Toy models de supercondutores topológicos

Tamanho: px
Começar a partir da página:

Download "Toy models de supercondutores topológicos"

Transcrição

1 Toy models de suercondutores toológicos November 9, 05 Introdução Começamos com uma banda metálica simétrica H 0 = σ ε() c σc σ, () ou escrito como matriz H 0 = ψ ( ) ε() 0 ψ 0 ε(), () com os sinors ψ = ( ) c. (3) c Podemos utilizar esta notação ara escrever algums tios de Hamiltonianos. Por exemlo, uma interação entre sins { Vσσ c σc σ + H.c. }, (4) H V = σ,σ vira H V = ψ ( ) V V ψ V V. (5) Mas o Hamiltoniano BCS H BCS = { c c + H.c. }, (6) não ode ser escrito dessa maneira (tentem).

2 O formalismo de Bogoliubov De Gennes Vamos escrever H 0 como segue: H 0 = { ε()c σ c σ + ε()c } σc σ = σ σ { ε()c σ c σ ε()c σ c σ} + ε(). Aroveitando a simetria da banda metálica, odemos mudar no segundo termo, e temos H 0 = { } ε()c σc σ ε( )c σ c σ + ε(). (8) σ Fazemos o mesmo com H SC : H SC = { [ ] } c c c c + H.c., (9) e definimos o sinor c c ψ = c c σ σ (7). (0) Agora odemos escrever (verifiquem) ε() 0 0 H = H 0 + H SC = ψ 0 ε() 0 0 ε( ) 0 ψ 0 0 ε( ) = ψ H BdG ψ, () onde ignoramos o termo constante. H BdG tem simetria elétron-buraco, herdada de H 0 e H SC. Neste formalismo, conhecido como formalismo de Bogoliubov-De Gennes (o sinor ψ é chamado sinor de Nambú), a simetria elétron-buraco é mostrada exlícitamente. Por exemlo, o oerador de conjugação de carga (troca de elétron e buraco) é simlesmente ( ) σ C = τ x σ 0 = 0 = σ , () onde τ x é uma matriz de Pauli que age sobre os graus de liberdade de elétronburaco, e σ 0 é a matriz unidade no esaço de sin. Em oucas alavras, C simlesmente ordena a matriz do Hamiltoniano quando os subesaços azul e vermelho da Eq. () são trocados.

3 . Solução Mesmo que o Hamiltoniano Eq. () é uma matriz de 4 4, tem um jeito muito simles de resolver. Já que conhecemos a notação τ i σ j, vamos utilizá-la ara escrever H BdG como (verifiquem) H BdG = ε()τ z σ 0 Re τ y σ y Im 0τ x σ y. (3) Estas matrices se comortam de uma maneira muito similar às matrices de Pauli, or exemlo: [τ z σ 0 ][τ y σ y ] = [τ y σ y ][τ z σ 0 ] = iτ x σ y, (4a) [τ z σ 0 ][τ x σ y ] = [τ x σ y ][τ z σ 0 ] = iτ y σ y, (4b) [τ y σ y ][τ x σ y ] = [τ x σ y ][τ y σ y ] = i[τ z σ 0 ], (4c) [τ z σ 0 ] = [τ y σ y ] = [τ x σ y ] = 4 4. (4d) Como consequência, odemos escrever e os autovalores de energia são H BdG = [ε () + ] 4 4, (5) E ± = ± ε () +, (6) cada um com dula degenerecencia. Claramente, se 0 temos um ga suercondutor. Cómo sabemos que é um ga suerconductor, e não um ga comum, como no caso dos semicondutores? Podemos dar uma olhada ara os auto estados de H (verifiquem): ] c () = N [c ε() + ε () + c, (7a) c +() = N [ c ] ε() + ε () + c. (7b) Os camos c + () e c () corresondem a combinações de elétrons e buracos. Precisamos dos outros dois estados? Não! Lembrem-se que o Hamiltoniano virou 4 4 or um truque, no qual dobramos os graus de liberdade do roblema tratando elétrons e buracos como um seudo-sin. 3 Suercondutores tio em D O acolamento ode em rinciio ser deendente do momento, i.e. (). Quando ( ) = (), o suercondutor é chamado de tio, em analogia com os orbitais, os quais comartem esta roriedade. Nóte-se que (0) = 0. Para entender a diferência que isso faz, reseito dos suercondutores tio s ( 3

4 constante), vamos estudar o caso mais simles: um suercondutor em D, e sem o grau de liberdade de sin. Neste caso temos ( ) = (). As funções anti simétricas mais básicas são Vamos estudar os dois casos. () = 0, () = 0 sin (a/ ). (8a) (8b) 3. = 0 O Hamiltoniano neste caso é H = ε() c c + ( 0 c c + 0 c c ). (9) Escrevemos H + const. = ] [ε()c c ε( )c c + 0 c c + 0 c c = ( ) ψ ε() 0 ψ 0 ε( ), (0) onde ψ = De novo temos (suondo ε() = ε( )) e or tanto com os auto valores de energia ( c c ). () H BdG = ε()τ z + Re 0 τ x Im 0 τ y, () H BdG = [ ε () + 0 ], (3) E ± = ± ε () + 0. (4) A disersão de artícula livre ε() erto de = 0 ode ser escrita como ε() = (/m ) µ, com m uma massa efetiva e µ o otencial químico. Nóte-se que ara µ = 0 o ga se fecha em = 0 (Figura ). Tem uma diferencia imortante entre os casos de µ < 0 e µ > 0. No caso de µ < 0 temos um suercondutor com as mesmas roriedades do tio s, exceto com um ga deendente de. Mas quando µ > 0, o suercondutor é toológico. A diferencia entre um suercondutor trivial e um toológico é sutil, mas ara obter um ouco de intuição odemos dar uma olhada ara os estados do suercondutor toológico na reresentação esacial. Para isso é mais conveniente trabalhar com () = 0 sin (a/ ). 4

