Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Tamanho: px
Começar a partir da página:

Download "Cap. 6. Definição e métodos de resolução do problema de valores de fronteira"

Transcrição

1 Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos 2. Formulação clássica do roblema de elasticidade linear 2.1 Condições no interior 2.2 Condições de fronteira 2.3 Tios dos roblemas de valores de fronteira 2.4 Condições iniciais 2.5 Desvantagens da formulação clássica 3. Métodos de resolução do roblema de elasticidade 3.1 Método dos deslocamentos 3.1 Método das forças 4. Resolução dos roblemas simles 5. Princíio de aint-vénant

2 1. Pressuostos As equações e os métodos de resolução abordados neste caítulo, são válidos aenas ara uma classe restrita de roblemas: análise linear estática. No entanto, esta classe de roblemas aesar de ser a mais simles é também a mais utilizada, e tem inúmeras vantagens, como: 1. validade do rincíio de sobreosição 2. solução única Os ressuostos da análise linear estática são os seguintes: 1. linearidade 2. alicação estática de cargas não deendentes de temo O conceito de linearidade já foi exlicado nos caítulos anteriores e significa a validade de linearidade física (relação constitutiva linear), e igualmente de linearidade geométrica (cinemática). A linearidade geométrica corresonde à teoria dos equenos deslocamentos que imlica a teoria das equenas deformações, ou seja, a deendência linear de comonentes de deformação em derivadas de deslocamentos. Recorda-se, que na teoria de equenos deslocamentos é ossível desrezar as diferenças entre a forma do meio contínuo inicial e final, e assim, as equações de equilíbrio e outras escrevem-se na forma do coro não deformado. A alicação de cargas têm que se assumir na forma lenta e gradual ara se oderem desrezar os efeitos dinâmicos. Igualmente, as fases de descarga e carga seguinte são consideradas lentas, no entanto, devido à elasticidade, a história de carregamentos não é imortante. No entanto, os casos de análises não-lineares serão igualmente abordados nesta cadeira. A nãolinearidade faz arte de todos os roblemas de contacto, em que a tensão de contacto só ode existir quando é de comressão. No caso oosto as suerfícies searam-se, não há contacto e as tensões de suerfície são nulas. Neste caso, naturalmente não ode ser válida a roorcionalidade, orque o coeficiente 1 altera o tio do roblema. Outro tio de nãolinearidade bastante comum está ligado às tensões admissíveis. Por exemlo, cabos só fazem a sua função estrutural quando solicitados à tracção, no outro lado, o betão não armado raticamente não resiste à tracção, no entanto aguenta comressões. Nestes casos também não é ossível alicar a roorcionalidade or exemlo de coeficiente 1. A análise linear estática costuma-se designar de: roblema de elasticidade. O roblema de elasticidade faz arte dos roblemas de valores de fronteira. Os roblemas de valores de fronteira são roblemas definidos sobre um conjunto via equações diferenciais que têm que ser verificados nos ontos interiores. Assim, ara a resolução comleta do roblema, é reciso adicionar os valores na fronteira que se chamam, as condições de fronteira.

3 2. Formulação clássica do roblema de elasticidade linear Recorda-se a definição do meio contínuo, em que se esecificou que os ontos de suerfície mantém-se na suerfície aós da alicação do carregamento, e igualmente os ontos no interior mantém-se no interior. Isso ermite definir as equações que têm que se verificar nos ontos interiores, sem se reocuar com o facto que a necessidade desta verificação oderia ser alterada na forma deformada. As equações que é reciso verificar nos ontos interiores já foram estabelecidas, e chamam-se as equações fundamentais do roblema de elasticidade. O roblema define-se da seguinte maneira: encontrar,, u que verificam as equações fundamentais de elasticidade nos ontos internos do meio contínuo e condições de fronteira nos ontos de suerfície. 2.1 Condições no interior As equações fundamentais de elasticidade linear são: equações deformações-deslocamento (6): T equações de equilíbrio (3): f 0 equações constitutivas (6): C ou C 2.2 Condições de fronteira As condições de fronteira são de dois tios: estáticas e geométricas (cinemáticas) As condições de fronteira estáticas estabelecem equilíbrio de comonentes de vector das tensões com a carga alicada, ou seja t n 0 se for a carga definida em comonentes cartesianas As condições de fronteira geométricas definem deslocamentos do valor imosto, ou seja u u 0

