Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Tamanho: px
Começar a partir da página:

Download "Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore"

Transcrição

1 Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr, t. l): Cpítulo 3; Algorithms in C (Sgwik): Cpítulo 5; Slis sos no mtril PUC-Rio, isponívl m Introução Estruturs stus té gor não são qus pr rprsntr os qu vm sr ispostos mnir hirárqui Ex., hirrqui psts Árvor gnlógi Árvors são struturs qus pr rprsntção hirrquis Dinição Rursiv Árvor Um onjunto nós tl qu: xist um nó r, nomino riz, om zro ou mis suárvors, ujs rízs stão ligs r os nós rízs sts su-árvors são os ilhos r os nós intrnos árvor são os nós om ilhos s olhs ou nós xtrnos árvor são os nós sm ilhos

2 Forms rprsntção Rprsntção por prêntss ninhos ( A (B) ( C (D (G) (H)) (E) (F (I)))) Digrm Inlusão Rprsntção Hirárqui Suárvor Sj árvor im T = A, B,... A árvor T possui us suárvors: T T on T = B T = C, D,... A suárvor T possui 3 suárvors: T, T T on T = D, G, H, T = F, I, T = E As suárvors T, T, Tg, Th, Ti possum pns o nó riz nnhum suárvor. Exmplo (árvor xprssão) Rprsntção xprssão ritméti: ( + ( * ( / - ))) Conitos Básios Nós ilhos, pis, tios, irmãos vô Gru sí (númro ilhos um nó) Nó olh (gru sí nulo) nó intrior (gru sí irnt nulo) Gru um árvor (máximo gru sí) Florst (onjunto zro ou mis árvors)

3 Conitos Básios (2) Cminho Um squêni nós istintos v1, v2,..., vk, tl qu xist smpr ntr nós onsutivos (isto é, ntr v1 v2, ntr v2 v3,..., v(k-1) vk) rlção "é ilho ou "é pi " é nomin um minho n árvor. Comprimnto o Cminho Um minho vk vértis é otio pl squêni k-1 prs. O vlor k-1 é o omprimnto o minho. Nívl ou prouni um nó númro nós o minho riz té o nó. Conitos Básios (3) Nívl riz (prouni) é 0. Árvor Orn: é qul n qul ilhos nó stão ornos. Assum-s ornção squr pr irit. Est árvor é orn? Conitos Básios (4) Árvor Chi: Um árvor gru é um árvor hi s possui o númro máximo nós, isto é, toos os nós têm númro máximo ilhos xto s olhs, tos s olhs stão n msm ltur. Árvor hi gru 2: implmntção squnil. Exmplo Árvor inári rprsntno xprssõs ritmétis ináris Nós olhs rprsntm os oprnos Nós intrnos rprsntm os oprors (3+6)*(4-1)+5 Armznmnto por nívl: posição o nó posição os ilhos o nó 1 2,3 2 4,5 3 6,7 i (2i,2i+1)

4 Árvors Bináris Notção txtul árvor vzi é rprsnt por <> árvors não vzis por <riz s s> Exmplo: < < <> <<><>> > < <<><>> <<><>>> > Árvor Binári Um árvor m qu nó tm zro, um ou ois ilhos Um árvor inári é: um árvor vzi; ou um nó riz om us su-árvors: suárvor irit (s) suárvor squr (s) Árvors Bináris Implmntção m C Rprsntção: pontiro pr o nó riz Rprsntção um nó n árvor: Estrutur m C ontno A inormção proprimnt it (xmplo: um rtr, ou intiro) Dois pontiros pr s su-árvors, à squr à irit strut rv hr ino; strut rv* sq; strut rv* ir; ; TAD Árvors Bináris Impl. m C (rv.h) typ strut rv Arv; //Cri um árvor vzi Arv* rv_rivzi (voi); //ri um árvor om inormção o nó riz, //om suárvor squr suárvor irit Arv* rv_ri (hr, Arv*, Arv* ); //lir o spço mmóri oupo pl árvor Arv* rv_lir (Arv* ); //rtorn tru s árvor stivr vzi ls //so ontrário int rv_vzi (Arv* ); //ini oorrêni (1) ou não (0) o rtr int rv_prtn (Arv*, hr ); //imprim s inormçõs os nós árvor voi rv_imprim (Arv* );

