SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY"

Transcrição

1 SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Controle e Automção Período/Módulo: 3 o Período Disciplin/Unidde Curriculr: Cálculo III Código: CE381 Número d Grde Curriculr: 2009/1 Crg Horári: 80h/ Nº Auls Semnis: 4h/ Pré-Requisito: CE377 Clculo II EMENTA/BASES TECNOLÓGICAS Integris Múltipls, Cmpos Esclres, Cmpos Vetoriis, Derivds de Funções Vetoriis, Operdores Diferenciis, Integrl de Linh, Teorem de Green. BIBLIOGRAFIA BÁSICA ANTON, Howrd. Cálculo: um novo horizonte. v ed. Porto Alegre: Bookmn, BIBLIOGRAFIA COMPLEMENTAR MUNEM, Mustfá A.; FOULIS, Dvid J. Cálculo v. 2. Rio de Jneiro: LTC, GONÇALVEZ, M. B.; FLEMMING, D. M. Cálculo B e C. Rio de Jneiro: Mkron Books, STEWART, Jmes. Cálculo v. 2. São Pulo: Thomson, THOMAS, George B.; Cálculo v. 2. São Pulo: Addison Wesley, Págin 1 de 5

2 SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PEINFORMAÇÕES DO PROFESSOR E COORDENADOR DO CURSO ANO/SEMESTRE Professor: Milton Procópio de Borb E-mil: Ano/Semestre 22-2 Coordendor/Líder: Crlos Roberto d Silv Filho E-mil: Turm: EGC 331 Objetivo d disciplin Proporcionr o luno oportunidde pr dquirir e plicr os conceitos referentes o Cálculo diferencil e integrl que judrão entender s leis que regem diversos fenômenos ligdos o contexto fbril. Justifictiv d disciplin n formção do profissionl Dr fundmentção mtemátic pr entender, vlir ou mesmo modificr processos fundmentdos em cálculo de energi, volume, vlor médio de lgum grndez que vri continumente com o tempo, em txs de vrições e etc. Proporcionr o entendimento e o domínio de fenômenos reltivos à cinemátic e dinâmic, trnsferênci de clor, trtmento com váris vriáveis em nálise de otimizção com e sem restrições, como por exemplo: o perfil térmico de um peç expost um cmpo de tempertur, cmpos mgnéticos e elétricos. O Engenheiro, tnto no contexto gerencil ou técnico, precis de ferrments mtemátics dequds (cálculo num visão vetoril) pr quntificr e qulificr vriáveis envolvids nos processos de fbricção, resistênci dos mteriis necessáris pr elborção de projetos e compr de equipmentos. Hbilidde e Competêncis serem desenvolvids pel disciplin Formulr o modelmento pr trjetóris no espço R3; Interpretr, formulr e desenvolver equções envolvendo operdores diferenciis; Formulr e desenvolver expressões pr quntificção de proprieddes que vrim o longo de um trjetóri ( ex. forç, concentrção,...) Págin 2 de 5

3 Agend Previst Conteúdo Progrmático Tem Assunto Objetivo de Aprendizgem Cpciddes serem desenvolvids (competêncis e hbiliddes) Metodologi Estrtégis didátics Recursos E A D Avlição Forms e Critérios Qundo? O Quê? Pr quê? Como? * Verificção d eficáci 26 jul 26 jul 31 go 6 set 6 set 28 set 4 out Apresentção d disciplin Apresentção do Plno de Revisão de Integrl n form unidimensionl; Integrl dupl Integrl Tripl Integrl Múltipl Jcobino Discussão sobre o Plno de Cmpos e funções: Esclres e Vetoriis Discussão sobre o Plno de Pr que o luno compreend: os objetivos d disciplin; metodologi utilizd; importânci dos tems borddos em su formção; os critérios de vlição. Esper-se com esse conteúdo que o luno: Entender conceito de integrl dupl; Modelr e determinr integrl dupl pr situções plicds em coordends retngulres e polres; Entender conceito de integrl tripl; Modelr e determinr integrl tripl pr situções plicds em coordends retngulres,cilíndrics e esférics Pr que o luno compreend como está cminhndo disciplin dentro d progrmção definid no começo Esper-se com esse conteúdo que o luno: Entender o conceito de cmpo; Modelr função vetoril de curvs pr situções plicds; Compreender o conceito de derivd de um função vetoril; Pr que o luno compreend como está cminhndo disciplin dentro d progrmção definid no começo Convers informl com os lunos respeito de sus expecttivs em relção à disciplin. Aul Expositiv Dilogd Explicção do conteúdo trvés de exemplos e problems práticos. Aul de Exercícios Exercícios individuis e em grupos Resolução dos exercícios com mior gru de dificuldde no qudro pelos lunos Convers informl com os lunos respeito do plno de ensino. Aul Expositiv Dilogd Explicção do conteúdo trvés de exemplos e problems práticos. Aul de Exercícios Exercícios individuis e em grupos. Resolução dos exercícios com mior gru de dificuldde no qudro pelos lunos Convers informl com os lunos respeito do plno de ensino. Atrvés d prticipção, questionmentos e sugestões dos lunos. Acompnhmento dos grupos enqunto resolvem os qudro. Avlição individul por escrito. Atrvés d prticipção, questionmentos e sugestões dos lunos. Acompnhmento dos grupos enqunto resolvem os qudro. Avlição individul por escrito Atrvés d prticipção, questionmentos e sugestões dos lunos. CH Págin 3 de 5