4 Recorda-se que a necessidade de condições de fronteira é devido ao facto de equações no interior serem diferenciais. Assim, cada onto de suerfície tem que ter alguma condição definida. É or isso ossível searar a fronteira em duas artes e u que verificam u e u em que é a fronteira comleta, u define fronteira com condições geométricas e condições estáticas. As suerfícies livres ertencem à arte de com com carga nula. No mesmo onto não se odem definir ambas as condições. No entanto, esta exclusividade alica-se às comonentes indeendentes. Ou seja, é ossível definir num onto de suerfície carga na direcção do eixo coordenado 0x e deslocamento na direcção de 0y. 2.3 Tios dos roblemas de valores de fronteira Os roblemas de valores de fronteira costumam-se classificar em: O 1º roblema de valores de fronteira define-se como o roblema em que são definidas aenas as condições de fronteira estáticas, ou seja. Esta definição tem fundamentação matemática ligada ao método dos deslocamentos (exlicado a seguir). No método dos deslocamentos a incógnita base são os deslocamentos. As tensões e igualmente o vector das tensões corresondem a derivadas de deslocamentos, orque as deformações são derivadas de deslocamentos e relações constitutivas, não contém derivadas. Assim, o 1º roblema de valores de fronteira estabelece as condições de fronteira na forma de derivadas do camo de incógnita fundamental. O 2ª roblema de valores de fronteira define-se como o roblema em que aenas condições de fronteira geométricas são definidas, ou seja. Assim, o 2º roblema de valores de fronteira estabelece as condições de fronteira na forma de camo de incógnita fundamental (sem derivadas). O roblema de valores de fronteira misto, tem ambas as artes de fronteira diferentes de conjunto vazio, ou seja u e. 2.4 Condições iniciais u As condições iniciais definem-se em roblemas dinâmicos, em que há deendência no temo. Habitualmente indicam o camo de deslocamento em todos os ontos (interiores e de suerfície), no temo inicial. Visto tratar-se do roblema dinâmico, é igualmente reciso definir as velocidades. Estes roblemas não serão abordados nesta cadeira. No entanto o termo, a condição inicial, ode igualmente esecificar o estado inicial do meio contínuo, e é ossível estabelecer deformações ou tensões iniciais. As deformações iniciais têm que ser comatíveis e odem ser or exemlo de origem térmica.

5 2.5 Desvantagens da formulação clássica Devido à formulação em equações diferenciais, a formulação clássica tem várias desvantagens. Estas devem-se ao facto de se exigir demasiada continuidade, e or isso o camo de ossíveis soluções está restringido. Ver-se-á no róximo caítulo, que as formulações variacionais que rescrevem as equações fundamentais na forma de integrais, são muito mais flexíveis em termos de caacidade de se encontrar solução. Assim, a formulação clássica que exige envolvimento de equações de comatibilidade, exige deslocamentos contínuos, incluindo as derivadas de terceira ordem (comonentes são funções de classe 3 C ), deformações e tensões contínuas, incluindo as derivadas de segunda ordem 2 (comonentes são funções de classe C ). O raciocínio é o seguinte: as tensões e as deformações têm que ter semre o mesmo nível de continuidade, or serem ligados via equações constitutivas sem derivadas. As equações de comatibilidade envolvem segundas derivadas de deformações que são rimeiras derivadas de deslocamento, daí a continuidade dos deslocamentos e das deformações. A formulação clássica que não exige envolvimento de equações de comatibilidade, exige deslocamentos contínuos, incluindo as derivadas de segunda ordem (comonentes são funções de classe 2 C ), deformações e tensões contínuas, incluindo as derivadas de rimeira ordem 1 (comonentes são funções de classe C ). Agora as decisivas, são as equações de equilíbrio, que exigem rimeiras derivadas de tensões. 3. Métodos de resolução do roblema de elasticidade Como se viu neste caítulo, o roblema de elasticidade envolve resolução de 15 equações ara 15 funções esaciais que corresondem às comonentes de camos de incógnitas. Para se oderem simlificar os rocessos de resolução deste sistema, ode-se otar or redução do número de equações, escolhendo aenas algumas incógnitas base. 3.1 Método dos deslocamentos No método de deslocamentos, as incógnitas base são as comonentes de deslocamento. Neste caso, não é necessário envolver as equações de comatibilidade, orque resolvendo os deslocamentos as deformações calculadas usando o camo de deslocamento são semre comatíveis. O objectivo então será reduzir as equações, de modo a que outras incógnitas sejam eliminadas. Começa-se assim elas equações de equilíbrio. f 0

6 ubstitui-se as equações constitutivas C C f 0 e finalmente as equações deformações-deslocamento T T C u f 0 As equações resultantes chamam-se equações de Lamé. ão equações de equilíbrio em termos de deslocamentos e são 3. A rimeira equação tem a forma em baixo u v w x x y z u f 0 x as restantes odem-se obter ela ermutação ositiva de índices. As constantes de material usam as constantes de Lamé e o símbolo reresenta o oerador de Lalace na forma x y z A conclusão descrita é geral, ou seja, no método de deslocamentos definido ara equações reticulares (Análise de estruturas) ou outros tios de roblemas, as equações que ermitem a resolução de incógnitas são as equações de equilíbrio. Para se oder finalizar a resolução, é reciso igualmente alterar as condições de fronteira, eliminar as comonentes de tensão e deixam ermanecer aenas as comonentes de deslocamento. Naturalmente não é reciso adatar as condições de fronteiras geométricas. Nas condições de fronteira estáticas t n 0 tem que se substituir elas tensões de maneira semelhante como no início desta secção. No entanto nas condições de fronteira a tensão entra com comonentes na forma matricial, é or isso necessário alterar estas condições ara a forma t nˆ 0 A matriz ˆn tem que conter as comonentes do vector da normal exterior à fronteira, tem que ter dimensão 3x6 e tem que reservar as equações anteriores. Pelas simles comarações de equações t n n n x x x xy y xz z t n n n y xy x y y yz z

