ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

Tamanho: px
Começar a partir da página:

Download "ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial"

Transcrição

1 Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis. Tod região onde m grnde físic é ssim definid di-se m cmpo. Cmpo esclr o Um cmpo di-se esclr se grnde físic qe o define pder ser representd em cd ponto do espço trvés de m vlor esclr. o Os cmpos esclres são normlmente representdos trvés de m série de linhs o sperfícies qe nem pontos com o mesmo vlor de cmpo. o São eemplos de cmpos esclres distribição de tempertr nm sl e distribição do potencil eléctrico em torno de m crg pontl. Cmpo vectoril o Um cmpo di-se vectoril se grnde físic qe o define tem m mgnitde e m direcção sendo representd em cd ponto por m vector. fnção qe define este cmpo é m fnção vectoril. o São eemplos de cmpos vectoriis distribição d velocidde do vento nm dd on e distribição do cmpo eléctrico em torno de m crg pontl.

2 Cálclo vectoril - o Integris com fnções vectoriis ELECTROMGNETISMO Integrl de linh de m fnção esclr C Vdl V é m fnção esclr e dl represent m incremento diferencil do comprimento e C é o cminho de integrção. P P Vdl integrção efectd do ponto P té o ponto P. C Vdl integrção efectd o longo de m cminho fechdo. Em coordends crtesins podemos escrever: (, )[ d d d] Vdl V, C C o Como os vectores de bse nitários, e são constntes tnto em mgnitde como n direcção, estes podem ser colocdos for do sinl de integrção. (,, ) d V (,, ) d V (, ) Vdl V C C C, C o Os três integris são integris esclres normis e podem ser clcldos pr m fnção V(,, ) sobre m cminho C. d

3 ELECTROMGNETISMO Cálclo vectoril - o Integris com fnções vectoriis Integrl de linh de m fnção esclr Eemplo Clcle o integrl P r dr, onde, desde o ponto de origem té o ponto P(, ): r P ) o longo do cminho directo OP b) o longo do cminho OP P c) o longo de OP P P ) P r r dr r dr r r r (coordends polres) o o ( cos 45 sin 45 )

4 ELECTROMGNETISMO Cálclo vectoril - 4 o Integris com fnções vectoriis Integrl de linh de m fnção esclr Eemplo b) o longo de OP P ( ) ( ) ( ) P P P P P d d dr dr r ( ) d d 4 c) o longo de OP P ( ) ( ) 4 P d d dr O vlor do integrl depende do cminho de integrção.

5 ELECTROMGNETISMO Cálclo vectoril - 5 o Integris com fnções vectoriis Integrl de linh de m fnção vectoril C F. dl Represent o integrl do cmpo vectoril F sobre o cminho de integrção C, F.dl represent o prodto interno de F e dl. Vmos considerr m cminho do ponto P té o ponto P sobre m cmpo de forç rdil F qe ct n direcção rdil. o Em qlqer ponto do cminho o vlor de F.dl é ddo por Fcosqdl F L dl onde F L é componente de F sobre o cminho de integrção.

6 ELECTROMGNETISMO Cálclo vectoril - 6 o Integris com fnções vectoriis Integrl de linh de m fnção vectoril o componente dr sobre direcção r será drcosqdl F. dl F cosθdl F dl L Fdr o O prodto de m forç F por m distânci dr represent m mento incrementl dw no trblho feito pel forç n deslocção do objecto n distânci cosqdldr. dw F. dl F cosθdl o Se o cminho for dividido em segmentos prlelos e perpendiclres F, s contribições só ocorrem pr os segmentos prlelos F (q o ) não hvendo relição de trblho nos segmentos perpendiclres F (q 9 o ). o Somndo-se s contribições dos segmentos prlelos F obtemos o trblho totl W entre os dois etremos do cminho de integrção. P W fim F. dl P início

