, C, D, 3B e 3C. As variáveis ão básicas são: A, B, C, B, 3A e 3D. A seguir serão descritos os passos para avaliação da existêcia de uma solução melhorada. º passo: devem-se calcular os pesos para todas as lihas e as coluas, cosiderado que a soma etre os pesos de cada liha e de cada colua é igual ao custo alocado a respectiva célula (liha x colua). Iicialmete atribui-se zero à uma liha ou colua (geralmete a primeira liha) que coteha uma variável básica. O exemplo a seguir demostra a alocação deste peso a liha colua D (célula com custo ) Pesos

8 Os próximos pesos terão a mesma seqüêcia de cálculo, coforme expresso a próxima tabela Pesos Seguido esta forma de cálculo chega-se a seguite tabela de pesos: Pesos 3 º passo: utilizado-se os valores dos pesos, calcula-se para cada variável ão básica a quatidade expressa pela seguite fórmula: Custo (liha x colua) - peso da liha - peso da colua Calculado-se para a primeira variável ão básica (A), temos o seguite resultado: Custo A - Peso - Peso A = = 5 Para as demais lihas x coluas os resultados são: A B C D 7-0-=5 0-0-= =0-3-= = 7--=3 Se todas as quatidades calculadas forem ão egativas, a solução presete é a ótima. Caso algus dos valores forem egativos, deve-se utilizar como referêcia para o próximo passo o valor mais egativo. A célula que abriga este valor deverá ser trasformada em uma variável básica o lugar de uma das variáveis básicas da última solução. Neste caso a célula B obteve -4 como resultado, demostrado a ecessidade da cotiuidade do processo para idetificação da solução ótima. 5/0/07-8 de 0 Módulo 4 - Problemas de Trasporte

9 3º passo: para saber quais das variáveis básicas devem ser substituídas pela variável ão básica B, deve-se motar um circuito de compesação etre as variáveis básicas, a partir da variável que deverá etrar e seguido alteradamete a direção da liha e a direção da colua, subtraido-se e somado-se o valor de etrada (a pricípio um valor ), até o retoro à variável de etrada. Com este procedimeto as restrições de liha e colua ficam satisfeitas Pesos 3 4º passo: escolher para a variável que está sedo trasformada em básica (que cotém ) o maior valor possível, sem torar ehuma variável básica egativa. Esse valor correspode ao meor valor etre as células do circuito ode o valor de etrada () estiver sedo subtraído. Esta ova alocação forma uma ova cofiguração que pode ser a solução ótima. A B C D Oferta º passo: voltar ao passo até que a solução seja ótima. Exercício: complete o exemplo aterior seguido os passos a 5 até obter a solução ótima. Recalculo dos pesos Pesos 8 9 5/0/07-9 de 0 Módulo 4 - Problemas de Trasporte

10 Idetificação da egatividade da variável ão básica A B C D 7-0-= = 3-0-9= = =7 7-6-=- Motagem do circuito Pesos 8 9 Recalculo dos pesos Pesos Idetificação da egatividade da variável ão básica A B C D 7-0-3= = 3-0-0=3 6--0=4 5--= =7 Verifica-se que ão existem mais resultados egativos expressos a tabela aterior, cocluido-se que a solução ótima é: A B C D Oferta /0/07-0 de 0 Módulo 4 - Problemas de Trasporte

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais

Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais Capítulo 3: Gestão de stoques Curso de Admiistração de mpresas 2º Semestre 09 Disciplia: Admiistração da Logística e Patrimôio Capítulo 03: Gestão de estoques (Partes 3 e 4) Parte : Itrodução Parte 2:

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

Matriz de Contabilidade Social. Prof. Eduardo A. Haddad

Matriz de Contabilidade Social. Prof. Eduardo A. Haddad Matriz de Cotabilidade Social Prof. Eduardo A. Haddad Fluxo circular da reda 2 Defiição 1 Sistema de dados desagregados, cosistetes e completos, que capta a iterdepedêcia existete detro do sistema socioecoômico

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

3. O Problema do Sequenciamento em uma Única Máquina

3. O Problema do Sequenciamento em uma Única Máquina 25 3. O Problema do Sequeciameto em uma Úica Máquia O problema do sequeciameto em uma úica máquia é frequetemete muito simples e quase sempre parte de um problema de programação complexo. Segudo Piedo

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Minicurso Introdução a Problemas de Otimização

Minicurso Introdução a Problemas de Otimização Miicurso Itrodução a Problemas de Otimização Adriaa Cristia Cherri Departameto de Matemática - Faculdade de Ciêcias Uiversidade Estadual Paulista - Campus de Bauru adriaa@fc.uesp.br Adréa Carla Goçalves

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Whats: PROGRESSÃO GEOMÉTRICA

Whats: PROGRESSÃO GEOMÉTRICA Questões Vídeos 1. As áreas dos quadrados a seguir estão em progressão geométrica de razão 2. Podemos afirmar que os lados dos quadrados estão em a) progressão aritmética de razão 2. b) progressão geométrica

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Resoluçaõ de exercícios de Programação Linear Inteira

Resoluçaõ de exercícios de Programação Linear Inteira Resoluçaõ de exercícios de Programação Liear Iteira Carlos Eduardo Ramisch - N.º Cartão: 134657 PESQUISA OPERACIONAL I (ADM01120) Turma B Professor Deis Borestei 19 de juho de 2006 Problema 1: Exercício

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

ARRANJO SIMPLES PROFº: VALDÉCIO FÉLIX. Choquitomóvel

ARRANJO SIMPLES PROFº: VALDÉCIO FÉLIX. Choquitomóvel HC ARRANJO SIMPLES HENRIQUE CASTRICIANO Choquitomóvel PROFº: VALDÉCIO FÉLIX Temos o destio que merecemos. O osso destio está de acordo com os ossos méritos. Albert Eistei ED ESCOLA DOMÉSTICA AGRUPAMENTOS