5 TAD Árvors Bináris Implmntção m C Implmntção s unçõs: implmntção m grl rursiv us inição rursiv strutur Um árvor inári é: um árvor vzi; ou um nó riz om us su-árvors: su-árvor irit (s) su-árvor squr (s) TAD Árvors Bináris Implmntção m C unção rv_rivzi ri um árvor vzi Arv* rv_rivzi (voi) rturn NULL; TAD Árvors Bináris Implmntção m C unção rv_ri ri um nó riz s inormção s us su-árvors, squr irit rtorn o nrço o nó riz rio Arv* rv_ri (hr, Arv* s, Arv* s) Arv* p=(arv*)mllo(sizo(arv)); p->ino = ; p->sq = s; p->ir = s; rturn p; TAD Árvors Bináris Implmntção m C rv_rivzi rv_ri s us unçõs pr rição árvors rprsntm os ois sos inição rursiv árvor inári: um árvor inári Arv* ; é vzi =rv_rivzi() é ompost por um riz us su-árvors =rv_ri(,s,s);

6 TAD Árvors Bináris Implmntção m C unção rv_vzi ini s um árvor é ou não vzi int rv_vzi (Arv* ) rturn ==NULL; TAD Árvors Bináris Implmntção m C unção rv_lir lir mmóri lo pl strutur árvor s su-árvors vm sr lirs nts s lirr o nó riz rtorn um árvor vzi, rprsnt por NULL Arv* rv_lir (Arv* ) i (!rv_vzi()) rv_lir(->sq); /* lir s */ rv_lir(->ir); /* lir s */ r(); /* lir riz */ rturn NULL; TAD Árvors Bináris Implmntção m C unção rv_prtn vrii oorrêni um rtr m um os nós rtorn um vlor oolno (1 ou 0) inino oorrêni ou não o rtr n árvor int rv_prtn (Arv*, hr ) i (rv_vzi()) rturn 0; /* árvor vzi: não nontrou */ ls rturn ->ino== rv_prtn(->sq,) rv_prtn(->ir,); TAD Árvors Bináris Implmntção m C unção rv_imprim prorr rursivmnt árvor, visitno toos os nós imprimino su inormção voi rv_imprim (Arv* ) i (!rv_vzi()) print("% ", ->ino); /* mostr riz */ rv_imprim(->sq); /* mostr s */ rv_imprim(->ir); /* mostr s */

7 Exmplo Crir árvor < < <> < <><>> > < < <><> > < <><> > > > Exmplo Crir árvor < < <> < <><>> > < < <><> > < <><> > > > /* su-árvor '' */ Arv* 1= rv_ri('',rv_rivzi(),rv_rivzi()); /* su-árvor '' */ Arv* 2= rv_ri('',rv_rivzi(),1); /* su-árvor '' */ Arv* 3= rv_ri('',rv_rivzi(),rv_rivzi()); /* su-árvor '' */ Arv* 4= rv_ri('',rv_rivzi(),rv_rivzi()); /* su-árvor '' */ Arv* 5= rv_ri('',3,4); /* árvor '' */ Arv* = rv_ri('',2,5 ); Arv* = rv_ri(, rv_ri(, rv_rivzi(), rv_ri(, rv_rivzi(), rv_rivzi()) ), rv_ri(, rv_ri(, rv_rivzi(), rv_rivzi()), rv_ri(, rv_rivzi(), rv_rivzi()) ) ); Exmplo Exmplo Arsnt nós x, y z Lir nós ->sq->sq = rv_ri( x, rv_ri( y, rv_rivzi(), rv_rivzi()), rv_ri( z, rv_rivzi(), rv_rivzi()) ); x ->ir->sq = rv_lir(->ir->sq); x y z y z