7 Cálclo vectoril - 7 o Integris com fnções vectoriis ELECTROMGNETISMO Integrl de linh de m fnção vectoril o Este integrl de linh indic o trblho relido por F no objecto (energi fornecid o objecto) deslocdo sobre o cminho de integrção. o Pr o cminho definido temos: r r W F cosθ dl r Fdr r o Se considerrmos o cminho contrário de r pr P obtemos: W r r Fdr r Fdr r o Pr m cmpo vectoril como F, o integrl de linh só depende do ponto inicil e do ponto finl. Se integrrmos F sob m cminho fechdo, o resltdo será ero. C F. dl o Um cmpo com ests crcterístics é chmdo conservtivo.

8 Cálclo vectoril - 8 o Integris com fnções vectoriis Integrl de sperfície ELECTROMGNETISMO Sponhmos qe temos ág flir com m ritmo niforme B litros por segndo por metro qdrdo (l/sm ) trvés d áre qdrd. O flo de ág trvés d sperfície depende de três fctores: B (ritmo e direcção do flo), d áre e do ânglo qe áre f com B. Podemos definir o flo como: ψ ( l s) B. n cosθ B. / n n vector nitário perpendiclr à sperfície vlor d áre ( m )

9 ELECTROMGNETISMO Cálclo vectoril - 9 o Integris com fnções vectoriis Integrl de sperfície Se o flo não for niforme (B é fnção d posição) precismos de clclr o flo d trvés d sperfície ds: ( l s) d ψ B. nds B. d s / n vector nitário perpendiclr à sperfície ds vlor esclr d sperfície d s vector qe indic o vlor e orientção d sperfície nds

10 Cálclo vectoril - o Integris com fnções vectoriis Integrl de sperfície ELECTROMGNETISMO Somndo tods s contribições obtemos o flo trvés d sperfície : ψ áre B nds. áre B. d s ( l / s) o ág qe fli n direcção tem m flo ddo por B l/sm. Clclr o flo de ág definido por (,,), (,,), (,,) e (,,). ψ Y B. d s B dd áre áre dd 7 ( l / s)

11 Cálclo vectoril - o Grdiente de m cmpo esclr ELECTROMGNETISMO Vmos considerr m fnção esclr qe depende ds coordends espciis V(,, ) qe poderá, por eemplo, represent distribição d tempertr nm edifício. O vlor de V depende d posição do ponto no espço, ms poderá ser constnte o longo de lgms linhs o sperfícies. N figr estão representds ds sperfícies onde o vlor de V é constnte e dv represent m peqen vrição de V. o O ponto P encontr-se n sperfície V. O ponto P é o ponto correspondente n sperfície V dv o longo do vector norml à sperfície dn. o P é m ponto próimo de P o longo de otr direcção dl dn. o Pr mesm vrição dv em V, t de vrição espcil dv/dl é mior o longo de dn porqe dn é distânci mis crt entre s ds sperfícies. o Como o vlor de dv/dl depende d direcção de dl, dv/dl é m derivd direccionl.

12 ELECTROMGNETISMO Cálclo vectoril - o Grdiente de m cmpo esclr Definimos o vector qe represent o vlor e direcção d máim vrição espcil como o grdiente desse cmpo esclr. dn dv V n grd h V h V h V V Em coordends crtesins (,, )(,, ) e h h h. V V V V o V V Definimos o operdor : coordends crtesins h h h coordends ortogonis V V grd

13 Cálclo vectoril - o Divergênci de m cmpo vectoril ELECTROMGNETISMO No estdo dos cmpos vectoriis é conveniente representr s vrições trvés de linhs de flo. Ests linhs o crvs indicm em cd ponto direcção do cmpo vectoril. mgnitde do cmpo é indicd trvés d densidde o comprimento dos vectores. () o cmpo n região é mis intenso do qe n região B porqe eiste m mior densidde de linhs n região ; (b) cmpo rdil cj intensidde dimini à medid qe nos fstmos de q; (c) represent m cmpo niforme.