4 4 out 26 nov 1º nov 1º nov 14 dez Operdores Diferenciis Discussão sobre o Plno de Integrl de Linh Teorem de Green Esper-se com esse conteúdo que o luno: Compreender o conceito de grdiente, divergente, rotcionl e Lplceno; Clculr os diversos operdores pr os cmpos solicitdos; Resolver problems plicdos usndo operdores. Pr que o luno compreend como está cminhndo disciplin dentro d progrmção definid no começo Esper-se com esse conteúdo que o luno: Compreender o conceito de integrl de linh; Aplicr integrl de linh pr problems plicdos; Sber identificr os cmpos conservtivos; Resolver problems envolvendo cmpos conservtivos; Compreender conceitulmente o teorem de Green; Aplicr Green pr resolver problems de fluxo e circulção no R2. Aul Expositiv Dilogd Explicção do conteúdo trvés de exemplos e problems práticos. Aul de Exercícios Exercícios individuis e em grupos. Resolução dos exercícios com mior gru de dificuldde no qudro pelos lunos Convers informl com os lunos respeito do plno de ensino. Aul Expositiv Dilogd Explicção do conteúdo trvés de exemplos e problems práticos. Aul de Exercícios Exercícios individuis e em grupos. Resolução dos exercícios com mior gru de dificuldde no qudro pelos lunos Acompnhmento dos grupos enqunto resolvem os qudro. Avlição individul por escrito Atrvés d prticipção, questionmentos e sugestões dos lunos. Acompnhmento dos grupos enqunto resolvem os qudro. Avlição individul por escrito Crg Horári Totl: 80 Págin 4 de 5

5 AVALIAÇÕES Agend Assunto / Conteúdo Form Critérios Peso 31 go Avlição 1 d Prcil (A1) (28%) Avlição individul e sem consult relizd em sl de ul. Integris Múltipls c) Chegr o resultdo correto 28 set 26 out té 22 out Avlição 2 d Prcil (A2) (28%) Cmpos e funções: Esclres e Vetoriis Avlição 3 d Prcil (A3) (28%) Operdores Diferenciis Trblho 1 d Prcil (T1) (16%) Avlição individul e sem consult relizd em sl de ul. Avlição individul e sem consult relizd em sl de ul. Trblho extrclsse, em grupo (máximo de 3 lunos), conforme determinções do professor. c) Chegr o resultdo correto c) Chegr o resultdo correto Atender os itens descritos no trblho entregue pelo professor. 60% 26 nov 4 dez Avlição Semestrl (AS) - Conteúdo de todo o semestre Avlição individul e sem consult relizd em sl de ul. c) Chegr o resultdo correto 40% 7 17 dez Prov Finl (PF) - Conteúdo de todo o semestre Avlição objetiv, individul e sem consult relizd em sl de ul. c) Chegr o resultdo correto 50% Págin 5 de 5

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO Curso: Engenhri Químic PLANO DE ENSINO Período/Módulo: 6 o Período Disciplin/Unidde Curriculr: Cálculo Numérico Código: CE259

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Produção Período/Módulo: 6º Período Disciplin/Unidde Curriculr: Simulção de Sistems de Produção

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenharia de Controle e Automação Período/Módulo: º Período Disciplina/Unidade Curricular: Cálculo

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PLANO DE ENSINO IDENTIFICAÇÃO Curso: Engenharia Mecânica Período/Módulo: 1 o Período Disciplina/Unidade Curricular: Cálculo I Código: CE375