7 t n n n z xz x yz y z z é ossível colocar as comonentes na matriz ˆn e verificar que a forma é semelhante à matriz de oeradores x y n n n n n n x x xy y xz z x z y z n n n 0 n 0 n 0 n xy x y y yz z y z x yz n n n 0 0 n n n 0 xz x yz y z z z y x xz xy Deois é fácil substituir as equações constitutivas C ˆn C 0 e finalmente as equações deformações-deslocamento T T nˆ C u 0 Deois da resolução de camo de deslocamento, é ossível finalizar os cálculos e estabelecer deformações via T e finalmente as tensões via C 3.1 Método das forças

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos. Formulação clássica do roblema de elasticidade linear.1 Condições no interior. Condições de fronteira.3 ios dos

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Ca. 7. Princíio dos trabalhos virtais 1. Energia de deformação interna 1.1 Definição e ressostos adotados 1.2 Densidade de energia de deformação interna 1.3 Caso articlar: Lei constittiva é reresentada

Leia mais

2 Modelagem da casca cilíndrica

2 Modelagem da casca cilíndrica odelagem da casca cilíndrica As cascas cilíndricas odem ser definidas como um coro cuja distância de qualquer onto interno deste coro a uma suerfície de referência (usualmente a suerfície média da casca)

Leia mais

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos 03/11/017 RESISTÊNIA DOS MATERIAIS Marcel Merlin dos Santos TENSÃO EM EIXOS QUE SE DEVE À ARGA AXIAL E À TORÇÃO Ocasionalmente os eios circulares são submetidos a efeitos combinados de carga aial e torção.

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA- AERODINÂMICA NÃO ESTACIONÁRIA Introdução e conceitos básicos da teoria Prof. Roberto GIL Email: gil@ita.br Ramal: 648 1 AERODINÂMICA NÃO ESTACIONÁRIA Objetivo: Partir das equações de Navier-Stokes

Leia mais

O que é um Modelo Matemático?

O que é um Modelo Matemático? 1 1 O que é um Modelo Matemático? Conjunto de equações que relacionam as variáveis que caracterizam o rocesso e reresentam adequadamente o seu comortamento. São semre aroximações da realidade! Modelos

Leia mais

Estruturas de Betão Armado II 17 Pré-Esforço Perdas

Estruturas de Betão Armado II 17 Pré-Esforço Perdas struturas de Betão rmado II 17 ré-sforço erdas 1 Força Máxima de Tensionamento (Força de uxe) força alicada à armadura de ré-esforço, max (ou seja, a força na extremidade activa durante a alicação do ré-esforço),

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de Arquitectura o semestre de 7 de Julho de 7 Resonsável Henrique Oliveira a Parte. Considere a seguinte função f R! R de nida or f(x ; x ; x ) (x sin (x ) ; x ; x cos (x

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão.4 Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos UFMT- UNIVERSIDADE FEDERAL DE MATO GROSSO CUA - CAMPUS UNIVERSITÁRIO DO ARAGUAIA ICET - INSTITUTO DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM ENGENHARIA CIVIL Estática dos Fluidos Prof. Dr. Marco Donisete

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Modelos Contínuos. nuos

Modelos Contínuos. nuos 1 Modelos Contínuos nuos Modelos Mecanísticos Linearização Modelos de Esaço de Estados Funções de transferência Conversão de modelos Resosta em cadeia aberta 2 1 O que é um Modelo Matemático? tico? Conjunto

Leia mais

Capítulo 7 - Wattímetros

Capítulo 7 - Wattímetros Caítulo 7 - Wattímetros 7. Introdução Os wattímetros eletromecânicos ertencem à uma classe de instrumentos denominados instrumentos eletrodinâmicos. Os instrumentos eletrodinâmicos ossuem dois circuitos

Leia mais

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA A RASTERIZAÇÃO DA ELIPSE OBJECTIVO: O resente trabalho tem or objectivo ilustrar o

Leia mais

1 3? Assinale esses pontos no gráfico.

1 3? Assinale esses pontos no gráfico. Teste de Fotónica 4 de Junho de 7 Docente Resonsável: Prof arlos R Paiva Duração: hora 3 minutos Teste de 4 de Junho de 7 Ano Lectivo: 6 / 7 º TESTE onsidere um acolador linear de três núcleos idênticos,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Capítulo 4: Equação da energia para um escoamento em regime permanente

Capítulo 4: Equação da energia para um escoamento em regime permanente Caítulo 4: Equação da energia ara um escoamento em regime ermanente 4.. Introdução Eocando o conceito de escoamento incomressíel e em regime ermanente ara a instalação (ide figura), odemos afirmar que

Leia mais

11. Equilíbrio termodinâmico em sistemas abertos

11. Equilíbrio termodinâmico em sistemas abertos Equilíbrio termodinâmico em sistemas abertos Em um sistema aberto definimos o equilíbrio termodinâmico quando este sistema encontra-se simultaneamente em equilíbrio térmico, equilíbrio mecânico e equilíbrio

