GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra.

Tamanho: px
Começar a partir da página:

Download "GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra."

Transcrição

1 UNIVERSIAE ESTAUAL E EARTAMENTO E INFORMÁTICA ro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo ijkstr. ro. Ynr Mlono Goms Cost ro. Ynr Mlono 2 inição: G (V, E), on: V é um onjunto vértis (ou noos); V not o númro lmntos V; E é um olção prs V, mos rst (ou ro); E not o númro lmntos E; As rsts srvm rlçõs ntr os vértis; Exmplo: rlçõs outori; Goori Tmssi i Bttist rprt Cin ro. Ynr Mlono 3 Trminoloi: Iniêni: rst (u,v) é it inint à u v; Ajêni: ois vértis u v são jnts s xist rst (u,v); Gru o vérti: o ru um vérti é iul o númro rsts qu inim l; Rprsntção ométri ros:

2 ro. Ynr Mlono 4 Trminoloi (ont.): Cmino: um mino o vérti v o vérti v k é um sqüêni vértis v...v k tl qu (v j,v j+ ) prtn E, <=j<=k; Comprimnto um mino: númro rsts prorris no mino; Nst xmplo,,, é um mino omprimnto iul 3; ro. Ynr Mlono 5 Trminoloi (ont.): Cilo: é um mino v, v2... vk, vk+, on v = vk+ k>=3; Nst xmplo,,, é um mino; Gro ílio: ro sm ilos; ro. Ynr Mlono 6 Gro onxo: ro qu possui mino ntr pr vértis V; Gro sonxo: ro não onxo; Conxo sonxo 2

3 Gro omplto: ro qu possui um rst ntr pr sus vértis; ro. Ynr Mlono 7 ro. Ynr Mlono 8 Suro: G2 (V2,E2) é suro G(V,E) s: V2 stá ontio m V; E2 stá ontio m E; G G2 G2 é suro G ro. Ynr Mlono 9 Gro iriono (ou íro) Gro m qu s rsts são prs ornos; Nst so (u,v) é irnt (v,u); Exmplo: V={,,,, } E={(,), (,), (,), (,), (,), (,), (,)} 3

4 Gro iriono Exmplo plição: rprsntção ml ér (lins ntr roportos). ro. Ynr Mlono TAM828 CGH LB RSL22 GOL378 TAM524 MGF TAM74 CWB RSL26 BRA453 GOL396 OA ro. Ynr Mlono Gro iriono: Gru ntr v: númro rsts onvrnts v; O ru ntr é 3; Gru sí v: númro rsts ivrnts v; O ru sí é 2; Gro ponro: ro m qu s ssoi um vlor (ou pso) rst; O pso um rst é noto por w() ro. Ynr Mlono 2 rnví 7 7 Cinort Mriná 35 Mnuri w(mriná, rnví)=7 4

5 ro. Ynr Mlono 3 Rprsntção ros: Mtriz jênis; Mtriz iniênis; List jênis; ro. Ynr Mlono 4 Mtriz jênis r um ro G (V,E): Cris um mtriz M om imnsõs V x V ; C lin i olun j é ssoi à um vérti o ro : M[i,j]= s (v i, v j ) E; M[i,j]= s (v i, v j ) E; svntm: oup V 2 posiçõs n mmóri; Vntm: sso rápio à inormção sor um rst; Exmplo Mtriz jênis ro. Ynr Mlono 5 Osrv qu: Em ro não iriono mtriz é simétri; O númro s é iul 2 E ; 5

6 Mtriz jênis pr um íro ro. Ynr Mlono 6 Osrv qu: O númro s é iul E ; Mtriz jênis pr um ro ponro: Colos m M[i,j] o vlor w( i, j ); ro. Ynr Mlono 7 rnví 7 7 Cinort Mriná 35 Mnuri MRI VI 7 MRI VI 7 7 ro. Ynr Mlono 8 Mtriz iniênis r um ro G (V,E): Cris um mtriz M om imnsõs V x E ; Assois lin i om um vérti olun j om um rst o ro : M[i,j]= s j ini m i; M[i,j]= so ontrário; svntm: é priso onr ntipmnt o númro vértis rsts o ro; 6