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA UNISOCIESC

SOCIEDADE EDUCACIONAL DE SANTA CATARINA UNISOCIESC SOCIEDADE EDUCACIONAL DE SANTA CATARINA UNISOCIESC IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Produção Período/Módulo: 5º Período Disciplin/Unidde Curriculr: Pesquis Opercionl Código: AD772 Número

Leia mais

Plano de Trabalho Docente Ensino Técnico

Plano de Trabalho Docente Ensino Técnico Plno de Trblho Docente 2013 Ensino Técnico ETEC PROF. MASSUYUKI KAWANO Código: 136 Município: TUPÃ Eixo Tecnológico: GESTÃO E NEGÓCIOS Hbilitção Profissionl:Técnic de Nível Médio de TÉCNICO EM CONTABILIDADE

Leia mais

Plano de Trabalho Docente Ensino Médio

Plano de Trabalho Docente Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: FÍSICA

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira 04/09/2015 Coorden Unidde de Ensino Médio e Técnico Cetec Ensino Técnico Integrdo o Médio FORMAÇÃO PROFISSIONAL Plno de Trblho Docente 2015 Etec Profª Ermelind Ginnini Teixeir Código: 187 Município: Sntn

Leia mais

Plano de Trabalho Docente Ensino Médio

Plano de Trabalho Docente Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: MATEMÁTICA

Leia mais

Coordenadas cartesianas Triedro direto

Coordenadas cartesianas Triedro direto Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores

Leia mais

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira Coorden http://www.etecermelind.com.br/etec/sis/ptd_tec_6.php 1 de 5 18/09/2015 13:29 Unidde de Ensino Médio e Técnico Cetec Ensino Técnico Integrdo o Médio FORMAÇÃO PROFISSIONAL Plno de Trblho Docente

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira 04/09/2015 Coorden Unidde de Ensino Médio e Técnico Cetec Ensino Técnico Integrdo o Médio FORMAÇÃO PROFISSIONAL Plno de Trblho Docente 2015 Etec Profª Ermelind Ginnini Teixeir Código: 187 Município: Sntn

Leia mais

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira 24/08/2015 Coorden Unidde de Ensino Médio e Técnico Cetec Ensino Técnico Integrdo o Médio FORMAÇÃO PROFISSIONAL Plno de Trblho Docente 2015 Etec Profª Ermelind Ginnini Teixeir Código: 187 Município: Sntn

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Plano de Trabalho Docente Ensino Médio

Plano de Trabalho Docente Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: MATEMÁTICA

Leia mais

Como calcular a área e o perímetro de uma elipse?

Como calcular a área e o perímetro de uma elipse? Como clculr áre e o perímetro de um elipse? Josiel Pereir d Silv Resumo Muitos professores de Mtemátic reltm que miori dos livros didáticos de Mtemátic utilizdos no Ensino Médio não bordm o conceito de

Leia mais

Integrais de Funções Vetoriais7 sobre Curvas em R 3

Integrais de Funções Vetoriais7 sobre Curvas em R 3 AULA Integris de Funções Vetoriis7 sobre urvs em R 3 META: Apresentr integris de funções vetoriis definids sobre curvs em R 3. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integris de

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Plano de Trabalho Docente Ensino Técnico

Plano de Trabalho Docente Ensino Técnico Plno de Trblho Docente 2014 Ensino Técnico Etec: Professor Mário Antônio Verz Código: 164 Município: Plmitl Eixo Tecnológico: Gestão e Negócios Hbilitção Profissionl: Técnico em Contbilidde Qulificção:

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PLANO DE ENSINO IDENTIFICAÇÃO Curso: Engenharia de Plásticos Período/Módulo: 3º Período Disciplina/Unidade Curricular: Álgebra Linear Código:

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

Dados de Identificação

Dados de Identificação MINISTÉRIO DA EDUCAÇÃO FUNDAÇÃO UNIVERSIDADE FEDERAL DO PAMPA PRÓ-REITORIA DE GRADUAÇÃO Ddos de Identificção PLANO DE ENSINO Cmpus: Jgurão Curso: Letrs Português Componente Curriculr: JLEAD011 - Prátic

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis.