Leia mais

3. Modelos Constitutivos

3. Modelos Constitutivos 3. Modelos Constitutivos A comlexidade envolvida no estudo da deformação de solos e rochas é um dos grandes desafios da engenharia. No entanto, aesar da diversidade desse comortamento, observações exerimentais

Leia mais

A Equação de Dirac. (, ) ψ (, ) ik. r i t. t r = Ae e ω

A Equação de Dirac. (, ) ψ (, ) ik. r i t. t r = Ae e ω A Equação de Dirac ecordemos a equação de Schroedinger. Para uma artícula livre, isto é, sem estar sujeita a qualquer força, de massa m, a equação escreve-se: h/ ih/ t r = t r m (, ) (, ) A solução desta

Leia mais

MÉTODO DOS DESLOCAMENTOS

MÉTODO DOS DESLOCAMENTOS NGNH V O SUUS º no / º Semestre / rof. João iranda Guedes () ÉOO OS SONOS aralelismo entre étodo das orças e étodo dos eslocamentos. Seja a estrutura isostática: (), (), N () () s reacções nos aoios e,

Leia mais

Capítulo 2 Estática dos Fluidos

Capítulo 2 Estática dos Fluidos Caítulo Estática dos Fluidos ME4310 5/0 e 04/03/010 INICIAMS A SLUÇÃ D PRBLEMA ENUMERAND AS SUPERFÍCIES DE SEPARAÇÃ DS FLUIDS, JÁ QUE ISS FACILITARÁ A APLICAÇÃ D TEREMA DE STEVIN Solução do segundo roblema?

Leia mais

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de fenômenos de transorte ara engenharia civil Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NESTA BIBLIOGRAFIA ESTUDAMOS FLUIDO ESTÁTICO E EM MOVIMENTO. BIBLIOGRAFIA

Leia mais

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti Geometria Comutacional Primitivas Geométricas Claudio Eserança Paulo Roma Cavalcanti Oerações com Vetores Sejam x e y vetores do R n e λ um escalar. somavetorial ( x, y ) = x + y multescalar ( λ, x ) =

Leia mais

Identidades Termodinâmicas

Identidades Termodinâmicas Caítulo 5 Identidades ermodinâmicas 5.1 Consistência das equações de estado Diferencial exato imos que as equações de estado são equações deduzidas das relações fundamentais or meio de diferenciação dos

Leia mais

9º ENTEC Encontro de Tecnologia: 23 a 28 de novembro de 2015

9º ENTEC Encontro de Tecnologia: 23 a 28 de novembro de 2015 9º ENTEC Encontro de Tecnologia: a 8 de novembro de 05 CRITÉRIO DE VON MIE EM O UO DA TENÕE NORMAI PRINCIPAI Iago Porto Almeida Borges¹; Roberta Bastos de Oliveira²; Eliane Regina Flôres Oliveira³,, Universidade

Leia mais

Estabilidade Dinâmica: Modos Laterais

Estabilidade Dinâmica: Modos Laterais Estabilidade Dinâmica: Modos Laterais João Oliveira Estabilidade de Voo, Eng. Aeroesacial Versão de 13 de Dezembro de 2011 1 Modos laterais 1.1 Determinação dos modos laterais Determinação dos modos laterais

Leia mais

VIGAS. Figura 1. Graus de liberdade de uma viga no plano

VIGAS. Figura 1. Graus de liberdade de uma viga no plano VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga

Leia mais

CAPÍTULO 6 MOMENTO TORSOR

CAPÍTULO 6 MOMENTO TORSOR CPÍTULO 6 MOMENTO TORSOR 1) INTRODUÇÃO a) O objetivo é a análise de barras sujeitas à torção ura, isto é, cujas seções estão sujeitas somente a mome0nto torsor (torque) Portanto, se retende analisar somente

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Deartamento de Química ermodinâmica Aula 1 Professora: Melissa Soares Caetano Discilina Físico Química Avançada ermos termodinâmicos:

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Comaração entre Newton e kgf; oundal e lbf: Newton kg m/s kgf kg 9,8 m/s oundal lbm ft/s lbf lbm,74 ft/s Comaração entre slug e lbm; UTM e kg: lbf slug ft / s lbf lbm UTM kg,74 kgf s m / kgf 9,8m / s ft

Leia mais

Secção 5. Equações lineares não homogéneas.