7 ro. Ynr Mlono 9 Exmplo Mtriz iniênis Osrv qu: Em olun mtriz xistm ois s; Em lin mtriz o númro s é iul o ru o vérti; Nst so sts númros não são psos, são intiiors s rsts. ro. Ynr Mlono 2 Mtriz iniênis pr íro Nst so sts númros não são psos, são intiiors s rsts. ro. Ynr Mlono 2 List jênis Consist m um vtor om V lists ns; C list orrspon à um vérti, rmzn os vértis qu são jnts l; Exmplo: Gsto mmóri: V + 2 E 7

8 List jênis pr íros Exmplo: ro. Ynr Mlono 22 Gsto mmóri: V + E ro. Ynr Mlono 23 Um prolm lássio m ros: Mnor mino orim úni: r ros sm psos: us m mplitu (ou m lrur); r ros ponros sm psos ntivos: loritmos ijkstr; ro. Ynr Mlono 24 Bus m Amplitu Enontr o mnor mino prtir um vérti iniil pr qulqur outro vérti o ro; Aloritmo us m mplitu:. Iniilmnt mrs o vérti orim omo visito; 2. Colos toos os sus vértis jnts in não visitos m um il F; 3. Rtirs o primiro vérti il, mrnoo omo visito. Rpts o prosso prtir o psso 2, té qu não j mis vérti in não visito. 8

9 ro. Ynr Mlono 25 Exmplo us m mplitu: Gro sm psos; Utilizrmos um vtor uxilir pr intiir os prssors vérti mro; Os vértis já visitos srão intiios om somrmnto. ro. Ynr Mlono 26 Exmplo us m mplitu: Vérti orim: ; Fil Exmplo us m mplitu: ro. Ynr Mlono 27 Fil 9

10 ro. Ynr Mlono 28 Exmplo us m mplitu: Fil ro. Ynr Mlono 29 Exmplo us m mplitu: Fil ro. Ynr Mlono 3 Exmplo us m mplitu: Fil

11 ro. Ynr Mlono 3 Exmplo us m mplitu: Fil ro. Ynr Mlono 32 Exmplo us m mplitu: Fil ro. Ynr Mlono 33 Exmplo us m mplitu: Fil Término: il vzi toos os vértis visitos.

12 ro. Ynr Mlono 34 sors o mnor mino prtir, suint orm: Cmino té : sqüêni invrs os prssors prtir té r m ; ro. Ynr Mlono 35 Aloritmo ijkstr snvolvio por Esr ijkstr m 959; Apliçõs: istriuição pots m r omputors om mlor vloi possívl; Enontrr o mino mis urto ntr is; ro. Ynr Mlono 36 Aloritmos ijkstr: r nontrr o mnor mino orim úni; r um ro: Conxo; onro (om psos positivos); Enontr o mino ntr v qulqur outro vérti o ro om mnor som umul psos; 2

13 No ro srito suir: Astor ro. Ynr Mlono 37 Mriná Mnuri 65 7 Lonrin O mnor mino ntr Mriná Lonrin tri omprimnto ; Msmo qu ouvss um rst i lino irtmnt s us is om w( i )>; Exmplo: Aplição o loritmo ijkstr pr nontrr mnor istâni ntr is. ro. Ynr Mlono 38 ARANAVAÍ 7 4 ARAMA CIANORTE CAMO MOURÃO CORNÉLIO ROCÓIO LONRINA 5 6 AUCARANA Enontrr mnor istâni ntr ARAMA outr i: Srão utilizos três vtors: ro. Ynr Mlono 39 S AU CMO CR LA S onjunto om toos os vértis o ro, iniilmnt toos vm sr os. N mi m qu orm os srão mros om somrmnto. istâni ntr vérti orim o mino. Iniilmnt ininit. VI list os prssors vérti no mino mis urto. Iniilmnt vzi. 3