5 Figure : Estrutura de bandas com () = 0 (linhas continuas) e () = 0 sin () (linha ontilhada), ara µ < 0, µ = 0 e µ > 0. Em ambos casos 0 =.5 (ma / ), e a é alguma escala de largura relevante no sistema (e.g., a constante de rede). 5

6 3. () = 0 sin (a/ ) Em vez de utilizar uma disersão de artícula livre ara ε(), vamos ensar num material D (um nanowire) que é bem descrito elo modelo de tight binding semi infinito. Nesse caso temos ε() = t cos (ak) µ, (5) onde t é o acolamento entre vizinhos, a é a constante de rede, e k é o número de onda corresondente ao crystal momentum = k. A disersão neste caso é E ± (k) = ± (cos ak µ) + 0 sin (ak). (6) Quando fecha esse ga? Precisamos resolver a equação t cos (ak) + 0 sin (ak) = µ(t cos(ak) µ). (7) Neste caso µ = 0 não é mais uma solução (ara t, 0), orque o lado esquerdo da equação é semre ositivo. Vamos exigir que o ga seja indeendente de 0, o qual é razoável se temos e.g. 0 > t, µ. Nesse caso recisamos sin (ak) = 0 ak = nπ (n = 0, ±), e temos µ tµ + t = 0 for n = 0 (µ t) = 0, (8a) µ + tµ + t = 0 for n = ± (µ + t) = 0. (8b) Em outras alavras, o ga fecha quando µ = t, deois abre de novo, fecha de novo ara µ = t, e abre de novo. As treis fases deste suercondutor são aresentadas na Fig.. Neste caso, a fase toológica é µ < t, e temos uma fase trivial quando µ < 0. Para areciar a diferencia entre as fases suercondutoras trivial e toológica, vamos introduzir os camos na reresentação de osiçoes c j = e i (ja)k c k, (9) N k onde x = ja são as osições numa cadeia de tight binding de constante de rede a. Substituindo no Hamiltoniano obtemos o seguinte modelo (verifiquem) H κ = { t ( ) c j c j+ + c j+ c j µc j c j + 0 c j c j+ + } 0 c j+c j, (30) que é conhecido como o modelo de Kitaev. Para obter os estados deste modelo escrevemos 0 = 0 e iφ, e definimos os oeradores de Majorana γ j = e iφ/ c j + e iφ/ c j, iγ j = e iφ/ c j e iφ/ c j, (3a) (3b) 6

7 ou equivalentemente c j = e iφ/ γ j + iγ j, (3a) c j = γ eiφ/ j iγ j. (3b) Substituindo na Eq. (30) obtemos (verifiquem) { i(t ) H κ = γj γ i(t + ) j+ γj γj+ µ ( iγ 4 4 j γj ) }. (33) Para encontrar exatamente as fases de H κ recisamos fazer um ouco de mecânica estatística, mas or agora queremos aenas entender o comortamento do estado base do sistema nos casos mencionados acima: µ > t ou µ < t, ara arbitrário. Para facilitar a nossa vida, fazemos = t, e obtemos { it H κ ( = t) = γ j γj+ + µ ( iγ j γj ) }. (34) No caso limite µ t (fase trivial), o rimeiro termo na Eq. (34) ode ser ignorado, e obtemos H κ ( = t, µ t) que é diagonalizado elos oeradores { µ ( iγ j γj ) }, (35) a j = γ j + iγ j, (36a) e obtemos a j = γ j iγ j, H κ ( = t, µ t) µ (36b) c j c j. (37) Este caso não tem nada de esecial: temos uma cadeia de férmions, onde cada site da cadeia tem energia µ. Em contraarte, no caso de µ t (fase toológica), é o rimeiro termo que domina. Podemos ignorar o segundo, e obtemos H κ ( = t, µ t) it γj γ j+. (38) Este caso é diagonalizado elos oeradores a j = γ j+ + iγ j a j = γ j+ iγ j 7, (39a), (39b)

8 e obtemos H κ ( = t, µ t) = t ( a j a j ). (40) Os oeradores neste caso são bastante eculiares: eles acolam um Majorana de tio do site j com um outro de tio do site j +, roduzindo camos a j levemente não locais, dado que consistem em elétrons divididos entre dos sites. Mais interessante ainda é o fato que os oeradores γ e γn (ao começo e final da cadeia) ficam livres. De fato, se considerarmos condições de fronteira eriódicas, os camos de Majorana γ e γn formam um férmion redaltamente não local a j = γ + iγn, (4) que resenta entrelazamento entre ambos lados da cadeia. Ademais, a 0 não aarece no Hamiltoniano Eq. (40), i.e., o estado não local é um modos de energia zero, indeendentemente dos arámetros esecíficos do modelo (semre que a condição µ < t seja cumrida). 8