Secção 5. Equações lineares não homogéneas. Secção 5 Equações lineares não omogéneas Farlow: Sec 36 a 38 Vimos na secção anterior como obter a solução geral de uma EDO linear omogénea Veremos agora como resoler o roblema das equações não omogéneas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão 4 Nome: N.º Turma: Aresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   6 MÉTODO DOS ELEMENTOS FINITOS LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito

Leia mais

EST 55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria

EST 55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria EST 55 - AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria 1 AERODINÂMICA NÃO ESTACIONÁRIA Das equações de Navier-Stokes ara a equação otencial linearizada: Escoamentos

Leia mais

VII.- VERIFICAÇÃO À RUPTURA

VII.- VERIFICAÇÃO À RUPTURA VII.- VERIFICAÇÃO À RUPTURA 7.1 - CONDIÇÃO DE ESTABILIDADE Será analisado neste caítulo o "Estado Limite Último Devido à Flexão" no concreto rotendido. Em um risma solicitado a flexão simles, a estabilidade

Leia mais

Aplicando a equação de Bernoulli de (1) a (2): A equação (1) apresenta quatro (4) incógnitas: p1, p2, v1 e v2. 2 z

Aplicando a equação de Bernoulli de (1) a (2): A equação (1) apresenta quatro (4) incógnitas: p1, p2, v1 e v2. 2 z 07 Exercício 0: Considerando o enturi (medidor de azão) reresentado a seguir, sabendo que o diâmetro interno da seção () é igual a 0,8 mm (segundo a norma ANSI B360 ara o aço 0 corresonde a um diâmetro

Leia mais

MÉTODO DOS DESLOCAMENTOS: BARRAS BI-ARTICULADAS 3D

MÉTODO DOS DESLOCAMENTOS: BARRAS BI-ARTICULADAS 3D MÉODO DOS DESOCAMENOS: BAAS BI-AICUADAS D Consideremos a estrutura constituida or duas barras bi-articuladas e submetida a uma acção força P alicada no nó e a um assentamento de aoio δ V. Persectiva P

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA Hewlett-Packard INTRODUÇÃO À MATEMÁTICA FINANCEIRA Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 206 Sumário Matemática Financeira... REFLITA... Porcentagem... Cálculos com orcentagem...

Leia mais

AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS

AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS LCE-00 Física do Ambiente Agrícola AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS Neste caítulo será dada uma introdução ao estudo termodinâmico de sistemas gasosos, visando alicação de seus conceitos aos gases

Leia mais

PROTOCOLO PARA ESTIMAR ERROS DE DISCRETIZAÇÃO EM CFD: VERSÃO 1.1. Carlos Henrique Marchi. Curitiba, UFPR, setembro de 2005.

PROTOCOLO PARA ESTIMAR ERROS DE DISCRETIZAÇÃO EM CFD: VERSÃO 1.1. Carlos Henrique Marchi. Curitiba, UFPR, setembro de 2005. PROTOCOLO PARA ESTIMAR ERROS DE DISCRETIZAÇÃO EM CFD: VERSÃO. Carlos Henrique Marchi Curitiba, FPR, setembro de 2005. O objetivo deste rotocolo é adronizar o rocesso de Verificação de soluções numéricas

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Redes Neurais. Redes Neurais Recorrentes A Rede de Hopfield. Prof. Paulo Martins Engel. Memória associativa recorrente

Redes Neurais. Redes Neurais Recorrentes A Rede de Hopfield. Prof. Paulo Martins Engel. Memória associativa recorrente Redes eurais Redes eurais Recorrentes A Rede de Hofield Memória associativa recorrente A suressão do ruído numa memória auto-associativa ode ser obtida colocando-se uma função de limiar na saída de um

Leia mais

Roteiro-Relatório da Experiência N o 7

Roteiro-Relatório da Experiência N o 7 . COMPOETES DA EQUIPE: UIVERSIDADE DO ESTADO DE SATA CATARIA - UDESC Roteiro-Relatório da Exeriência o 7 O TRASFORMADOR ALUOS OTA 3 4 Prof.: Celso José Faria de Araújo 5 Data: / / : hs. OBJETIVOS:.. Verificar

Leia mais

1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B

1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B Prearar o Exame 01 017 Matemática A Página 7 1. Observa o seguinte esquema: cores ossíveis cores ossíveis 1 cor disonível (não ode ser igual à anterior) 1 cor disonível (não ode ser igual à anterior) cores

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

4 Descrição do Modelo Computacional

4 Descrição do Modelo Computacional 4 Descrição do Modelo Comutacional 4.1. Introdução Os efeitos da exosição de folhelhos a fluidos salinos, observados em ensaios de laboratório, têm robabilidade de ocorrer também no oço. O modelo aqui

Leia mais

Algoritmos Distribuídos Introdução

Algoritmos Distribuídos Introdução Algoritmos Distribuídos Introdução Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br htt://www.dcc.ufmg.br/~loureiro Este material está baseado no caítulo 3 do livro Distributed Systems, second edition,

Leia mais

Parâmetros do Hidrograma Unitário para bacias urbanas brasileiras

Parâmetros do Hidrograma Unitário para bacias urbanas brasileiras RBRH Revista Brasileira de Recursos Hídricos Porto Alegre RS ABRH Vol 8 n.2 abr/jun) 195-199. 2003 Parâmetros do Hidrograma Unitário ara bacias urbanas brasileiras Carlos E. M. Tucci Instituto de Pesquisas

Leia mais

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de iências Exatas e Biológicas Deartamento de Química ermodinâmica Aula 3 Professora: Melissa Soares aetano Discilina QUI 317 Mudanças de estado a ressão constante

Leia mais

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia

UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Empresariais. Microeconomia UNIVERSIDADE CATÓLICA PORTUGUESA Faculdade de Ciências Económicas e Emresariais icroeconomia Licenciatura em Administração e Gestão de Emresas 3 de Novembro de Fernando Branco Eame de Finalistas Gabinete