14 Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 4 ARANAVAÍ ARAMA CIANORTE 6 8 S 7 AU 8 CMO 7 8 CAMO MOURÃO CR 9 LA LONRINA 5 AUCARANA 6 VI 4 CORNÉLIO ROCÓIO rimiro psso: Mrs o vérti orim v o omo o; A su istâni é onsir zro; Colos no vtor istânis s istânis ntr v o os sus jnts. Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 4 ARANAVAÍ ARAMA CIANORTE RELAXAMENTO s [u]+w(u,z) < [z] ntão [z] [u]+w(u,z); S AU CMO 6 8 CAMO MOURÃO CR 9 LA LONRINA 5 AUCARANA 55 6 VI 4 CORNÉLIO ROCÓIO Rptir: Mrs o vérti om mnor [u] omo o. Intiis m o su prssor. Atulizs [v] pr too v jnt à lum u já o. Até qu toos os vértis sjm os. Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 42 ARANAVAÍ CORNÉLIO ROCÓIO 4 7 LONRINA 4 ARAMA 9 6 CIANORTE AUCARANA CAMO MOURÃO 6 S AU CMO CR LA VI

15 Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 43 ARANAVAÍ ARAMA CIANORTE LONRINA AUCARANA CAMO MOURÃO 6 S AU CMO CR LA VI CORNÉLIO ROCÓIO Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 44 ARANAVAÍ ARAMA CIANORTE LONRINA AUCARANA CAMO MOURÃO 6 S AU CMO CR LA VI CORNÉLIO ROCÓIO Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 45 ARANAVAÍ ARAMA CIANORTE LONRINA AUCARANA CAMO MOURÃO 6 S AU CMO CR LA VI CORNÉLIO ROCÓIO

16 Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 46 ARANAVAÍ ARAMA CIANORTE CORNÉLIO ROCÓIO LONRINA AUCARANA CAMO MOURÃO 6 S AU CMO CR LA VI LA Enontrr mnor istâni ntr ARAMA outr i: ro. Ynr Mlono 47 ARANAVAÍ ARAMA CIANORTE S 7 AU 8 CMO 8 9 CAMO MOURÃO 6 CR LONRINA AUCARANA LA VI CORNÉLIO ROCÓIO Toos os vértis já os: FIM LA ro. Ynr Mlono 48 Enontrr mnor istâni ntr ARAMA outr i: Intrprtno os rsultos: O vtor tm s mnors istânis s Umurm; Rtrono nos prssors prtir um vérti orm n, otêms sqüêni invrti o mino. Exmplo: mino té CR: S AU 25 CMO 6 8 CR 35 LA LA CR LA VI 4 LA CR 6

17 O loritmo ijkstr: ro. Ynr Mlono 49 Entr: um ro G ponro, onxo sm psos ntivos; um vérti v G (vérti orim). Sí: mnors istânis prtir v, inluino os sus minos; [v] ; v é visito; Enqunto ouvr lum vérti m S in não visito ç Mrqu, ntr os jnts os vértis os, o vérti u om mnor vlor [u] qu in não oi o; Coloqu m o prssor u; r vérti z jnt u ç S [u]+w((u,z))<[z] ntão // rlxmnto [z] [u]+w((u,z)); Rtorn os vtors. ro. Ynr Mlono 5 Exríio: o o suint ro, mostr sqüêni volução os vlors os vtors, S o s xutr o loritmo ijkstr onsirno Cornélio roópio omo vérti orim. ARANAVAÍ 7 4 ARAMA CIANORTE CORNÉLIO ROCÓIO LONRINA 5 6 AUCARANA CAMO MOURÃO Biliori ro. Ynr Mlono 5 Zivini, Nivio. rojto Aloritmos om implmntçõs m Jv C++. Eitor Tomson, 27; Tnnum, Lnsm Aunstin. Estruturs os Usno C. Eitor Mkron Books, 995; Mors, Clso Rorto. Estruturs os Aloritmos. Eitor Brkly, 2; Goori Tmssi. rojto Aloritmos. Eitor Bookmn, 22. 7

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA GRAFOS Pro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo Dijkstr. Pro. Ynr Mlono Goms Cost Pro. Ynr Mlono 2 Dinição: G (V, E), on: V é um

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

Otimização em Grafos

Otimização em Grafos Otimizção m Grfos Luii G. Simontti PESC/COPPE 2017 Luii Simontti (PESC) EEL857 2017 1 / 25 Grfo (não iriono): G = (V, E) V - onjunto vértis - V = {1, 2, 3, 4, 5, 6, 7} E - onjunto rsts - E = {[1, 2], [1,

Leia mais

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos PCS 2215 Funmntos Ennri Computção II Contúo 4. Rprsntção ros, Gros isomoros plnrs Auls 4-5 Gros Líri Sto Prossor Rsponsávl vrsão: 1.2 (osto 2002) 1 Gomi, Rli, Sto Simn, 2002 Auls 4-5 PCS 2215 - Fun. En.