Leia mais

PLANIFICAÇÃO ANUAL PROFIJ II T2 Ano letivo 2015 / 2016

PLANIFICAÇÃO ANUAL PROFIJ II T2 Ano letivo 2015 / 2016 PLANIFICAÇÃO ANUAL PROFIJ II T2 Ano letivo 2015 / 2016 CURSO: Instlção e Operção de Sistems Informáticos ANO: 1.º DISCIPLINA: MATEMÁTICA APLICADA DOCENTE: MARTA OLIVEIRA COMPETÊNCIAS Desenvolver: O gosto

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Comndo Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors Plno

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

PLANO DE AÇÃO NEAD - ANO LETIVO 2014

PLANO DE AÇÃO NEAD - ANO LETIVO 2014 PLANO DE AÇÃO NEAD - ANO LETIVO 2014 APRENTAÇÃO: O NEAD, por meio de sus Coordenções de Cursos, Pedgógics de Tutori e de Polo é um unidde de gestão, com competênci pr executr s polítics e diretrizes d

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

AGRUPAMENTO DE ESCOLAS DR. FRANCISCO SANCHES. Construir uma Escola de Qualidade Ser uma Escola para a Cidadania

AGRUPAMENTO DE ESCOLAS DR. FRANCISCO SANCHES. Construir uma Escola de Qualidade Ser uma Escola para a Cidadania Construir um Escol de Qulidde Ser um Escol pr Ciddni AGRUPAMENTO DE ESCOLAS DR. FRANCISCO SANCHES CRITÉRIOS GERAIS DE AVALIAÇÃO 1º CICLO ANO LETIVO 2016/2017 Construir um Escol de Qulidde Ser um Escol

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Comndo Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors Plno

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Ensino Técnico. Qualificação: Auxiliar Administrativo

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Ensino Técnico. Qualificação: Auxiliar Administrativo Plno de Trblho Docente 2013 Ensino Técnico Etec Professor Mssuyuki Kwno Código: 136 Município: Tupã Eixo Tecnológico: Gestão e Negócios Hbilitção Profissionl: Administrção Qulificção: Auxilir Administrtivo

Leia mais

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto:

O binário pode ser escrito em notação vetorial como M = r F, onde r = OA = 0.1j + ( )k metros e F = 500i N. Portanto: Mecânic dos Sólidos I - TT1 - Engenhri mbientl - UFPR Dt: 5/8/13 Professor: Emílio G. F. Mercuri Nome: ntes de inicir resolução lei tentmente prov e verifique se mesm está complet. vlição é individul e

Leia mais

6 Conversão Digital/Analógica

6 Conversão Digital/Analógica 6 Conversão Digitl/Anlógic n Em muits plicções de processmento digitl de sinl (Digitl Signl Processing DSP), é necessário reconstruir o sinl nlógico pós o estágio de processmento digitl. Est tref é relizd

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Potencial, Trabalho e Energia Potencial Eletrostática

Potencial, Trabalho e Energia Potencial Eletrostática Cpítulo 4 Potencil, Trblho e Energi Potencil Eletrostátic Existe um conexão entre o potencil elétrico e energi potencil, como veremos, ms não devemos esquecer que são dus quntiddes essencilmente distints.

Leia mais

Potencial, Trabalho e Energia Potencial Eletrostática

Potencial, Trabalho e Energia Potencial Eletrostática Cpítulo 4 Potencil, Trblho e Energi Potencil Eletrostátic Existe um conexão entre o potencil elétrico e energi potencil, como veremos, ms não devemos esquecer que são dus quntiddes essencilmente distints.

Leia mais

Resposta da Lista de exercícios com data de entrega para 27/04/2017

Resposta da Lista de exercícios com data de entrega para 27/04/2017 Respost d List de exercícios com dt de entreg pr 7/04/017 1. Considere um custo de cpitl de 10% e dmit que lhe sejm oferecidos os seguintes projetos: ) Considerndo que os dois projetos sejm independentes,

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico Administrção Centrl Unidde de Ensino Médio e Técnico - CETEC Plno de Trblho Docente 2014 Etec: Pulino Botelho Ensino Técnico Código: 091 Município: SÃO CARLOS Eixo Tecnológico: AMBIENTE E SAÚDE Hbilitção

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENFERMAGEM DE RIBEIRÃO PRETO ENFERMAGEM GERAL E ESPECIALIZADA CRONOGRAMA DA DISCIPLINA

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENFERMAGEM DE RIBEIRÃO PRETO ENFERMAGEM GERAL E ESPECIALIZADA CRONOGRAMA DA DISCIPLINA CURSO UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENFERMAGEM DE RIBEIRÃO PRETO ENFERMAGEM GERAL E ESPECIALIZADA CRONOGRAMA DA DISCIPLINA - 2016 BACHARELADO EM ENFERMAGEM ( ) BACHARELADO E LICENCIATURA EM ENFERMAGEM