14 Cálclo vectoril - 4 o Divergênci de m cmpo vectoril ELECTROMGNETISMO O flo de m cmpo vectoril é nálogo o flo de m liqido incomprimível como ág. Pr m volme com m sperfície fechd só hverá m diferenç entre o flo qe entr e si d sperfície se est contiver m fonte de flo. vrição médi do flo por nidde de volme é m medid d intensidde d fonte de flo intern. divergênci de m cmpo vectoril é m esclr qe indic o flo do cmpo por nidde de volme qe si trvés de m sperfície fechd infinitmente peqen qe encerr m ponto. div lim V S. d s V Um resltdo mis tiliável é: div coordends crtesins

15 Cálclo vectoril - 5 o Divergênci de m cmpo vectoril ELECTROMGNETISMO Sbendo qe e qe podemos escrever: div. Em coordends ortogonis (,, ) obtemos: Teorem d divergênci. h h h ( h h ) ( h h ) ( h h ) o O vlor d divergênci dá-nos o vlor do flo qe é gerdo nm volme infinitesiml. O integrl sobre m volme dá-nos o flo qe é gerdo dentro do volme. o O integrl de sperfície sobre m volme delimitdo por m sperfície fechd dá-nos diferenç entre o flo qe si e o flo qe entr n sperfície. Est diferenç é o flo qe é gerdo no interior do volme... d s V S

16 Cálclo vectoril - 6 o Rotcionl de m cmpo vectoril ELECTROMGNETISMO Vimos qe síd de flo trvés de m sperfície fechd qe delimit m volme indic presenç de m fonte no se interior. Est fonte pode ser considerd como m fonte de flo e o vlor d divergênci como m medid d intensidde d fonte. Eiste m otro tipo de fonte, chmd de fonte de vorte, qe cs m circlção do cmpo vectoril à s volt. circlção (médi) de m cmpo vectoril sobre m cminho fechdo é definido como o integrl de linh sobre o cminho: Circlção de sobre o contorno C Se for m forç qe ct no objecto, s circlção represent o trblho feito pel forç n movimentção do objecto m ve o longo do contorno. Poderá eistir circlção nm cmpo vectoril mesmo qe divergênci de sej nl (isto é, não eistem fontes de flo). C.d l

17 ELECTROMGNETISMO Cálclo vectoril - 7 o Rotcionl de m cmpo vectoril De modo definirmos m fnção pontl qe indiqe intensidde d fonte de vorte, devemos considerr C mito peqeno e orientdo de tl modo qe circlção sej máim. [ ] C n s dl s. lim rot O rotcionl de m cmpo vectoril é m vector cj mgnitde é máim circlção de por nidde de áre qndo áre tende pr ero e cj direcção é norml d áre qndo est é orientd de modo qe circlção sej máim. rot Coordends crtesins rot h h h h h h h h h Coordends ortogonis

18 ELECTROMGNETISMO Cálclo vectoril - 8 o Teorem de Stokes o Identiddes nls Teorem de Stokes o O integrl de sperfície do rotcionl de m cmpo vectoril sobre m sperfície fechd é igl o integrl de linh sobre o contorno qe define sperfície. Identiddes nls o Identidde I ( ). d s. dl S C V ( ) O rotcionl do grdiente de m cmpo esclr é nlo. Se m cmpo vectoril é irrotcionl, este pode ser epresso como o grdiente de m cmpo esclr. o Identidde II

19 ELECTROMGNETISMO Cálclo vectoril - 9 o Teorem de Stokes o Identiddes nls ( ). divergênci do rotcionl de m cmpo vectoril é ero. Se m cmpo vectoril não tem divergênci, este pode ser eprimido como o rotcionl de m otro cmpo vectoril. Os cmpos com divergênci nl não têm fontes de flo. O flo qe si de qlqer sperfície fechd é ero e s linhs de flo são fechds.