Leia mais

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não 13 - Gros Plnrs Nst ul qurmos rsponr à suint qustão: Do um ro G, é possívl nontrr um rprsntção rái pr o ro tl qu não hj ruzmnto rsts? Consir por xmplo o ro K 4 rprsnto rimnt ns iurs i1, i2 i3.: i. 1 i.

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução Núlo Computção Eltrôni Univrsi Frl o Rio Jniro Grfos: Introução Grfos Um grfo não orinto G é um pr (V, E), on V é um onjunto vértis E é um onjunto rsts; rst é um pr não orno vértis. Sj (v, w) E; v w são

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final.

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final. I. Introução 1. Grfo Orinto É um grfo "G" om um onjunto V vértis (nós) um onjunto U ros pono sr inio por G=(V,U). C um os ros stá ssoio um pr orno vértis sno o primiro xtrmi iniil o ro o outro su xtrmi

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr,

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

ESTRATÉGIAS DE BUSCA CEGA

ESTRATÉGIAS DE BUSCA CEGA Bus m Espço Estos Intliêni Artiiil ESTRATÉGIAS DE BUSCA CEGA Um vz o prolm m ormulo... o sto inl v sr uso Em outrs plvrs, v-s usr um métoo us pr sr orm orrt plição os oprors qu lvrá o sto iniil o inl HUEI

Leia mais

Grafos. Histórico. Histórico. Histórico. Histórico. Definição

Grafos. Histórico. Histórico. Histórico. Histórico. Definição Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto Físi Mtmáti FFCLRP-USP Gros Nst ul é ornio um rv histório sor tori os ros São tmém introuzios onitos sor ros loritmos qu os mnipulm uusto@lrp.usp.r

Leia mais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais PCS Funmntos Engnhri Computção II Contúo. Grfos Auls - Grfos Líri Sto Profssor Rsponsávl. Cilos Hmiltoninos o prolm o ixiro vijnt. Algoritmo minho mínimo vrsão:. (st ) Gomi, Rli, Sto Sihmn, Auls PCS -

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Problemas Hamiltonianos

Problemas Hamiltonianos Prolms Hmiltoninos Dfinição: Um iruito hmiltonino m um grfo onxo G é finio omo um minho lmntr, fho pssno m vérti G xtmnt um vz. Um grfo qu mit um iruito hmiltonino é um grfo hmiltonino. Evintmnt nm too

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova. +1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão

Leia mais

A Classe de Grafos PI

A Classe de Grafos PI TEMA Tn. Mt. Apl. Comput., 6, No. (005), -4. Um Pulição Soi Brsilir Mtmáti Apli Computionl. A Clss Gros PI S. ALMEIDA, C.P. MELLO, A. GOMIDE, Instituto Computção, UNICAMP, 084-97 Cmpins, SP, Brsil. Rsumo.

Leia mais

Estruturas de Dados. Organização. Grafos I: Definição. Algumas Aplicações. Conceitos & Aplicações. Introdução aos Grafos

Estruturas de Dados. Organização. Grafos I: Definição. Algumas Aplicações. Conceitos & Aplicações. Introdução aos Grafos Ornizção Estruturs Dos Grfos I: Conitos & Apliçõs Introução os Grfos Dfinição Trminoloi Alums Propris Exmplos Apliçõs Grfos Prof. Riro J. G. B. Cmpllo Prt st mtril é so m ptçõs xtnsõs slis isponívis m

Leia mais

Uma nota sobre bissetrizes e planos bissetores

Uma nota sobre bissetrizes e planos bissetores Runs Ros Ortg Junior 83 Um not sor isstris pnos isstors Runs Ros Ortg Junior Doutor Curso Mtmáti Univrsi Tuiuti o rná Dprtmnto Mtmáti Univrsi Fr o rná Tuiuti: Ciêni Cutur n 9 FCET 4 pp 83-9 Curiti r 84

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

Operações em Estruturas de Dados

Operações em Estruturas de Dados Oprçõs m Estruturs Dos Intligêni rtifiil José ugusto Brnusks Dprtmnto Físi Mtmáti FFCP-USP Nst ul são srits lgums oprçõs omuns m struturs os frqüntmnt utilizs m I Otimizção ursão no Finl (umulors) Ornção