9 Figure : Fases do modelo de Kitaev. 0 =.5 t. 9

A Equação de Dirac. (, ) ψ (, ) ik. r i t. t r = Ae e ω

A Equação de Dirac. (, ) ψ (, ) ik. r i t. t r = Ae e ω A Equação de Dirac ecordemos a equação de Schroedinger. Para uma artícula livre, isto é, sem estar sujeita a qualquer força, de massa m, a equação escreve-se: h/ ih/ t r = t r m (, ) (, ) A solução desta

Leia mais

Fases de Berry. David A. Ruiz Tijerina. November 11, Evolução temporal de um autoestado e a fase de Berry

Fases de Berry. David A. Ruiz Tijerina. November 11, Evolução temporal de um autoestado e a fase de Berry Fases de Berry David A. Ruiz Tijerina November 11, 15 1 Evolução temporal de um autoestado e a fase de Berry Vamos supor que temos um Hamiltoniano H(R) que depende de um conjunto de parámetros R = {R i

Leia mais

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem

Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda Ordem UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório de Dinâmica SEM 504 DINÂMICA ESTRUTURAL Aula # 8 Vibrações em Sistemas Contínuos Modelo de Segunda

Leia mais

Capítulo 2. Integrais de linha. 2.1 Independência do caminho nas integrais de linha

Capítulo 2. Integrais de linha. 2.1 Independência do caminho nas integrais de linha Caítulo 2 Integrais de linha 2.1 Indeendência do caminho nas integrais de linha Definição 2.1 Dados um domínio D R 3 e P, Q, R : D R camos escalares contínuos, dizemos que a integral de linha é indeendente

Leia mais

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos

RESISTÊNCIA DOS MATERIAIS 2 Marcel Merlin dos Santos 03/11/017 RESISTÊNIA DOS MATERIAIS Marcel Merlin dos Santos TENSÃO EM EIXOS QUE SE DEVE À ARGA AXIAL E À TORÇÃO Ocasionalmente os eios circulares são submetidos a efeitos combinados de carga aial e torção.

Leia mais

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano

M odulo de Potencia c ao e D ızimas Peri odicas Nota c ao Cient ıfica e D ızimas Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Notação Científica e Dízimas Oitavo Ano Exercícios Introdutórios Exercício. Escreva os seguintes números na notação científica: a) 4673. b) 0, 0034. c). d) 0,

Leia mais

Representações da Equação de Dirac em 1+1 Dimensões

Representações da Equação de Dirac em 1+1 Dimensões Revista Brasileira de Ensino de Física, vol. 38, nº 3, e33 06 www.scielo.br/rbef Artigos Gerais cbnd Licença Creative Commons Reresentações da Equação de Dirac em + Dimensões Reresentations of the Dirac

Leia mais

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA

AA-220 AERODINÂMICA NÃO ESTACIONÁRIA AA- AERODINÂMICA NÃO ESTACIONÁRIA Introdução e conceitos básicos da teoria Prof. Roberto GIL Email: gil@ita.br Ramal: 648 1 AERODINÂMICA NÃO ESTACIONÁRIA Objetivo: Partir das equações de Navier-Stokes

Leia mais

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos 2. Formulação clássica do roblema de elasticidade linear 2.1 Condições no interior 2.2 Condições de fronteira 2.3

Leia mais

Fermions de Majorama

Fermions de Majorama Universidade de São Paulo Instituto de Física 20 Junio de 2013 Conteudo Introdução 1 Introdução 2 3 4 Materia e Antimateria Introdução Equação de Dirac (1928) (iγ µ µ m)ψ = 0 Conjugação de Carga ψ c =

Leia mais

2 Modelagem da casca cilíndrica

2 Modelagem da casca cilíndrica odelagem da casca cilíndrica As cascas cilíndricas odem ser definidas como um coro cuja distância de qualquer onto interno deste coro a uma suerfície de referência (usualmente a suerfície média da casca)

Leia mais

4 Descrição do Modelo Computacional

4 Descrição do Modelo Computacional 4 Descrição do Modelo Comutacional 4.1. Introdução Os efeitos da exosição de folhelhos a fluidos salinos, observados em ensaios de laboratório, têm robabilidade de ocorrer também no oço. O modelo aqui

Leia mais

Cap. 1 Semicondutores Homogéneos 1

Cap. 1 Semicondutores Homogéneos 1 Ca. 1 Semicondutores Homogéneos 1 Os semicondutores são materiais cujas condutividades se situam entre as dos metais (10 6 a 10 8 S/m) e as dos isoladores (10-0 a 10-8 S/m). Quando uros designam-se or

Leia mais

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos: 1 Noções Básicas de Lógica 1.1 Proosições Uma roosição é uma frase ue ode ser aenas verdadeira ou falsa. 1. Os saos são anfíbios. 2. A caital do Brasil é Porto Alegre. 3. O tomate é um tubérculo. 4. Por

Leia mais

Secção 5. Equações lineares não homogéneas.