Leia mais

MODELIZAÇÃO CINEMÁTICA DE UM ROBOT INDUSTRIAL. A. Mendes Lopes 1 e J.A. Tenreiro Machado 2

MODELIZAÇÃO CINEMÁTICA DE UM ROBOT INDUSTRIAL. A. Mendes Lopes 1 e J.A. Tenreiro Machado 2 MODELIZÇÃO CINEMÁTIC DE UM OBOT INDUSTIL. Mendes Loes e J.. Tenreiro Machado ssistente - Faculdade de Engenharia da Universidade do Porto, De. Eng. Mecânica e Gestão Industrial, 99 Porto Codex, Portugal

Leia mais

ESTÁTICA DOS FLUIDOS. Pressão. Mecânica dos Fluidos Aula 3 Estática 15/01/2018. Prof. Édler Lins de Albuquerque

ESTÁTICA DOS FLUIDOS. Pressão. Mecânica dos Fluidos Aula 3 Estática 15/01/2018. Prof. Édler Lins de Albuquerque Mecânica dos Fluidos Aula 3 Estática Prof. Édler Lins de Albuquerque ESTÁTICA DOS FLUIDOS Pressão ESTÁTICA Estuda os esforços nos fluidos quando estes estão em reouso ou não eiste movimento relativo entre

Leia mais

Escoamentos Compressíveis. Aula 03 Escoamento unidimensional

Escoamentos Compressíveis. Aula 03 Escoamento unidimensional Escoamentos Comressíveis Aula 03 Escoamento unidimensional 3. Introdução 4 de outubro de 947: Chuck Yeager a bordo do Bell XS- torna-se o rimeiro homem a voar a velocidade suerior à do som. 6 de março

Leia mais

Outras Técnicas que Utilizam o Escore de Propensão

Outras Técnicas que Utilizam o Escore de Propensão Técnicas Econométricas ara Avaliação de Imacto Outras Técnicas que Utilizam o Escore de Proensão Rafael Perez Ribas Centro Internacional de Pobreza Brasília, 28 de maio de 2008 Introdução O Escore de Proensão

Leia mais

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I

Exames Nacionais. Prova Escrita de Matemática A 2009 VERSÃO Ano de Escolaridade Prova 635/1.ª Fase. Grupo I Exames Nacionais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n. 7/00, de 6 de Março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Deartamento de Química ermodinâmica Aula 3 Professora: Melissa Soares Caetano Discilina QUI 217 Mudanças de estado a ressão

Leia mais

Física II-A. Prof. Rodrigo B. Capaz. Instituto de Física Universidade Federal do Rio de Janeiro

Física II-A. Prof. Rodrigo B. Capaz. Instituto de Física Universidade Federal do Rio de Janeiro Física II-A Prof. Rodrigo B. Caaz Instituto de Física Universidade Federal do Rio de Janeiro Informações Gerais Turmas: IF1 + FM1 + OV1 + NTA1 + IGM1 Horário: 4as. e 6as. 1-1h Sala: A-37 Professor: Rodrigo

Leia mais

LCG-COPPE-UFRJ (SIGGRAPH 2000) Leif Kobbelt. Max-Planck Institute for Computer Sciences. Apresentado por: Alvaro Ernesto Cuno Parari.

LCG-COPPE-UFRJ (SIGGRAPH 2000) Leif Kobbelt. Max-Planck Institute for Computer Sciences. Apresentado por: Alvaro Ernesto Cuno Parari. 3 - Subdivision Leif Kobbelt Max-Planck Institute for Comuter Sciences (SIGGRAPH 2) Aresentado or: Alvaro Ernesto Cuno Parari LCG-COPPE-UFRJ CONTEUDO Introdução Idéias Básicas da subdivisão Estrutura Básica

Leia mais

Programação de um semáforo usando o método do grau de saturação

Programação de um semáforo usando o método do grau de saturação Programação de um semáforo usando o método do grau de saturação Luis Vilanova * Introdução O cálculo do temo de ciclo e dos temos de verde através do método do grau de saturação constitui excelente ferramenta

Leia mais

Segunda aula de teoria de ME5330. Fevereiro de 2011

Segunda aula de teoria de ME5330. Fevereiro de 2011 Segunda aula de teoria de ME5330 Fevereiro de 2011 As curvas características das bombas são de fundamental imortância ara a correta utilização das mesmas. Portanto, a erfeita comreensão dessas curvas é

Leia mais

htt://img6.imageshack.us/img6/7179/albedo11il.jg ESPECTRO ELETROMAGNÉTICO Colorimetria O esectro eletromagnético é comosto de radiação de todos os comrimentos de onda. Nós enxergamos aenas uma equena arte

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidade Federal Rural do Semiárido UNIVERSIDADE FEDERAL RURAL DO SEMIÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS EQUAÇÃO DA CONTINUIDADE EQUAÇÃO DE BERNOULLI