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Estratégias de Busca em Espaços de Estados

Estratégias de Busca em Espaços de Estados Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus inorm Gulos A* Hill-limin Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus

Leia mais

Estratégias de Busca em Espaços de Estados

Estratégias de Busca em Espaços de Estados Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus inorm Gulos A* Hill-limin Bus por solução Como rprsntr o prolm s vriir s há um minho ntr us is quisqur rião? São

Leia mais

DETERMINAÇÃO EFICIENTE DE VÉRTICES SIMPLICIAIS EM GRAFOS CORDAIS

DETERMINAÇÃO EFICIENTE DE VÉRTICES SIMPLICIAIS EM GRAFOS CORDAIS Psquis Oprionl n Soi: Eução, Mio Amint Dsnvolvimnto DETERMINAÇÃO EFICIENTE DE VÉRTICES SIMPLICIAIS EM GRAFOS CORDAIS Lilin Mrknzon Oswlo Vrnt Núlo Computção Eltrôni Univrsi Frl o Rio Jniro -mil: {mrknzon,oswlo}@n.urj.r

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio Al Roolo Gri Lozno rglozno@trr.om.r Univrsi o Esto o Rio Jniro Univrsi o Grn Rio Anglo Sntos Siquir nglosiquir@uol.om.r Univrsi Frl o Rio Jniro Univrsi o Grn Rio Rsumo A olorção é um su-ár qu tv su iníio

Leia mais

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXIX Olimpíaa Brasilira Matmátia GABARITO Sguna Fas Soluçõs Nívl Sguna Fas Part A PARTE A Na part A srão atribuíos pontos para aa rsposta orrta a pontuação máxima para ssa part srá 0. NENHUM PONTO vrá

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

Árvores B. Introdução. Introdução. AVL como Índice em Disco. AVL como Índice em Disco. Representação

Árvores B. Introdução. Introdução. AVL como Índice em Disco. AVL como Índice em Disco. Representação Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto ísi Mtmáti CLP-USP Árvors B Nst ul srá prsnto o ADT árvor B qu são árvors m- vis omplts As árvors B são prots pr unionr m m ispositivos mmóri sunári

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

Estruturas de Dados Lista de exercícios

Estruturas de Dados Lista de exercícios Estruturs Dos List xrcícios 1. No instnt t = 0, um cultur bctéris contém 8 10 6 inivíuos. No instnt t = i (sno i um intiro positivo qu xprss o númro hors), o númro inivíuos n cultur é o obro o númro iníviuos

Leia mais

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas SnNCutCnvs Usno unção Etiqut siv imprimívl Voê porá rir tiquts sivs xlusivs usno su imprssor jto tint unção Rortr irto SnNCut. Pr otr inormçõs sor s oprçõs ásis o SnNCutCnvs, onsult Aju. Pr vr Aju, liqu

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental 4.4. Rgrssão linr multivri onsirno irnts onjuntos os Visno vriir s s rgrssõs otis prsntvm munç no oiint trminção m unção o númro os isponívis, prou s orgnizção irnts onjuntos os pr um s tnsõs onsirs (

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Quicksort ordenação rápida

Quicksort ordenação rápida UNVERSDADE ESTADUAL DE MARNGÁ DEPARTAMENTO DE NORMÁTCA Quicksort ornação rápia Prof. Yanr Malonao - Prof. Yanr Malonao Goms a Costa Prof. Yanr Malonao - Métoos ornação intrna: Simpls: complia méia O(n

Leia mais

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos Grção Rs Trnsistors Otimizs Utilizno um Aorgm Bs m Grfos Julio S. Domingus Júnior, Viniius N. Possni, Rnto S. Souz, Flip S. Mrqus, Lomr S. Ros Jr. Grupo Arquitturs Ciruitos Intgros GACI Univrsi Frl Plots

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

QUESTIONÁRIO. Senhor(a) Professor(a),

QUESTIONÁRIO. Senhor(a) Professor(a), 2013 QUSTIONÁRIO O PROSSOR Senhor(a) Professor(a), O Sistema Nacional de valiação da ducação ásica, S, é composto por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes e os questionários

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

DECRETO N 805, DE 16 DE AGOSTO DE 2013.