Secção 5. Equações lineares não homogéneas. Secção 5 Equações lineares não omogéneas Farlow: Sec 36 a 38 Vimos na secção anterior como obter a solução geral de uma EDO linear omogénea Veremos agora como resoler o roblema das equações não omogéneas

Leia mais

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti

Geometria Computacional Primitivas Geométricas. Claudio Esperança Paulo Roma Cavalcanti Geometria Comutacional Primitivas Geométricas Claudio Eserança Paulo Roma Cavalcanti Oerações com Vetores Sejam x e y vetores do R n e λ um escalar. somavetorial ( x, y ) = x + y multescalar ( λ, x ) =

Leia mais

Redes Neurais. Redes Neurais Recorrentes A Rede de Hopfield. Prof. Paulo Martins Engel. Memória associativa recorrente

Redes Neurais. Redes Neurais Recorrentes A Rede de Hopfield. Prof. Paulo Martins Engel. Memória associativa recorrente Redes eurais Redes eurais Recorrentes A Rede de Hofield Memória associativa recorrente A suressão do ruído numa memória auto-associativa ode ser obtida colocando-se uma função de limiar na saída de um

Leia mais

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos UFMT- UNIVERSIDADE FEDERAL DE MATO GROSSO CUA - CAMPUS UNIVERSITÁRIO DO ARAGUAIA ICET - INSTITUTO DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM ENGENHARIA CIVIL Estática dos Fluidos Prof. Dr. Marco Donisete

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO. Ano de Escolaridade (Decreto-Lei n. 86/8, de de Agosto Programas novos e Decreto-Lei n. 74/004, de 6 de Março) Duração da rova: 50 minutos.ª FASE 007 VERSÃO PROVA ESCRITA

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B

1 cor disponível (não pode ser igual à anterior) Casos possíveis: 3 x 2 x 1 x 1 x 3 = 18 Resposta: B Prearar o Exame 01 017 Matemática A Página 7 1. Observa o seguinte esquema: cores ossíveis cores ossíveis 1 cor disonível (não ode ser igual à anterior) 1 cor disonível (não ode ser igual à anterior) cores

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de Arquitectura o semestre de 7 de Julho de 7 Resonsável Henrique Oliveira a Parte. Considere a seguinte função f R! R de nida or f(x ; x ; x ) (x sin (x ) ; x ; x cos (x

Leia mais

AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS

AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS LCE-00 Física do Ambiente Agrícola AULA 8: TERMODINÂMICA DE SISTEMAS GASOSOS Neste caítulo será dada uma introdução ao estudo termodinâmico de sistemas gasosos, visando alicação de seus conceitos aos gases

Leia mais

GABARITO DA PROVA. para cada massa, com origem no vértice 2. l, a energia mecânica total será E U 3., obtemos os valores máximo e mínimo de l.

GABARITO DA PROVA. para cada massa, com origem no vértice 2. l, a energia mecânica total será E U 3., obtemos os valores máximo e mínimo de l. UNIVSIDD FDL D SNT CTIN CNTO D CIÊNCIS FÍSIC MTMÁTICS DPTMNTO D FÍSIC POGM D PÓS-GDUÇÃO M FÍSIC xame de Seleção Primeiro Semestre 11 1) lternativa. energia otencial total é dada or GITO D POV U ( l) U

Leia mais

matematicaconcursos.blogspot.com

matematicaconcursos.blogspot.com Professor: Rômulo Garcia Email: machadogarcia@gmail.com Conteúdo Programático: Teoria dos Números Exercícios e alguns conceitos imortantes Números Perfeitos Um inteiro ositivo n diz-se erfeito se e somente

Leia mais

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Rememorando Estatística II Aula II Profa. Renata G. Aguiar 1 Figura 7 Distribuição de uma amostra (n = 150).

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Conceitos básicos de redes neurais recorrentes Redes eurais e Sistemas Fuzzy Redes eurais Recorrentes A Rede de Hofield A suressão do ruído numa memória auto-associativa linear ode ser obtida colocando-se

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 4. Dispersão Óptica em Meios Materiais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 4. Dispersão Óptica em Meios Materiais Eletromagnetismo II Prof. Dr. R.M.O Galvão - Semestre 05 Prearo: Diego Oliveira Aula 4 Disersão Ótica em Meios Materiais Em Eletromagnetismo I discutimos como um camo elétrico externo é alterado em um

Leia mais

Figura 4.21: Gráfico da intensidade das potências de qq U t qq (linhas 1 e 3), levando em conta os 30% de pontos mais intensos, N = 76 e fase = 0,

Figura 4.21: Gráfico da intensidade das potências de qq U t qq (linhas 1 e 3), levando em conta os 30% de pontos mais intensos, N = 76 e fase = 0, Figura 4.2: Gráfico da intensidade das otências de q U t q (linhas e 3), levando em conta os 3% de ontos mais intensos, N = 76 e fase =, comaradas com órbitas eriódicas clássicas (linhas 2 e 4) obtidas

Leia mais

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Ca. 7. Princíio dos trabalhos virtais 1. Energia de deformação interna 1.1 Definição e ressostos adotados 1.2 Densidade de energia de deformação interna 1.3 Caso articlar: Lei constittiva é reresentada

Leia mais

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos O problema de 1 elétron O princípio variacional Função de onda tentativa Átomo de H unidimensional Íon H2 + unidimensional Equação

Leia mais

Experiência 5 - Oscilações harmônicas forçadas

Experiência 5 - Oscilações harmônicas forçadas Roteiro de ísica Exerimental II 1 1. OBJETIVO Exeriência 5 - Oscilações harmônicas forçadas O objetivo desta aula é discutir e realizar exerimentos envolvendo um conjunto massa-mola sob ação de uma força

Leia mais

Unidade I 1. Termometria. Professor Dr. Edalmy Oliveira de Almeida

Unidade I 1. Termometria. Professor Dr. Edalmy Oliveira de Almeida Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da ultura - SEE UNIVERSIDADE DO ESADO DO RIO GRANDE DO NORE - UERN Pró-Reitoria de Ensino de Graduação PROEG Home Page: htt://www.uern.br