Leia mais

Segunda aula de laboratório de ME4310. Primeiro semestre de 2014

Segunda aula de laboratório de ME4310. Primeiro semestre de 2014 Segunda aula de laboratório de ME4310 Primeiro semestre de 2014 Vamos voltar a instalação de recalque reresentada ela bancada do laboratório. 2 Foto das bancadas! Esquematicamente temos: Vamos recordar

Leia mais

Quarta aula de laboratório de ME4310. Primeiro semestre de 2015

Quarta aula de laboratório de ME4310. Primeiro semestre de 2015 Quarta aula de laboratório de ME40 Primeiro semestre de 05 Blaise Pascal Entre os dezoito e dezenove anos inventou a rimeira máquina de calcular. Aos vinte anos alicou seu talento à física, ois se interessou

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Conceitos básicos de redes neurais recorrentes Redes eurais e Sistemas Fuzzy Redes eurais Recorrentes A Rede de Hofield A suressão do ruído numa memória auto-associativa linear ode ser obtida colocando-se

Leia mais

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Termodinâmica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Deartamento de Química ermodinâmica Aula 3 Professora: Melissa Soares Caetano Discilina QUI 702 Mudanças de estado a ressão

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12.

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Probabilidade condicionada; acontecimentos independentes 12. Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática no Lectivo 00/0 Probabilidade condicionada; acontecimentos indeendentes º no Nome: Nº: Turma: Demonstre que se e são acontecimentos indeendentes,

Leia mais

AE-249- AEROELASTICIDADE

AE-249- AEROELASTICIDADE AE-49- AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria Instituto Tecnológico de Aeronáutica ITA/IEA 1 AERODINÂMICA NÃO ESTACIONÁRIA Das equações de Navier-Stokes

Leia mais

Toy models de supercondutores topológicos

Toy models de supercondutores topológicos Toy models de suercondutores toológicos November 9, 05 Introdução Começamos com uma banda metálica simétrica H 0 = σ ε() c σc σ, () ou escrito como matriz H 0 = ψ ( ) ε() 0 ψ 0 ε(), () com os sinors ψ

Leia mais

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov Cadeias de Markov. Introdução Nestas notas de aula serão tratados modelos de robabilidade ara rocessos que evoluem no temo de maneira robabilística. Tais rocessos são denominados rocessos Estocásticos...

Leia mais

4 Cargas Dinâmicas 4.1 Introdução

4 Cargas Dinâmicas 4.1 Introdução 4 Cargas Dinâmicas 4.1 Introdução Carregamentos dinâmicos, or definição, são carregamentos em que a magnitude, a direção e a osição odem variar ao longo do temo. Consequentemente, as resostas da estrutura,

Leia mais

Noções de Testes de Hipóteses

Noções de Testes de Hipóteses Noções de Testes de Hióteses Outro tio de roblema da Inferência Estatística é o de testar se uma conjectura sobre determinada característica de uma ou mais oulações é, ou não, aoiada ela evidência obtida

Leia mais

4. Tensores cartesianos em 3D simétricos

4. Tensores cartesianos em 3D simétricos 4. Tensores cartesianos em D simétricos 4.1 Valores e vectores próprios ou valores e direcções principais Em D não é possível deduzir as fórmulas que determinam os valores e as direcções principais na

Leia mais

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC 1. Hierarquia de Mecânica Clássica ou Newtoniana 2. Meio contínuo 3. Objectivos de MMC 3.1 Carregamento 3.2 Resposta ao carregamento 3.3

Leia mais

Apontamentos de Álgebra Linear

Apontamentos de Álgebra Linear Aontamentos de Álgebra Linear (inclui as alicações não avaliadas) Nuno Martins Deartamento de Matemática Instituto Suerior Técnico Dezembro de 08 Índice Matrizes: oerações e suas roriedades Resolução de

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto Programas novos e Decreto-Lei n. 74/004, de 6 de Março) Duração da rova: 50 minutos.ª FASE 007 VERSÃO PROVA ESCRITA

Leia mais

5 Análise do Fluxo de Gás Através de Chokes

5 Análise do Fluxo de Gás Através de Chokes Análise do Fluxo de Gás Através de Chokes 0 5 Análise do Fluxo de Gás Através de Chokes 5. Introdução A vazão de fluxo de quase todos os oços fluentes é controlada or um choke na cabeça do oço, um disositivo

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 PME-235 MECÂNICA DOS SÓLIDOS II AULA #6: SOLUÇÃO DE UM PROBLEMA GERAL DA TEORIA DA ELASTICIDADE CLÁSSICA (TEC) 1 6.1. Introdução O objetivo destas notas é apresentar, de forma um pouco mais detalhada,

Leia mais

Escoamentos Compressíveis. Capítulo 03 Escoamento unidimensional

Escoamentos Compressíveis. Capítulo 03 Escoamento unidimensional Escoamentos Comressíveis Caítulo 03 Escoamento unidimensional 3. Introdução 4 de outubro de 947: Chuck Yeager a bordo do Bell XS- torna-se o rimeiro homem a voar a velocidade suerior à do som. 6 de março