8 Orm Prurso (ou trvssi) Árvors Bináris Pré-orm: trt riz, prorr s, prorr s xmplo: Orm simétri (ou In-Orm): prorr s, trt riz, prorr s xmplo: Pós-orm: prorr s, prorr s, trt riz xmplo: Orm Prurso - Exríios Fzr prurso Pré-orm In-orm Pós-orm Pr-orm +* In-orm 3+6*4-1+5 Pós-orm *5+ Pré-Orm Implmntção rursiv In-Orm Implmntção rursiv voi rv_prorm (Arv* ) i (!rv_vzi()) pross(); // por xmplo imprim rv_prorm(->sq); rv_prorm(->ir); voi rv_inorm (Arv* ) i (!rv_vzi()) rv_inorm (->sq); pross (); // por xmplo imprim rv_inorm (->ir);

9 Pós-Orm Implmntção rursiv voi rv_posorm (Arv* ) i (!rv_vzi()) rv_posorm (->sq); rv_posorm (->ir); pross (); // por xmplo imprim Prgunt unção rv_prtn Pré-orm, pós-orm ou in-orm? int rv_prtn (Arv*, hr ) i (rv_vzi()) rturn 0; /* árvor vzi: não nontrou */ ls rturn ->ino== rv_prtn(->sq,) rv_prtn(->ir,); Prgunt unção rv_lir Pré-orm, pós-orm ou in-orm? Arv* rv_lir (Arv* ) i (!rv_vzi()) rv_lir(->sq); /* lir s */ rv_lir(->ir); /* lir s */ r(); /* lir riz */ rturn NULL; Árvors Bináris - Altur Propri s árvors Exist pns um minho riz pr qulqur nó Altur um árvor omprimnto o minho mis longo riz té um s olhs ltur um árvor om um únio nó riz é zro ltur um árvor vzi é -1 Esorço omputionl nssário pr lnçr qulqur nó árvor é proporionl à ltur árvor Exmplo: h = 2

10 Árvors Bináris - onitos Nívl um nó riz stá no nívl 0, sus ilhos irtos no nívl 1,... o último nívl árvor é ltur árvor Árvors Bináris - onitos Árvor Chi toos os sus nós intrnos têm us su-árvors ssois númro n nós um árvor hi ltur h n = 2 h+1-1 nívl 0 nívl 1 nívl 2 Árvors Bináris - onitos Árvor Dgnr Nós intrnos têm um úni suárvor ssoi Vir um strutur linr Arvor ltur h tm n = h+1 Exríios Esrvr um unção rursiv qu lul ltur um árvor inári. A ltur um árvor é igul o máximo nívl sus nós. Altur um árvor Importnt mi iiêni (visitção o nó) Árvor om n nós: Altur mínim proporionl log n (árvor inári hi) Altur máxim proporionl n (árvor gnr)

11 Rsposts stti int mx2 (int, int ) rturn ( > )? : ; int rv_ltur (Arv* ) i (rv_vzi()) rturn -1; ls rturn 1 + mx2 (rv_ltur (->sq), rv_ltur (->ir)); Exríios Esrvr o lgoritmo visit m Pré-Orm utilizno loção inâmi ms sm utilizr proimntos rursivos. Utilizr pilh (inino um vtor qu po sr sso plo topo) pr sr o nrço suárvor qu rst à irit. prossr riz A gurr A n pilh pr por ssr C pois pss à B pross ss suárvor im pr D rtorn B (topo pilh) pr ssr D qu é suárvor squr Rsposts voi rv_prorm (Arv* ) Arv* A[MAX]; //qul sri o vlor mx? Arv* p; Arv* riz; int topo; int ou; topo = 0; p = ; ou = rv_vzi(); //iniilizçõs whil (!ou) // nqunto houvr nós pr prossr whil (!rv_vzi(p)) pross (p->ino); topo++; A[topo] = p; p = p->sq; i (topo!= 0) p = A[topo]->ir; topo--; ls ou = 1; Pr s Fzr unção pr rtornr o pi um o nó um árvor Do um itm, prour s itm xist n árvor (usno lgum lgoritmo trvssi) Cso positivo rtorn o ontúo o pi o nó Po sr rursivo ou não