Leia mais

Circuitos simples em corrente contínua resistores

Circuitos simples em corrente contínua resistores Circuitos simples em corrente contínu resistores - Conceitos relciondos esistênci elétric, corrente elétric, tensão elétric, tolerânci, ssocição em série e prlelo, desvio, propgção de erro. Ojetivos Fmilirizr-se

Leia mais

AGRUPAMENTO DE ESCOLAS DE FAFE Escola Secundária de Fafe. Plano de Melhoria

AGRUPAMENTO DE ESCOLAS DE FAFE Escola Secundária de Fafe. Plano de Melhoria AGRUPAMENTO DE ESCOLAS DE FAFE Escol Secundári de Ffe Plno de Melhori Avlição Extern ds Escols IGEC Inspeção-Gerl d Educção e Ciênci 7 e 8 de mio de 2012 Introdução O Plno de Melhori que se present result

Leia mais

O Plano de Teste Consolidando requisitos do MPT- Nível 1

O Plano de Teste Consolidando requisitos do MPT- Nível 1 O Plno de Teste Consolidndo requisitos do MPT- Nível 1 Elizbeth Mocny ECO Sistems Agend Plno de Teste d ECO Sistems Nível 1- Áres de Processos- Prátics Específics e Genérics Ciclo de Vid do Projeto de

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL

DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL DEMONSTRE EM TRANSMISSÃO DE CALOR AULA EM REGIME VARIÁVEL Wilton Jorge Depto. de Ciêncis Físics UFU Uberlândi MG I. Fundmentos teóricos I.1 Introdução O clor é um modlidde de energi em trânsito que se

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidde Federl do io Grnde do Sul Escol de Engenhri de Porto Alegre Deprtmento de Engenhri Elétric ANÁLSE DE CCUTOS - ENG04031 Aul 1 - Lineridde, Superposição e elções /A Sumário Dics úteis; Leis e

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico Administrção Centrl Plno de Trblho Docente 2013 Ensino Técnico ETEC PAULINO BOTELHO Código: 091 Município: SÃO CARLOS Eixo Tecnológico: Ambiente, Súde e Segurnç. Hbilitção Profissionl: TÉCNICO DE ENFERMAGEM

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010 P3 Questão 1 Físic - 4320301 Escol Politécnic - 2010 GABARTO DA P3 24 de junho de 2010 onsidere um fio infinito percorrido por um corrente estcionári. oplnr com o fio está um espir retngulr de ldos e b

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico

Administração Central Unidade de Ensino Médio e Técnico - CETEC. Ensino Técnico Administrção Centrl Unidde de Ensino Médio e Técnico - CETEC Plno de Trblho Docente 2013 Ensino Técnico ETEC PAULINO BOTELHO Código: 091 Município: SÃO CARLOS Eixo Tecnológico: Ambiente, Súde e Segurnç.

Leia mais

EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ

EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ No presente nexo presentm-se s expressões de cálculo utilizds pr determinção do índice do Isolmento Térmico do Vestuário Requerido,

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Plano de Trabalho Docente 2014. Ensino Médio

Plano de Trabalho Docente 2014. Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: FÍSICA

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira

Ensino Técnico Integrado ao Médio FORMAÇÃO PROFISSIONAL. Plano de Trabalho Docente Etec Profª Ermelinda Giannini Teixeira Ensino Técnico Integrdo o Médio FORMAÇÃO PROFISSIONAL Plno de Trblho Docente 2015 Etec Profª Ermelind Ginnini Teixeir Código: 187 Município: Sntn de Prníb Eixo Tecnológico: Informção e Comunicção Hbilitção

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Habilitação Profissional: Técnica de nível médio de Auxiliar de Contabilidade

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Habilitação Profissional: Técnica de nível médio de Auxiliar de Contabilidade Plno de Trblho Docente 2014 Ensino Técnico ETEC PROFESSOR MASSUYUKI KAWANO Código: 136 Município: Tupã Eixo Tecnológico: Gestão e Negócios Hbilitção Profissionl: Técnic de nível médio de Auxilir de Contbilidde