Leia mais

Exercícios DISCURSIVOS -3

Exercícios DISCURSIVOS -3 Exercícios DISCURSIVOS -3. (Ufr 0) Sabemos que essoas com iermetroia e essoas com mioia recisam utilizar lentes de contato ou óculos ara enxergar corretamente. Exlique o que é cada um desses roblemas da

Leia mais

Eq. de Dirac com campo magnético

Eq. de Dirac com campo magnético Eq. de Dirac com campo magnético Rafael Cavagnoli GAME: Grupo de Médias e Altas Energias Eletromagnetismo clássico Eq. de Schrödinger Partícula carregada em campo mag. Eq. de Dirac Partícula carregada

Leia mais

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti

Segunda aula de fenômenos de transporte para engenharia civil. Estática dos Fluidos capítulo 2 do livro do professor Franco Brunetti Segunda aula de fenômenos de transorte ara engenharia civil Estática dos Fluidos caítulo 2 do livro do rofessor Franco Brunetti NESTA BIBLIOGRAFIA ESTUDAMOS FLUIDO ESTÁTICO E EM MOVIMENTO. BIBLIOGRAFIA

Leia mais

Voltando ao cálculo da seção de choque, podemos simplificar bastante a equação 207.1

Voltando ao cálculo da seção de choque, podemos simplificar bastante a equação 207.1 Teoria Quântica de Campos I 210 ( eq. 210.1 ) ( seguindo a mesma lógica ) ( eq. 210.2 ) Voltando ao cálculo da seção de choque, podemos simplificar bastante a equação 207.1 (eq 207.1) do quatro termos

Leia mais

Gabarito da Lista 6 de Microeconomia I

Gabarito da Lista 6 de Microeconomia I Professor: Carlos E.E.L. da Costa Monitor: Vitor Farinha Luz Gabarito da Lista 6 de Microeconomia I Eercício Seja Y um conjunto de ossibilidades de rodução. Dizemos que uma tecnologia é aditiva quando

Leia mais

Capítulo 7 - Wattímetros

Capítulo 7 - Wattímetros Caítulo 7 - Wattímetros 7. Introdução Os wattímetros eletromecânicos ertencem à uma classe de instrumentos denominados instrumentos eletrodinâmicos. Os instrumentos eletrodinâmicos ossuem dois circuitos

Leia mais

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia).

Cadeias de Markov. Andrei Andreyevich Markov (*1856, Ryazan, Russia; 1922, São Petersburgo, Russia). Cadeias de Markov Andrei Andreyevich Markov (*856, Ryazan, Russia; 9, São etersburgo, Russia). Acreditar é mais fácil do que ensar. Daí existirem muito mais crentes do que ensadores. - Bruce Calvert .

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Identidades Termodinâmicas

Identidades Termodinâmicas Caítulo 5 Identidades ermodinâmicas 5.1 Consistência das equações de estado Diferencial exato imos que as equações de estado são equações deduzidas das relações fundamentais or meio de diferenciação dos

Leia mais

LCG-COPPE-UFRJ (SIGGRAPH 2000) Leif Kobbelt. Max-Planck Institute for Computer Sciences. Apresentado por: Alvaro Ernesto Cuno Parari.

LCG-COPPE-UFRJ (SIGGRAPH 2000) Leif Kobbelt. Max-Planck Institute for Computer Sciences. Apresentado por: Alvaro Ernesto Cuno Parari. 3 - Subdivision Leif Kobbelt Max-Planck Institute for Comuter Sciences (SIGGRAPH 2) Aresentado or: Alvaro Ernesto Cuno Parari LCG-COPPE-UFRJ CONTEUDO Introdução Idéias Básicas da subdivisão Estrutura Básica

Leia mais

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov

Cadeias de Markov. 1. Introdução. Modelagem e Simulação - Cadeias de Markov Cadeias de Markov. Introdução Nestas notas de aula serão tratados modelos de robabilidade ara rocessos que evoluem no temo de maneira robabilística. Tais rocessos são denominados rocessos Estocásticos...

Leia mais

VIGAS. Figura 1. Graus de liberdade de uma viga no plano

VIGAS. Figura 1. Graus de liberdade de uma viga no plano VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga

Leia mais

Estabilidade Dinâmica: Modos Laterais

Estabilidade Dinâmica: Modos Laterais Estabilidade Dinâmica: Modos Laterais João Oliveira Estabilidade de Voo, Eng. Aeroesacial Versão de 13 de Dezembro de 2011 1 Modos laterais 1.1 Determinação dos modos laterais Determinação dos modos laterais

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

Modelos Contínuos. nuos

Modelos Contínuos. nuos 1 Modelos Contínuos nuos Modelos Mecanísticos Linearização Modelos de Esaço de Estados Funções de transferência Conversão de modelos Resosta em cadeia aberta 2 1 O que é um Modelo Matemático? tico? Conjunto

Leia mais

Escoamentos Compressíveis. Aula 03 Escoamento unidimensional

Escoamentos Compressíveis. Aula 03 Escoamento unidimensional Escoamentos Comressíveis Aula 03 Escoamento unidimensional 3. Introdução 4 de outubro de 947: Chuck Yeager a bordo do Bell XS- torna-se o rimeiro homem a voar a velocidade suerior à do som. 6 de março