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

Otimização em Grafos

Otimização em Grafos Otimizção m Grfos Luii G. Simontti PESC/COPPE 2017 Luii Simontti (PESC) EEL857 2017 1 / 25 Grfo (não iriono): G = (V, E) V - onjunto vértis - V = {1, 2, 3, 4, 5, 6, 7} E - onjunto rsts - E = {[1, 2], [1,

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA GRAFOS Pro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo Dijkstr. Pro. Ynr Mlono Goms Cost Pro. Ynr Mlono 2 Dinição: G (V, E), on: V é um

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução Núlo Computção Eltrôni Univrsi Frl o Rio Jniro Grfos: Introução Grfos Um grfo não orinto G é um pr (V, E), on V é um onjunto vértis E é um onjunto rsts; rst é um pr não orno vértis. Sj (v, w) E; v w são

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra.

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra. UNIVERSIAE ESTAUAL E EARTAMENTO E INFORMÁTICA ro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo ijkstr. ro. Ynr Mlono Goms Cost ro. Ynr Mlono 2 inição: G (V, E), on: V é um onjunto vértis (ou noos);

Leia mais

Operações em Estruturas de Dados

Operações em Estruturas de Dados Oprçõs m Estruturs Dos Intligêni rtifiil José ugusto Brnusks Dprtmnto Físi Mtmáti FFCP-USP Nst ul são srits lgums oprçõs omuns m struturs os frqüntmnt utilizs m I Otimizção ursão no Finl (umulors) Ornção

Leia mais

ESTRATÉGIAS DE BUSCA CEGA

ESTRATÉGIAS DE BUSCA CEGA Bus m Espço Estos Intliêni Artiiil ESTRATÉGIAS DE BUSCA CEGA Um vz o prolm m ormulo... o sto inl v sr uso Em outrs plvrs, v-s usr um métoo us pr sr orm orrt plição os oprors qu lvrá o sto iniil o inl HUEI

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final.

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final. I. Introução 1. Grfo Orinto É um grfo "G" om um onjunto V vértis (nós) um onjunto U ros pono sr inio por G=(V,U). C um os ros stá ssoio um pr orno vértis sno o primiro xtrmi iniil o ro o outro su xtrmi

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos PCS 2215 Funmntos Ennri Computção II Contúo 4. Rprsntção ros, Gros isomoros plnrs Auls 4-5 Gros Líri Sto Prossor Rsponsávl vrsão: 1.2 (osto 2002) 1 Gomi, Rli, Sto Simn, 2002 Auls 4-5 PCS 2215 - Fun. En.

Leia mais

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova. +1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão

Leia mais

Estruturas de Dados Aula 15: Árvores 17/05/2011

Estruturas de Dados Aula 15: Árvores 17/05/2011 Estruturas de Dados Aula 15: Árvores 17/05/2011 Fontes Bibliográficas Livros: Introdução a Estruturas de Dados (Celes, Cerqueira e Rangel): Capítulo 13; Projeto de Algoritmos (Nivio Ziviani): Capítulo

Leia mais

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental

Universidade Federal de São Carlos Centro de Ciências Agrárias campus Araras Departamento de Recursos Naturais e Proteção Ambiental 4.4. Rgrssão linr multivri onsirno irnts onjuntos os Visno vriir s s rgrssõs otis prsntvm munç no oiint trminção m unção o númro os isponívis, prou s orgnizção irnts onjuntos os pr um s tnsõs onsirs (

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

Árvores B. Introdução. Introdução. AVL como Índice em Disco. AVL como Índice em Disco. Representação