Leia mais

Curso Profissional de Técnico de Turismo

Curso Profissional de Técnico de Turismo Curso Profissionl de Técnico de Turismo Plnificção de Operções Técnics de Empress Turístics (OTET) 1º Ano (10º Ano) Ano Letivo 2014/2015 Nº de Auls (45m ) 1º Período 2ºPeríodo 3ºPeríodo Totl Prevists 54

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Agrupamento de Escolas de Anadia INFORMAÇÃO PROVA FINAL DE CICLO MATEMÁTICA PROVA º CICLO DO ENSINO BÁSICO. 1. Introdução

Agrupamento de Escolas de Anadia INFORMAÇÃO PROVA FINAL DE CICLO MATEMÁTICA PROVA º CICLO DO ENSINO BÁSICO. 1. Introdução Agrupmento de Escols de Andi INFORMAÇÃO PROVA FINAL DE CICLO MATEMÁTICA PROVA 52 2015 2º CICLO DO ENSINO BÁSICO 1. Introdução O presente documento vis divulgr s crcterístics d prov finl do 2.º ciclo do

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Computdores Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Computdores Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors

Leia mais

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico O Potencil Elétrico Fundmentos d Eletrostátic Aul 8 O Potencil Elétrico Prof Alex G Dis Prof Alysson F Ferrri Imgine ue desejmos mover um crg teste de um ponto té um ponto b em um região do espço onde

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas Fundmentos de Químic nlític, Ione M F liveir, Mri José F ilv e imone F B Tófni, urso de Licencitur em Químic, Modlidde Distânci, UFMG 00 UL 8 Equilíbrio Ácido Bse Equilíbrio Ácido Bse envolvendo soluções

Leia mais

Calculo de cabeça, não, com a cabeça!

Calculo de cabeça, não, com a cabeça! Reforço escolr M te mátic Clculo de cbeç, não, com cbeç! Dinâmic 2 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Mtemátic Ensino Fundmentl 9º Algébrico Simbólico Equção do 2º. Gru DINÂMICA Clculo

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

PLANO DE TRABALHO DOCENTE 1º Semestre/2015. Ensino Técnico

PLANO DE TRABALHO DOCENTE 1º Semestre/2015. Ensino Técnico PLANO DE TRABALHO DOCENTE 1º Semestre/2015 Ensino Técnico Código: ETEC ANHANQUERA Município: Sntn de Prníb Áre de Conhecimento: : Proteção e Prevenção Componente Curriculr: LNR Legislção e Norms Regulmentodors

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

META: Introduzir o conceito de integração de funções de variáveis complexas.

META: Introduzir o conceito de integração de funções de variáveis complexas. Integrção omplex AULA 7 META: Introduzir o conceito de integrção de funções de vriáveis complexs. OBJETIVOS: Ao fim d ul os lunos deverão ser cpzes de: Definir integrl de um função complex. lculr integrl

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

AULA 7. Equilíbrio Ácido Base envolvendo soluções de ácidos e bases fracas e sais

AULA 7. Equilíbrio Ácido Base envolvendo soluções de ácidos e bases fracas e sais Fundmentos de Químic Anlític, Ione M F liveir, Mri José S F Silv e Simone F B Tófni, Curso de Licencitur em Químic, Modlidde Distânci, UFMG AULA 7 Equilírio Ácido Bse Equilírio Ácido Bse envolvendo soluções

Leia mais

UNESP - FEIS - DEFERS

UNESP - FEIS - DEFERS UNESP - FEIS - DEFERS DISCIPLINA: ARMAZENAMENTO E BENEFICIAMENTO DE GRÃOS Exercício Modelo sobre Secgem de Grãos Como técnico contrtdo pr ssessorr u propriedde produtor de milho pr grãos, efetur u nálise

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

CENTRO UNIVERSITÁRIO ESTÁCIO RADIAL DE SÃO PAULO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 MISSÃO DO CURSO

CENTRO UNIVERSITÁRIO ESTÁCIO RADIAL DE SÃO PAULO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 MISSÃO DO CURSO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 CURSO: TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL MISSÃO DO CURSO O Curso Superior de Tecnologi em Automção Industril do Centro Universitário Estácio Rdil de São Pulo tem

Leia mais

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes

NOTAS DE AULA CURVAS PARAMETRIZADAS. Cláudio Martins Mendes NOTAS DE AULA CURVAS PARAMETRIZADAS Cláudio Mrtins Mendes Segundo Semestre de 2005 Sumário 1 Funções com Vlores Vetoriis 2 1.1 Definições - Proprieddes.............................. 2 1.2 Movimentos no

Leia mais