Leia mais

Outras Técnicas que Utilizam o Escore de Propensão

Outras Técnicas que Utilizam o Escore de Propensão Técnicas Econométricas ara Avaliação de Imacto Outras Técnicas que Utilizam o Escore de Proensão Rafael Perez Ribas Centro Internacional de Pobreza Brasília, 28 de maio de 2008 Introdução O Escore de Proensão

Leia mais

11. Equilíbrio termodinâmico em sistemas abertos

11. Equilíbrio termodinâmico em sistemas abertos Equilíbrio termodinâmico em sistemas abertos Em um sistema aberto definimos o equilíbrio termodinâmico quando este sistema encontra-se simultaneamente em equilíbrio térmico, equilíbrio mecânico e equilíbrio

Leia mais

Regras de Feynman no espaço dos momentos (Euclideano): Regras de Feynman para a matriz S (Minkowski / Momentos):

Regras de Feynman no espaço dos momentos (Euclideano): Regras de Feynman para a matriz S (Minkowski / Momentos): Regras de Feynman no espaço dos momentos (Euclideano): Teoria Quântica de Campos I 193 propagador do férmion: (Euclid.) índices espinoriais (α,β=1...4) ( eq. 193.1 ) o sentido do momento não importa (Euclid.)

Leia mais

Teste de hipóteses para médias e proporções amostrais

Teste de hipóteses para médias e proporções amostrais Teste de hióteses ara médias e roorções amostrais Prof. Marcos Pó Métodos Quantitativos ara Ciências Sociais Questão rática Abrir a lanilha Alunos MQCS_16-18 e calcular a média, o desvio adrão e o tamanho

Leia mais

1 3? Assinale esses pontos no gráfico.

1 3? Assinale esses pontos no gráfico. Teste de Fotónica 4 de Junho de 7 Docente Resonsável: Prof arlos R Paiva Duração: hora 3 minutos Teste de 4 de Junho de 7 Ano Lectivo: 6 / 7 º TESTE onsidere um acolador linear de três núcleos idênticos,

Leia mais

3. Modelos Constitutivos

3. Modelos Constitutivos 3. Modelos Constitutivos A comlexidade envolvida no estudo da deformação de solos e rochas é um dos grandes desafios da engenharia. No entanto, aesar da diversidade desse comortamento, observações exerimentais

Leia mais

Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149):

Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149): Teoria Quântica de Campos I 195 Da mesma forma podemos obter a linha externa do fóton (usando a expansão da pag 149): (Mink.) na pg 149 escolhemos ε real, que é útil para polariz. transversa. Para polarizações

Leia mais

Invertendo a exponencial

Invertendo a exponencial Reforço escolar M ate mática Invertendo a exonencial Dinâmica 3 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico Simbólico Função Logarítmica Aluno Primeira

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão 4 Nome: N.º Turma: Aresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2 Determine o otencial elétrico de um diolo a Num onto P qualquer, a uma distância r da carga ositiva e a uma distância r da carga negativa; b Obtenha a eressão ara ontos muito afastados do diolo. c Determine

Leia mais

Apontamentos de Álgebra Linear

Apontamentos de Álgebra Linear Aontamentos de Álgebra Linear (inclui as alicações não avaliadas) Nuno Martins Deartamento de Matemática Instituto Suerior Técnico Dezembro de 08 Índice Matrizes: oerações e suas roriedades Resolução de

Leia mais

Microeconomia II - Gabarito Lista 3 - Monopólio

Microeconomia II - Gabarito Lista 3 - Monopólio Microeconomia II - Gabarito Lista 3 - Monoólio Tiago Ferraz 1 de outubro de 015 1. Nicholson - Questão 14.5 a) Se A = 0, a demanda inversa será Q = 0 P P = 0 Q E a função custo C = 10Q + 15 O roblema do

Leia mais

2. Revisão de Modelagem Conceitual

2. Revisão de Modelagem Conceitual Sumário 1. Introdução a Alicações Não-Convencionais 2. Revisão de Modelagem Conceitual 3. BD Orientado a Objetos (BDOO) 4. BD Objeto-Relacional (BDOR) 5. BD Temoral (BDT) 6. BD Geográfico (BDG) 7. BD XML

Leia mais

1ª PROVA ICIN 1º/2015

1ª PROVA ICIN 1º/2015 ENE/FT/UnB Deartamento de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Prof. Adolfo Bauchsiess Laboratório de Automação e Robótica 63848 INTRODUÇÃO AO CONTROLE INTELIGENTE NUMÉRICO

Leia mais

Ciência dos Materiais I Prof. Nilson C. Cruz

Ciência dos Materiais I Prof. Nilson C. Cruz Ciência dos Materiais I Prof. Nilson C. Cruz Visão Geral sobre Proriedades Físicas e Alicações de Materiais: metais, olímeros, cerâmicas e vidros, semicondutores, comósitos Semicondutores Par elétronburaco

Leia mais

Escoamentos Compressíveis. Capítulo 03 Escoamento unidimensional

Escoamentos Compressíveis. Capítulo 03 Escoamento unidimensional Escoamentos Comressíveis Caítulo 03 Escoamento unidimensional 3. Introdução 4 de outubro de 947: Chuck Yeager a bordo do Bell XS- torna-se o rimeiro homem a voar a velocidade suerior à do som. 6 de março

Leia mais

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira

Cap. 6. Definição e métodos de resolução do problema de valores de fronteira Ca. 6. Definição e métodos de resolução do roblema de valores de fronteira 1. Pressuostos. Formulação clássica do roblema de elasticidade linear.1 Condições no interior. Condições de fronteira.3 ios dos

Leia mais

O que é um Modelo Matemático?