Árvores B. Introdução. Introdução. AVL como Índice em Disco. AVL como Índice em Disco. Representação Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto ísi Mtmáti CLP-USP Árvors B Nst ul srá prsnto o ADT árvor B qu são árvors m- vis omplts As árvors B são prots pr unionr m m ispositivos mmóri sunári

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Livros:

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Livros: Fontes Bibliográficas Estruturas de Dados Aula 15: Árvores Livros: Introdução a Estruturas de Dados (Celes, Cerqueira e Rangel): Capítulo 13; Projeto de Algoritmos (Nivio Ziviani): Capítulo 5; Estruturas

Leia mais

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não 13 - Gros Plnrs Nst ul qurmos rsponr à suint qustão: Do um ro G, é possívl nontrr um rprsntção rái pr o ro tl qu não hj ruzmnto rsts? Consir por xmplo o ro K 4 rprsnto rimnt ns iurs i1, i2 i3.: i. 1 i.

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas SnNCutCnvs Usno unção Etiqut siv imprimívl Voê porá rir tiquts sivs xlusivs usno su imprssor jto tint unção Rortr irto SnNCut. Pr otr inormçõs sor s oprçõs ásis o SnNCutCnvs, onsult Aju. Pr vr Aju, liqu

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr.

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr. Univrsidd Tcnológic Fdrl do Prná Cmpus Toldo d Engnhri Eltrônic Dsnho Técnico AULA 9 PROGRAMA DA AULA: Projçõs ortogonis: Posiçõs ds Figurs plns m rlção um plno d projção. Estudo d sólidos gométricos no

Leia mais

Árvores Binárias. INF01203 Estruturas de Dados. Tipos de Árvores Binárias. Tipos de Árvores Binárias. grau dos nós. ordenadas.

Árvores Binárias. INF01203 Estruturas de Dados. Tipos de Árvores Binárias. Tipos de Árvores Binárias. grau dos nós. ordenadas. Árvores ináris gru dos nós 0 1 2 IN01203 struturs de dos Árvores ináris ordends sub-árvore d esquerd sub-árvore d direit = Árvore qulquer = Árvore inári Tipos de Árvores ináris Tipos de Árvores ináris

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais PCS Funmntos Engnhri Computção II Contúo. Grfos Auls - Grfos Líri Sto Profssor Rsponsávl. Cilos Hmiltoninos o prolm o ixiro vijnt. Algoritmo minho mínimo vrsão:. (st ) Gomi, Rli, Sto Sihmn, Auls PCS -

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5 Eltrôni Digitl Morn VHDL Volni A. Proni, Elsvir, 200 Trução (om rvisão, tulizção mplição) Digitl Eltronis n Dsign with VHDL Elsvir / Morgn Kufmnn, USA, 2008 Soluçõs os Exríios Ímprs os Cpítulos 5 Cpítulo

Leia mais

Problemas Hamiltonianos

Problemas Hamiltonianos Prolms Hmiltoninos Dfinição: Um iruito hmiltonino m um grfo onxo G é finio omo um minho lmntr, fho pssno m vérti G xtmnt um vz. Um grfo qu mit um iruito hmiltonino é um grfo hmiltonino. Evintmnt nm too

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

Grafos. Histórico. Histórico. Histórico. Histórico. Definição

Grafos. Histórico. Histórico. Histórico. Histórico. Definição Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto Físi Mtmáti FFCLRP-USP Gros Nst ul é ornio um rv histório sor tori os ros São tmém introuzios onitos sor ros loritmos qu os mnipulm uusto@lrp.usp.r

Leia mais

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda.