Leia mais

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab

Autovalores na Análise de Modelos Matriciais Utilizando o Matlab Autovalores a Aálise de odelos atriciais Utilizado o atlab Alessadra Fabia Sostisso 1 Eliete Biasotto Hauser 2 RESUO O pricipal objetivo deste trabalho é aalisar o comportameto de sistemas modelados matricialmete

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 04: Medidas de Posição (webercampos@gmail.com) . MÉDIA ARITMÉTICA : Para um cojuto de valores Média Aritmética Simples: xi p Média Aritmética Poderada: MÓDULO 04 - MEDIDAS

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: 1. (Cefet MG 013) Durate o mesmo período, dois irmãos depositaram, uma vez por semaa, em seus respectivos cofrihos, uma determiada quatia, da seguite forma: o mais ovo depositou, a primeira semaa,

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x Matemática aula COMENTÁRIOS ATIVIDADES PARA SALA. Pelo algoritmo da divisão, temos: I. q + r II. + ( + 3) q + r + q+ r+ 3q + + 3q q 7 5. N 5. 8 x N 5. 3x Número de divisores ( + )(3x + ) 3x + 7 x um úmero

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Aula 23 Juros Compostos. Motate e juros. Descoto Composto. Taxa real e taxa efetiva. Taxas equivaletes. Capitais equivaletes. Capitalização cotíua. Equivalêcia Composta de Capitais. Descotos: Descoto racioal

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

Implementação de Planilha de Cálculos Simplificada

Implementação de Planilha de Cálculos Simplificada INF 1620 Estruturas de Dados Semestre 08.2 Primeiro Trabalho Implemetação de Plailha de Cálculos Simplificada Uma plailha de cálculos é um programa muito utilizado em aplicações fiaceiras e aquelas que,

Leia mais

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados Escola SESI de Aápolis - Judiaí Aluo (a): Disciplia: MATEMÁTICA Turma: 3º Ao Professor (a) : CÉSAR LOPES DE ASSIS Data: INTRODUÇÃO A ESTATÍSTICA A Estatística é o ramo da Matemática que coleta, descreve,

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

Economia Florestal. A floresta como um capital

Economia Florestal. A floresta como um capital Ecoomia Florestal A floresta como um capital O que é um capital? Defiição Capital é um fudo ou valor (pode ser moetário, bes, maquiaria, etc.) que pode gerar redimetos futuros durate um certo tempo, capazes

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Problemas Sobre Correlacionamento

Problemas Sobre Correlacionamento Capítulo 2 Problemas Sobre Correlacioameto Se caiu, levate e ade como se uca tivesse caído, cosiderado que, a cada vez que você se esforça e se levata de uma queda, suas peras se fortalecem. 2.1. Problemas

Leia mais

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio ÁLGEBRA BÁSICA Aula 5 META Suprir algumas deficiêcias sobre álgebra esiada em matemática o ível médio OBJETIVOS Ao fi al desta aula, o aluo deverá: defi ir coceitos matemáticos de álgebra básica; iterpretar

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS

4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS 4. MEDIDAS DINÂMICAS CONCEITOS BÁSICOS Muitas vezes os experimetos requerem medidas de gradezas físicas que variam com o tempo. Para a correta medição destas gradezas, é ecessário cohecer as propriedades

Leia mais

SEQUÊNCIAS IMPORTANTES PARA O LIMITE

SEQUÊNCIAS IMPORTANTES PARA O LIMITE começado a eteder CÁLCULO Volume Um - SEQUÊNCIAS IMPORTANTES PARA O LIMITE Uma sequêcia ifiita de úmeros () é covergete a um úmero o quado () se tora (ou é sempre) igual a o, ou se tora cada vez mais próima

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS.

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. 1.1 Objectivos Medir gradezas físicas, utilizado os istrumetos adequados. Apresetar correctamete os resultados das medições, ao ível da utilização

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

1. Usando os axiomas mostre que:

1. Usando os axiomas mostre que: exercícios de teoria de úmeros 1 1. Usado os axiomas mostre que: (a) a (b + c) = a b + a c (b) (a + b) = a + a b + b (c) a + (b + c) = (c + a) + b (d) (b a) + (c b) + (a c) = 0. Use os axiomas para mostrar

Leia mais

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999 PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por

Leia mais

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO FUNDAMENTOS DE MATEMÁTICA Nome: DATA: 0//06 ) Se x+ y e x y, etão x + y é a) 66. b) 67. c) 68. d) 69. e) 70. ) Cosiderado-se que x 97, y 907 e z xy, o valor

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Procedimentos de Marcação a Mercado (06, 2017)

Procedimentos de Marcação a Mercado (06, 2017) Procedimetos de Marcação a Mercado (06, 207) Risk Maagemet Baco Sumitomo Mitsui Brasileiro S.A SUMÁRIO ESCOPO 4 2 PRINCÍPIOS 4 3 ORGANIZAÇÃO 5 4 COTAS 5 4. Cotas de Fechameto 5 4.2 Cotas de Abertura 6

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Capítulo II Propagação de erros (cont.)

Capítulo II Propagação de erros (cont.) Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo II Propagação de erros (cot.) Propagação de icertezas idepedetes e arbitrárias Fuções de uma variável Determiação da propagação

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS HEURÍSTICAS E EQUAÇÕES DIOFANTINAS Michelle Crescêcio de Mirada Programa Istitucioal de Iiciação Cietífica e Moitoria da Faculdade de Matemática PROMAT michellemirada_8@hotmail.com Luiz Alberto Dura Salomão

Leia mais