O que é um Modelo Matemático? 1 1 O que é um Modelo Matemático? Conjunto de equações que relacionam as variáveis que caracterizam o rocesso e reresentam adequadamente o seu comortamento. São semre aroximações da realidade! Modelos

Leia mais

INSTITUTO DE FÍSICA- INFI

INSTITUTO DE FÍSICA- INFI N o do Candidato: Exame de Seleção 2018-1 Programa de Pós-Graduação em Ciência dos Materiais INSTRUÇÕES GERAIS. 1. Este caderno de rova deve contém 20 questões de múltila escolha contendo 5 alternativas.

Leia mais

Somas de números naturais consecutivos

Somas de números naturais consecutivos Julho 006 - nº 5 Somas de números naturais consecutivos António Pereira Rosa Escola Secundária Maria Amália Vaz de Carvalho, Lisboa. Introdução O objectivo deste trabalho é abordar o roblema da reresentação

Leia mais

Critérios de Regularidade para Soluções Fracas das Equações Magneto-micropolares

Critérios de Regularidade para Soluções Fracas das Equações Magneto-micropolares Universidade Federal de Sergie Centro de Ciências Exatas e Tecnologia Programa de Pós Graduação em Matemática Mestrado em Matemática Critérios de Regularidade ara Soluções Fracas das Equações Magneto-microolares

Leia mais

6 - Formalismo termodinâmico. 6.1 Postulados

6 - Formalismo termodinâmico. 6.1 Postulados 6 - Formaismo termodinâmico 6.1 Postuados Probema fundamenta da termodinâmica do equiíbrio: determinação do estado fina de equiíbrio acançado aós a remoção de víncuos internos de um sistema comosto. Primeiro

Leia mais

Quantização de um campo fermiônico

Quantização de um campo fermiônico Teoria Quântica de Campos II 54 p linhas ( eq. 54.1 ) Um exemplo trivial seria: Quantização de um campo fermiônico (Nastase 12 e 13; Peskin 3.1-3.4 [campo clássico], 3.5 [quant. canônica], 9.5 [quant.

Leia mais

Aula 4 de Exercícios

Aula 4 de Exercícios Aula 4 de Eercícios. Eercício : Uma carga q está uniformemente distribuída no segmento de reta de = 0 a = L sobre o eio, com densidade linear = q=l: Qual o camo elétrico gerado or este segmento de reta

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano de escolaridade Versão.3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ano de escolaridade Versão. Nome: N.º Turma: Professor: José Tinoco 6//08 Evite alterar a ordem das questões Nota: O teste é constituído or duas artes Caderno

Leia mais

Revisão de termodinâmica

Revisão de termodinâmica Caítulo 1 Revisão de termodinâmica Antes de iniciarmos a descrição da mecânica estatística, segundo a abordagem da teoria de ensemble de Gibbs, recisamos revisar alguns conceitos da termodinâmica. Ao invés

Leia mais

www.fisicanaveia.com.br www.fisicanaveia.com.br/cei Lentes Esféricas Estudo Analítico o ou i objeto A o F o O F i A i imagem Estudo Analítico Equação dos ontos conjugados f ' Aumento Linear Transversal

Leia mais

AE-249- AEROELASTICIDADE

AE-249- AEROELASTICIDADE AE-49- AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria Instituto Tecnológico de Aeronáutica ITA/IEA 1 AERODINÂMICA NÃO ESTACIONÁRIA Das equações de Navier-Stokes

Leia mais

c. De quantas formas diferentes podemos ir de A até C, passando por B, e depois voltar para A sem repetir estradas e novamente passando por B?

c. De quantas formas diferentes podemos ir de A até C, passando por B, e depois voltar para A sem repetir estradas e novamente passando por B? Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Camus Várzea Grande Aula - Análise Combinatória e Probabilidade Prof. Emerson Dutra E-mail: emerson.dutra@vgd.ifmt.edu.br Página

Leia mais

EST 55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria

EST 55 - AEROELASTICIDADE. Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria EST 55 - AEROELASTICIDADE Aerodinâmica Não Estacionária Introdução e conceitos básicos da teoria 1 AERODINÂMICA NÃO ESTACIONÁRIA Das equações de Navier-Stokes ara a equação otencial linearizada: Escoamentos

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA Última atualização: 9/05/007 Índice Sistema de coordenadas olares Conjunto abrangente 6 Coordenadas Cartesisnas x Coordenadas Polares 8 Simetrias

Leia mais

Interações Atômicas e Moleculares

Interações Atômicas e Moleculares Interações Atômicas e Moleculares 6. O Princípio Variacional Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/iam.html Na aula anterior, tratando de moléculas

Leia mais

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado.

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado. Introdução. Consideramos nos textos anteriores sistemas quantum mecânicos que possuem vários níveis de energia mas somente um elétron orbital, ou seja, consideramos até o presente momento átomos hidrogenóides.

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 06 Respostas esperadas Parte Estas são sugestões de possíveis respostas. Outras possibilidades também podem ser consideradas

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Teoria da Firma. Discriminação de preços tarifa em duas partes e concorrência monopolística. Roberto Guena de Oliveira USP.