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda. ORION 6 Sgun Port USB Hnry Equipmntos Eltrônios Sistms Lt. Ru Rio Piquiri, 400 - Jrim Wissópolis Cóigo Postl: 83.322-010 Pinhis - Prná - Brsil Fon: +55 41 3661-0100 INTRODUÇÃO: Pr orrto unionmnto, é nssário

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

LICENCIATURA EM ENGENHARIA CIVIL

LICENCIATURA EM ENGENHARIA CIVIL I EPRTETO E EGEHRI IIL LIEITUR E EGEHRI IIL ESTÁTI IGRS ESORÇO XIL ESORÇO TRSERSO OETO LETOR 15 10 /m 4 /m 9m 10 /m 8m 0 RESOLUÇÃO E EXERÍIO ISEL LI TELES EPRTETO E EGEHRI IIL ESTÁTI ISEL LI TELES EXERÍIO

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio Bule Sort Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

Anexo IV Estrutura societária. Estrutura societária vigente

Anexo IV Estrutura societária. Estrutura societária vigente tdt ntrg o Anxo: (Pr uso o BNA) Bno Nionl Angol Prtiipçõs Anxo IV Estrutur soitári Estrutur soitári vignt D orm rir o umprimnto os rquisitos lgis stlios n Li s Instituiçõs Finnirs, nos trmos o Aviso nº

Leia mais

Quicksort ordenação rápida

Quicksort ordenação rápida UNVERSDADE ESTADUAL DE MARNGÁ DEPARTAMENTO DE NORMÁTCA Quicksort ornação rápia Prof. Yanr Malonao - Prof. Yanr Malonao Goms a Costa Prof. Yanr Malonao - Métoos ornação intrna: Simpls: complia méia O(n

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

FOI DEUS QUEM FEZ VOCÊ

FOI DEUS QUEM FEZ VOCÊ FOI DEUS QUEM FEZ OCÊ AMELINHA Arr Neton W Mcedo Crmo Gregory c c c Deus que fez vo - Deus quem fez vo - Deus quem fez vo- c Deus quem fez vo - J De-us 4 Deus quem fez vo - Deus quem fez vo - J Deus quem

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL 3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Estruturas de Dados. Parte deste material consiste de: Adaptações dos slides gentilmente cedidos pela Profa. Maria Cristina F.

Estruturas de Dados. Parte deste material consiste de: Adaptações dos slides gentilmente cedidos pela Profa. Maria Cristina F. struturas de ados Árvores Prof. Ricardo J... ampello réditos Parte deste material consiste de: daptações dos slides gentilmente cedidos pela Profa. Maria ristina. de Oliveira daptados dos originais de

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Estratégias de Busca em Espaços de Estados

Estratégias de Busca em Espaços de Estados Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus inorm Gulos A* Hill-limin Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v)

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v) Estrutur d Ddos pr Cojutos Aul 16 Estrutur d ddos pr Cojutos Disjutos Prof. Mro Aurélio Stfs mro m dt.ufms.r www.dt.ufms.r/ mro Complxidd srá mdid m fução: úmro d oprçõs Mk_St m úmro totl d oprçõs Mk_St,

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Estratégias de Busca em Espaços de Estados

Estratégias de Busca em Espaços de Estados Estrtéis Bus m Espços Estos Intliêni Artiiil Bus não inorm Em prouni vriçõs Em lrur Bus inorm Gulos A* Hill-limin Bus por solução Como rprsntr o prolm s vriir s há um minho ntr us is quisqur rião? São

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS

Leia mais

8/8 6/8 5/8 4/8 3/8 2/8 1/8 LAY-OUT DO QUADRO FOLHA 2 LAY-OUT DO QUADRO FOLHA 1 MOTIVO ÉRITON S. VER.

8/8 6/8 5/8 4/8 3/8 2/8 1/8 LAY-OUT DO QUADRO FOLHA 2 LAY-OUT DO QUADRO FOLHA 1 MOTIVO ÉRITON S. VER. 3 4 6 7 8 9 ÁR S MÁQUIN QUIPMNTOS ONTROLOS STÁIOS À 8/8 NOTS, LN OS NOMNLTURS 7/8 LIST PRIÉRIOS 3 7/04/ LTRÇÃO OS USÍVIS, NOTS, LNS OS LIST MTRIIS TOS 77 6/8 /8 4/8 LIST MTRIIS IRM INTRLIÇÕS O MÓULO M-0.

Leia mais