20 Cálclo vectoril - o Clssificção de cmpos vectoriis ELECTROMGNETISMO Podemos clssificr os cmpos vectoriis de cordo com s divergênci e rotcionl: o Solenoidl e irrotcionl. F F Cmpo electrostático nm região sem crgs. o Solenoidl e rotcionl. F F Um cmpo mgnético estático nm condtor com corrente. o Não solenoidl e irrotcionl. F F Cmpo electrostático nm região com crgs. o Não solenoidl e rotcionl. F F Cmpo eléctrico nm meio com crgs com m cmpo mgnético vrir no tempo.

21 ELECTROMGNETISMO Cálclo vectoril - o Teorem de Helmholt Um cmpo vectoril genérico terá m divergênci e m rotcionl diferentes de ero e pode ser considerdo como som de m cmpo solenoidl com m cmpo irrotcionl. Um cmpo vectoril é determindo menos de m constnte ditiv se s divergênci e rotcionl estão especificdos em qlqer ponto. divergênci mede intensidde de fontes de flo e o rotcionl intensidde de fontes de vorte. Qndo s intensiddes de mbs s fontes estão especificds temos o cmpo vectoril especificdo. Podemos decompor m cmpo vectoril genérico F nm prte irrotcionl F i e nm prte solenoidl F s : F F i F s com onde g e G são spostmente conhecidos, temos então: F i e. F g i F G s. F s. F. F g e F F G i s

22 ELECTROMGNETISMO Cálclo vectoril - o Teorem de Helmholt O teorem de Helmholt grnte qe F pode ser obtido prtir d integrção de g e de G. o Se F i é irrotcionl: F e ( V ) (identidde I) i podemos definir m fnção esclr V de modo qe: o Se F s é solenoidl:. s F i V F e.( ) (identidde II) podemos definir m fnção vectoril de modo qe: F s o Um cmpo vectoril genérico pode ser escrito como som do grdiente de m cmpo esclr e o rotcionl de m cmpo vectoril. F V

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquins Elétrics Máquins CC Prte III Máquin CC Máquin CC Máquin CC Comutção Operção como gerdor Máquin CC considerções fem induzid Conforme já menciondo, tensão em um único condutor debixo ds fces polres

Leia mais

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico

Fundamentos da Eletrostática Aula 08. O Potencial Elétrico. O Potencial Elétrico O Potencil Elétrico Fundmentos d Eletrostátic Aul 8 O Potencil Elétrico Prof Alex G Dis Prof Alysson F Ferrri Imgine ue desejmos mover um crg teste de um ponto té um ponto b em um região do espço onde

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 GITO Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm =

Leia mais

Coordenadas cartesianas Triedro direto

Coordenadas cartesianas Triedro direto Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores

Leia mais

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3.

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3. 6 Fich de eercícios de Cálculo pr Informátic CÁLCULO INTEGRAL 6- Determine primitiv F d função f que stisfz condição indicd, em cd um dos csos seguintes: ) f() = sin, F (π) = 3. b) f() = 3 + +, F (0) =

Leia mais

Formulário Equações de Maxwell:

Formulário Equações de Maxwell: 3 Prov Eletromgnetismo I Diurno Formulário Equções de Mxwell: D ρ, E B B 0, H J + D Condições de contorno: D σ l, E 0 B 0, H K l ˆn Equção d continuidde: ρ + J 0 Meios lineres e meios condutores: D ɛ E,

Leia mais

Física III Escola Politécnica de maio de 2010

Física III Escola Politécnica de maio de 2010 P2 Questão 1 Físic - 4320203 Escol Politécnic - 2010 GABATO DA P2 13 de mio de 2010 Considere um cpcitor esférico formdo por um condutor interno de rio e um condutor externo de rio b, conforme figur. O

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Polarização das antenas - Resumo

Polarização das antenas - Resumo Propgção de Onds e Antens Aul 5 04/05/09 Polrizção ds ntens - Resumo Polrizção liner Um ond hrmónic no tempo (que vri sinusoidlmente no tempo) é linermente polrizd num ddo ponto no espço se o vector do