DECRETO N 805, DE 16 DE AGOSTO DE 2013. ESTADO DE ALAGOAS PREFEITURA MUNICIPAL DE BOCA DA MATA DECRETO N 805, DE 16 DE AGOSTO DE 2013. DISPÕE SOBRE O REAJUSTE DOS VENCIMENTOS BÁSICOS DOS SERVIDORES PÚBLICOS DA REDE PÚBLICA NA ÁREA DA SEGURIDADE

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

DIAGNOSTICABILIDADE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODULARES

DIAGNOSTICABILIDADE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODULARES DIAGNOSTICABILIDADE DE FALHAS EM SISTEMAS A EVENTOS DISCRETOS MODULARES Flip G. Crl, Mros V. Morir, Oumr Din COPPE-Prorm Ennhri Elétri, Univrsi Frl o Rio Jniro Ci Univrsitári, Ilh o Funão Rio Jniro, 2.945-970,

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

FOI DEUS QUEM FEZ VOCÊ

FOI DEUS QUEM FEZ VOCÊ FOI DEUS QUEM FEZ OCÊ AMELINHA Arr Neton W Mcedo Crmo Gregory c c c Deus que fez vo - Deus quem fez vo - Deus quem fez vo- c Deus quem fez vo - J De-us 4 Deus quem fez vo - Deus quem fez vo - J Deus quem

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

Nos itens seguintes, os componentes que constituem o setup serão explicados, enfatizando os elementos de maior relevância para o resultado

Nos itens seguintes, os componentes que constituem o setup serão explicados, enfatizando os elementos de maior relevância para o resultado 4 Construção Configurção o Stup Mis Nst trlho foi mprg téni songm m frquêni pr oltr s informçõs o nl. Est téni ont om o uso o Anlisor Vtoril, um quipmnto qu vrr um trmin fix frquêni rtorn os mplitu fs

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda.

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda. ORION 6 Sgun Port USB Hnry Equipmntos Eltrônios Sistms Lt. Ru Rio Piquiri, 400 - Jrim Wissópolis Cóigo Postl: 83.322-010 Pinhis - Prná - Brsil Fon: +55 41 3661-0100 INTRODUÇÃO: Pr orrto unionmnto, é nssário

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

Dfinição d grafo Grau d um vértic Dfinição 1.1 Um grafo é uma strutura G = G(V,E) ond V = {v 1,v 2,...,v n } é um conjunto finito não vazio, cujos lmn

Dfinição d grafo Grau d um vértic Dfinição 1.1 Um grafo é uma strutura G = G(V,E) ond V = {v 1,v 2,...,v n } é um conjunto finito não vazio, cujos lmn Dpartamnto d Engnharia d Produção (CEFET/RJ) IV Workshop da Escola d Informática & Computação Outubro 2016 Dfinição d grafo Grau d um vértic Dfinição 1.1 Um grafo é uma strutura G = G(V,E) ond V = {v 1,v

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ αœ œ œ œ œ œ œ œ Υ Β œ œ œ œ αœ

œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ αœ œ œ œ œ œ œ œ Υ Β œ œ œ œ αœ ANEXO 12 - TRANSCRIÇÃO DO OFÍCIO «FESTA DE STA. MAFALDA V.» P-AR Res. Ms. 017 Ad Vésperas -Antífona - Modo VII - fl. 003r Copista: Fr. Rodrigues das Dores Transcrição: Cátia Silva Al - le - lú - ia, al

Leia mais

Estudo de diversidade populacional: efeito da taxa de mutação

Estudo de diversidade populacional: efeito da taxa de mutação IA369 - Guwn & Von Zubn (s/98) Estuo vrsa populaconal: fto a taxa mutação. Ausênca prssão sltva ausênca mutação é assumo qu caa nvíuo a população é ao por um cromossomo hapló qu o crossovr é unform. um

Leia mais

Propagação na Atmosfera Folha de exercícios nº 7

Propagação na Atmosfera Folha de exercícios nº 7 Propgção n Atmosfr Fol ríios nº 7 On solo. Num sistm omunição ponto ponto m qu propgção é sobr o mr ntn missor stá 5 m im o nívl méio s águs, nqunto ntn rptor stá 75 m im ss nívl. A istâni ntr s ntns é

Leia mais