Teoria da Firma. Discriminação de preços tarifa em duas partes e concorrência monopolística. Roberto Guena de Oliveira USP. Teoria da Firma Discriminação de reços tarifa em duas artes e concorrência monoolística Roberto Guena de Oliveira USP novembro de 2013 Roberto Guena (USP) Discrim. & conc. mono. novembro de 2013 1 / 42

Leia mais

Gases quânticos sem interação

Gases quânticos sem interação UFABC - Mecânica Estatística Curso 2018.1 Prof. Germán Lugones CAPÍTULO 6 Gases quânticos sem interação!1 Regime clássico e regime quântico Para um gás ideal clássico em equilíbrio térmico a uma temperatura

Leia mais

Segunda aula de laboratório de ME4310. Primeiro semestre de 2014

Segunda aula de laboratório de ME4310. Primeiro semestre de 2014 Segunda aula de laboratório de ME4310 Primeiro semestre de 2014 Vamos voltar a instalação de recalque reresentada ela bancada do laboratório. 2 Foto das bancadas! Esquematicamente temos: Vamos recordar

Leia mais

8, 9 e 10) Figura 8. Figura 9. Figura 10

8, 9 e 10) Figura 8. Figura 9. Figura 10 A carga de ressão (h) ode ser obtida elos iezômetros (tubos de vidros graduados), que trabalham na escala efetiva e semre indicam a carga de ressão - h - (Figura 8, 9 e 0) Figura 8 Figura 9 Figura 0 36

Leia mais

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos HF Dois elétrons N elétrons Thomas Fermi Átomo de Hélio 1D Energia exata: 3,154 H Vamos resolver este problema usando o método

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 9. Soluções da equação de Schrödinger: partícula numa caixa infinita

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 9. Soluções da equação de Schrödinger: partícula numa caixa infinita UFAB - Física Quântica - urso 017.3 Prof. Germán Lugones Aula 9 Soluções da equação de Schrödinger: partícula numa caixa infinita 1 Dada uma função de energia potencial V(x) que representa um certo sistema,

Leia mais

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA

UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA UNIVERSIDADE DE COIMBRA - FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA ALGORITMO DO PONTO MÉDIO PARA A RASTERIZAÇÃO DA ELIPSE OBJECTIVO: O resente trabalho tem or objectivo ilustrar o

Leia mais

Transformação dos dados. Analise de Componentes Principais - PCA

Transformação dos dados. Analise de Componentes Principais - PCA Transformação dos dados Tratamento nos dados Redução de Dimensionalidade Dados centrados na média e variância xm = /n Σ i=n x i x i = ( x i - xm)/σ (centrados na média) Escalamento ela variância ( quando

Leia mais

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 FF-296: Teoria do Funcional da Densidade I Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Tema de hoje: Problema de 2 elétrons Férmions Hartree-Fock Troca

Leia mais

Adriano Lana Cherchiglia. Implementação Sistemática da Regularização Implícita para Diagramas de Feynman a Muitos Laços

Adriano Lana Cherchiglia. Implementação Sistemática da Regularização Implícita para Diagramas de Feynman a Muitos Laços Adriano Lana Cherchiglia Imlementação Sistemática da Regularização Imlícita ara Diagramas de Feynman a Muitos Laços Belo Horizonte 0 Adriano Lana Cherchiglia Imlementação Sistemática da Regularização Imlícita

Leia mais

1. CORRENTE ALTERNADA

1. CORRENTE ALTERNADA MINISTÉIO DA EDUCAÇÃO SECETAIA DE EDUCAÇÃO POFISSIONAL E TECNOLÓGICA INSTITUTO FEDEAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATAINA ENGENHAIA DE TELECOMUNICAÇÕES Área de Conhecimento: Eletricidade

Leia mais

Partícula descrita por um pacote de onda. Einstein: E = hv de Broglie: λ = h/p. E h. E p. 1 p. c m c Física Moderna 1 Aula 11

Partícula descrita por um pacote de onda. Einstein: E = hv de Broglie: λ = h/p. E h. E p. 1 p. c m c Física Moderna 1 Aula 11 1 Partícula descrita or um acote de onda Einstein: E h de Broglie: λ h/ E h E h : Onda λ e 1 Partícula lire,não relatiística : m m E e Se for relatiística : 4 c m mc mc m c c m c E m m + γ γ 43375 - Física

Leia mais

Introdução ao Modelo Padrão. Augusto Barroso

Introdução ao Modelo Padrão. Augusto Barroso Introdução ao Modelo Padrão (Standard Model) Augusto Barroso 1 O que é o Standard Model? 2 Programa Os Constituintes Elementares Leptons & Quarks As Interacções Forte, Electromagnética, Fraca & Gravítica

Leia mais

Além destas duas representações irredutíveis (chamada de Espinores de Weyl), ainda temos uma terceira, definida pela propriedade:

Além destas duas representações irredutíveis (chamada de Espinores de Weyl), ainda temos uma terceira, definida pela propriedade: Esse fator global na ação não parece ter importância, e de fato não afeta a solução clássica, mas quando quantizarmos faz toda diferença ter um fator 2 no operador que estamos invertendo (obtemos um propagador

Leia mais

APOSTILA DE MÉTODOS QUANTITATIVOS

APOSTILA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE FEDERAL DO PARÁ ASSESSORIA DE EDUCAÇÃO A DISTÂNCIA INSTITUTO DE CIÊNCIAS SOCIAIS APLICADAS ESPECIALIZAÇÃO EM GESTÃO EMPRESARIAL NA MODALIDADE SEMIPRESENCIAL APOSTILA DE MÉTODOS QUANTITATIVOS

Leia mais