Leia mais

Cap. 1 Semicondutores Homogéneos 1

Cap. 1 Semicondutores Homogéneos 1 Ca. 1 Semicondutores Homogéneos 1 Os semicondutores são materiais cujas condutividades se situam entre as dos metais (10 6 a 10 8 S/m) e as dos isoladores (10-0 a 10-8 S/m). Quando uros designam-se or

Leia mais

Modelo dinâmico do conversor Forward

Modelo dinâmico do conversor Forward Modelo dinâmico do conversor Forward Objetivos Aresentar a modelagem de equenos sinais Obter a lanta de tensão do conversor Forward Aresentar um exemlo de rojeto de controle utilizando a lanta obtida Modelagem

Leia mais

a velocidade de propagação da onda para montante. Admita que a largura do canal é b = 3 m e que a altura inicial do escoamento é h u = 2 m.

a velocidade de propagação da onda para montante. Admita que a largura do canal é b = 3 m e que a altura inicial do escoamento é h u = 2 m. Problema. Num canal com secção rectangular escoa-se, em regime uniforme, o caudal de 8 m 3 /s. Numa determinada secção deste canal existe uma comorta de regulação. Uma manobra ráida nesta comorta rovoca

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Visualização 3D: Projecções

Visualização 3D: Projecções Visualiação 3D: Projecções Sistemas Gráficos/ Comutação Gráfica e Interfaces Pieline de Visualiação Coordenadas mundo (3D) Cliing no esaço 3D (volume de visualiação) Projectar ara o lano de rojecção Transformação

Leia mais

Fig. 1 - Resposta em Malha Aberta

Fig. 1 - Resposta em Malha Aberta MODOS DE CONROLE Modo ou ação de controle é a forma através da qual o controlador age sobre o rocesso com o objetivo de manter a variável controlada no setoint. A ação de controle ara um rocesso deende

Leia mais

3 Propagação em ambientes abertos na faixa GHz

3 Propagação em ambientes abertos na faixa GHz 3 Proagação em ambientes abertos na faixa 10-66 GHz Na faixa de freqüências de oeração entre 10 e 66 GHz, a existência de visada direta é muito imortante ara viabilizar a comunicação de sistemas sem fio

Leia mais

Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas)

Universidade de Coimbra Faculdade de Ciências e Tecnologia 2001/02 Estruturas II (aulas teóricas) Sumário da 1ª lição: Sumário da 2ª lição: - Apresentação. - Objectivos da Disciplina. - Programa. - Avaliação. - Bibliografia. - Método dos Deslocamentos. - Introdução. - Grau de Indeterminação Cinemática.

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

ENSAIO DE FLEXÃO EM ESTRUTURA DE PAREDES FINAS REFORÇADAS

ENSAIO DE FLEXÃO EM ESTRUTURA DE PAREDES FINAS REFORÇADAS ENSAIO DE FLEXÃO EM ESTRUTURA DE PAREDES FINAS REFORÇADAS José Manuel Gordo e Carlos Guedes Soares Instituto Suerior Técnico Unidade de Engenharia e Tecnologia Naval RESUMO Aresenta-se os resultados de

Leia mais

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t Mecânica dos luidos Sólido luido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. t t luido (t) t d dt t Estática de luidos Um fluido é considerado estático quando

Leia mais

Experiência 5 - Oscilações harmônicas forçadas

Experiência 5 - Oscilações harmônicas forçadas Roteiro de ísica Exerimental II 1 1. OBJETIVO Exeriência 5 - Oscilações harmônicas forçadas O objetivo desta aula é discutir e realizar exerimentos envolvendo um conjunto massa-mola sob ação de uma força

Leia mais

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira

MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores

Leia mais

Conjunto de Valores. A Função de Probabilidade (fp)

Conjunto de Valores. A Função de Probabilidade (fp) Prof. Lorí Viali, Dr. viali@mat.ufrgs.br htt://www.mat.ufrgs.br/~viali/ Bernoulli Binomial Binomial Negativa ou Pascal Geométrica Hiergeométrica Uniforme Poisson Eerimento Qualquer um que corresonda a

Leia mais

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia).

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia). Cadeias de Markov Andrei Andreyevich Markov (*856, Ryazan, Russia; 9, São etersburgo, Russia). Acreditar é mais fácil do que ensar. Daí existirem muito mais crentes do que ensadores. - Bruce Calvert .

Leia mais

Estudo da influência dos índices de severidade na segurança de um Sistema Eléctrico de Energia

Estudo da influência dos índices de severidade na segurança de um Sistema Eléctrico de Energia Estudo da influência dos índices de severidade na segurança de um Sistema Eléctrico de Energia C. I. Faustino Agreira, C. M. Machado Ferreira, J. A. Dias Pinto e F. P. Maciel Barbosa 2 Deartamento de Engenharia

Leia mais

MATEMÁTICA COMENTÁRIO DA PROVA

MATEMÁTICA COMENTÁRIO DA PROVA COMENTÁRIO DA PROVA Os objetivos desta rova discursiva foram lenamente alcançados. Os conteúdos rinciais foram contemlados, inclusive comlementando os tóicos abordados na ª. fase, mostrando uma conveniente

Leia mais