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios MAT 45 - Cálclo I - POLI - 0 Resolção de Algms Qestões d List de Exercícios -) O ojetio dest qestão é demonstrr como lei d reflexão pln e lei d refrção de Snellis, d Óptic Geométric, podem ser otids como

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5 Escol Secndári com 3º ciclo D. Dinis º Ano de Mtemátic A Tem II Introdção o Cálclo Diferencil II ( e ) = e Tref nº 3 do plno de trblo nº 5 e e = ( ln ) = ( ln ) = ( log ) Not: é m fnção de e é m constnte

Leia mais

ENGENHARIA ASSISTIDA POR COMPUTADOR

ENGENHARIA ASSISTIDA POR COMPUTADOR ENGENHARIA ASSISTIDA POR COMPUTADOR Prof. Isc N. L. Silv Prof. Crlos Crespo Izqierdo Professor do Deprtmento de Engenhri Mecânic e Mectrônic PUCRS ORMULAÇÃO DO ME NO CÁLCULO ESTRUTURAL Em resmo o ME consiste

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um

Soluοc~o d Quest~o 1 () r r > c s contribuiοc~oes do cilindro interno e d csc se cncelm. r < r < b somente o cilindro interno contribui produzindo um ffω Ψ Φ 2 ' $ & F sic Escol olitécnic - 2004 FGE 2203 - Gbrito d 2 20 de mio de 2004 % } Est vliοc~o tem 100 minutos de durοc~o. } É proibid consult colegs, livros e pontmentos. } Escrev de form leg vel.

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Lei de Coulomb 1 = 4πε 0

Lei de Coulomb 1 = 4πε 0 Lei de Coulomb As forçs entre crgs elétrics são forçs de cmpo, isto é, forçs de ção à distânci, como s forçs grvitcionis (com diferenç que s grvitcionis são sempre forçs trtivs). O cientist frncês Chrles

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019

Física III Escola Politécnica GABARITO DA P2 09 de maio de 2019 Físic III - 4323203 Escol Politécnic - 2019 GABARITO DA P2 09 de mio de 2019 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio 2. A esfer e csc esféric são concêntrics

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Produto Vetorial e Produto misto

Produto Vetorial e Produto misto Álgebr Liner e Vetores Prodto Vetoril e Prodto Misto Prodto Vetoril e Prodto misto Introdção Mtries e Determinntes Prodto Vetoril Definição Proprieddes Interpretção Geométric Prodto Misto André Lis Lpolli

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm = 1,4.

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Problemas sobre Electrostática

Problemas sobre Electrostática Fculdde de Engenhri Prolems sore Electrostátic ÓPTICA E ELECTOMAGNETISMO MIB Mri Inês Bros de Crvlho Setemro de 7 ELECTOSTÁTICA Fculdde de Engenhri ÓPTICA E ELECTOMAGNETISMO MIB 7/8 LEI DE COULOMB E PINCÍPIO

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 11) 1.1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt =

CDI-II. Resumo das Aulas Teóricas (Semana 11) 1.1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt = Instituto Superior écnico Deprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CDI-II Resumo ds Auls eórics (Semn 11) 1 Integris em Vrieddes 1.1 Integrl de Linh de um Cmpo Esclr. Comprimento

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2014 Físic III - 4320301 Escol Politécnic - 2014 GABARITO DA P2 14 de mio de 2014 Questão 1 A região entre dus cscs esférics condutors concêntrics de rios e b com b > é preenchid com um mteril de resistividde

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Integrais em curvas e superfícies

Integrais em curvas e superfícies Análise Mtemátic III Integris em curvs e superfícies Mnuel Guerr onteúdo 1 Integris em curvs 2 1.1 omprimento de um curv................................. 2 1.2 urvs prmetrizds pelo seu comprimento.......................

Leia mais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais

Álgebra Linear e Geometria Analítica. Espaços Vectoriais Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada UNIVERSIDADE FEDERAL DO AMAPÁ Tópicos Especiis de Mtemátic Aplicd Márleson Rôndiner dos Sntos Ferreir mrleson p@yhoo.com.br Unifp-AP 23/junho/2010 Universidde Federl do Ampá 1 INTEGRAIS DE LINHA E SUPERFÍIE

Leia mais

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009

Escola Politécnica FGE GABARITO DA P2 14 de maio de 2009 P2 Físic III Escol Politécnic - 2009 FGE 2203 - GABARITO DA P2 14 de mio de 2009 Questão 1 Considere um cpcitor cilíndrico de rio interno, rio externo e comprimento L >>, conforme figur. L Sejm +Q e Q

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Controle e Automção Período/Módulo: 3 o Período Disciplin/Unidde Curriculr: Cálculo III

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015

Física III Escola Politécnica GABARITO DA P2 14 de maio de 2015 Físic - 4323203 Escol olitécnic - 2015 GABARTO DA 2 14 de mio de 2015 Questão 1 Considere um csc esféric condutor de rios interno e externo e b, respectivmente, conforme mostrdo n figur o ldo. A resistividde

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

Cálculo III-A Módulo 6

Cálculo III-A Módulo 6 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

Prof. A.F.Guimarães Física 3 Questões 9

Prof. A.F.Guimarães Física 3 Questões 9 Questão 1 Um fio retilíneo de rio R conduz um corrente constnte i; outro fio retilíneo de mesmo rio conduz um corrente contínu i cujo sentido é contrário o d corrente que flui no outro fio. Estime o módulo

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Mteriis Período/Módulo: 3º Período Disciplin/Unidde Curriculr: Cálculo III Código: CE381

Leia mais

3.1 O potencial elétrico

3.1 O potencial elétrico 3. O potencil elétrico Formulmos lei de Guss como um prte d lei de oulomb. Er prte ue continu válid mesmo com crgs em movimento. A outr prte pode ser chmd de lei d eistênci do potencil. Est tem um domínio

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 13

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 13 SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aul 13 Aul de Hoje Curv de mgnetizção Clssificção ds máquins CC Gerdores CC Curv de Mgnetizção Curv de Mgnetizção O fluxo por pólo de um máquin CC depende d

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY PLANO DE ENSINO IDENTIFICAÇÃO Curso: Engenhri de Produção Período/Módulo: 3º Período Disciplin/Unidde Curriculr: Cálculo III Código: CE381

Leia mais

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o

Leia mais

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica e de Computadores

Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra Cálculo III - Engenharia Electrotécnica e de Computadores Deprtmento de Mtemátic Fculdde de Ciêncis e Tecnologi Universidde de Coimbr - Engenhri Electrotécnic e de Computdores Cálculo Integrl ÍNDICE GERL 1. Integrl prmétrico definido 1 1.1. Definição 1 1.2. Proprieddes

Leia mais

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais

Matemática (e geometria) para CG

Matemática (e geometria) para CG Licencitur em Engenhri Informátic e de Computdores Computção Gráfic Mtemátic (e geometri) pr CG 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Edwrd Angel, Cp. 3 Questão 1, exme de 06/06/11

Leia mais

Condução elétrica em metais

Condução elétrica em metais Condução elétric em metis Elétrons livres no metl gás de e - em um poço 3D. Movimento letório dentro do poço. Cmino livre médio: λ. E externo plicdo celerção entre colisões velocidde de rrsto: v d. 3 5

Leia mais

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010

Física III Escola Politécnica GABARITO DA P3 24 de junho de 2010 P3 Questão 1 Físic - 4320301 Escol Politécnic - 2010 GABARTO DA P3 24 de junho de 2010 onsidere um fio infinito percorrido por um corrente estcionári. oplnr com o fio está um espir retngulr de ldos e b

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais