Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Tamanho: px
Começar a partir da página:

Download "Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio"

Transcrição

1 Progrmção II Ordenção (sort) Bruno Feijó Dept. de Informátic, PUC-Rio

2 Bule Sort

3 Bule Sort Apens de interesse didático e de referênci A idéi é ir comprndo dois vizinhos e trocndo o menor pelo mior té que o mior de todos fic no finl (como se o mior fosse um olh que soe té o topo) j j+1 j j+1 psso 1 psso 2 psso 3

4 n 2 comprções (i.e. 6) n 1 comprções (i.e. 7) Psso 1 e Psso 2 n = 8 elementos x x37 troc x12 troc x x x33 troc x finl do psso 1 o mior elemento, 92, já está n su posição finl x x12 troc x x x33 troc x finl do psso 2 o segundo mior elemento, 86, já está n su posição finl

5 n 4 (= 4) n 3 (= 5) Psso 3 e Psso x12 troc x x x33 troc x finl psso 3 Idem pr x x x33 troc x finl do psso 4 Idem pr 48. Não irá trocr mis.

6 n 7 (= 1) n 6 (= 2) n 5 (= 3) Pssos 5, 6 e x x x finl do psso 5 Pssd sem troc. Idem pr x x finl do psso 6 Idem pr x finl do psso 7 Idem pr 25 e, conseqüentemente, finl d ordenção

7 Algoritmo de Bule Sort - Use for pr os loops. olhint(vetor v de inteiros, n) i = n-1 pr cd i, enqunto i>0 htroc= 0 j = 0 pr cd j, enqunto j<i se compint(v j,v j+1 ) é VERDADE troc v j e v j+1 htroc= 1; // mrc troc increment j de 1 if htroc é zero retorn decrement i de 1 - Pr trocr v j e v j+1 use um vriável uxilir. - A função de comprção deve retornr VERDADE (vlor diferente de zero) ou FALSO (zero). - Os rgumentos dest função são do mesmo tipo do vetor. - Gerlmente definimos est função como sendo sttic. Função sttic é invisível for do rquivo no qul é declrd. - Este lgoritmo é gerl. Só mud o que está em vermelho e itálico. Cso de comprr dois inteiros: sttic int compint(int, int ) return > ;

8 Código olhint olhint(vetor v de inteiros, n) i = n-1 pr cd i, enqunto i>0 htroc= 0 j = 0 pr cd j, enqunto j<i se compint(v j,v j+1 ) é VERDADE troc v j e v j+1 htroc= 1; // mrc troc increment j de 1 if htroc é zero retorn decrement i de 1 sttic int compint(int, int ) return > ; Depois fç pr vetor de strings (olhstr). void olhint(int * v, int n) int i,j,htroc; int temp; for (i=n-1;i>0;i--) htroc= 0; for (j=0;j<i;j++) if (compint(v[j],v[j+1])) temp = v[j]; v[j] = v[j+1]; troc v[j+1] = temp; htroc= 1; if (htroc==0) return; Pr outros tipos, só mud o que está em vermelho e itálico

9 Código olhstr void olhstr(chr ** v, int n) int i,j,htroc; chr * temp; for (i=n-1;i>0;i--) htroc= 0; for (j=0;j<i;j++) if (compstr(v[j],v[j+1])) temp = v[j]; v[j] = v[j+1]; troc v[j+1] = temp; htroc= 1; if (htroc==0) return; int min(void) chr * t[n]; t[0] = dniel ; olhstr(t, N); sttic int compstr(chr *, chr * ) return (strcmp(,) > 0);

10 Exercícios [1] Escrev progrm completo, sem TAD, que orden um vetor de ponteiros pr estrutur Pesso: struct pesso chr * nome; int idde; ; typedef struct pesso Pesso; usndo o seguinte critério: primeiro em ordem crescente do nome e depois em ordem crescente de idde. Din Mri 22 Betrice Dnte 30 Ad Ev 30 Din Mri 26 Betrice Dnte 29 Helen Troi 25 Din Mri 20 Betrice Dnte 25 Os1: evite ninhos de if e use expressões oolens (com, && e!). Os2: n versão sem TAD, pr montr o vetor, escrev um função que cri um entrd neste vetor (e.g. t[0] = cripesso( Din Mri,22);). Escrev um função pr imprimir o resultdo. [2] Refç o exercício nterior pr um TAD Pesso. Crie tmém um módulo pessovetor pr montr o vetor, listá-lo e ordená-lo. Pr montr o vetor, forneç um vetor de nomes e um vetor de iddes n min.

11 Código olhpesso (sem TAD) void olhpesso(pesso ** v, int n) int i,j,htroc; Pesso * temp; for (i=n-1;i>0;i--) htroc= 0; for (j=0;j<i;j++) if (comppesso(v[j],v[j+1])) temp = v[j]; v[j] = v[j+1]; trocc v[j+1] = temp; htroc= 1; if (htroc==0) return; struct pesso chr * nome; int idde; ; typedef struct pesso Pesso; int min(void) Pesso * t[n]; t[0] = pessocri( dnte,22); olhpesso(t, N); sttic int comppesso(pesso *, Pesso * ) int cmp = strcmp(->nome,->nome); return (cmp > 0 (cmp==0 && (->idde)>(->idde)));

12 Quick Sort (Ordenção Rápid)

13 Algoritmo Quick Sort (recursivo) O lgoritmo de Quick Sort foi desenvolvido por Sir Chrles Hore (Tony Hore), em 1960, os 26 nos. Suponh que você se colocr um dos elementos x do vetor (por exemplo, o primeiro) num posição tl que todos os elementos ntes são menores ou iguis x e todos os elementos depois dele são miores (note que, nest tref, não import se lguns elementos trocm de posição): x x x x 5 5 n elementos n = 8 Vmos denominr o elemento x escolhido de pivô e chmr est etp d ordenção de PARTIÇÃO. Neste cso, se você souer ordenr o suvetor esquerdo e o suvetor direito, você terá o vetor inicil completmente ordendo! Isto nos lev definir um função recursiv quicksort n qul o cso-se é um vetor com 1 ou nenhum elemento (e, neste cso, nd é preciso fzer) e o cso gerl é fzer prtição seguid d chmd d função pr o suvetor esquerdo e d chmd d função pr o suvetor direito: quicksort do vetor se n>1 então PARTIÇÃO com pivô x quicksort do suvetor à esquerd de x quicksort do suvetor à direit de x No próximo slide estão sugeridos um processo simples e direto pr PARTIÇÃO e um mneir de se referencir os suvetores à esquerd e à direit de x.

14 Algoritmo Quick Sort (recursivo) Pr PARTIÇÃO, podemos ir cminhndo com os índices do vetor: x v x v x se, troc e increment região dos x suvetor v se, troc pivô x com v x v 0 posição corret de x região dos x n - suvetor repete processo pr cd suvetor cminh cminh cminh incr se v x decr se v x troc e incr/decr não troc nem in/decr troc pivô quicksort(n,v) se n <= 1 então retorn x = v 0 = 1 = n-1 fç enqunto < n e v x = + 1 enqunto v > x = - 1 se < então troc v com v e = +1 e = -1 enqunto troc pivô x com v quicksort(, suvetor esquerdo) quicksort(n-, suvetor direito)

15 Prtição Código Quick Sort quicksort(n,v) se n <= 1 então retorn x = v 0 = 1 = n-1 fç enqunto < n e v x = + 1 enqunto v > x = - 1 se < então troc v com v e = +1 e = -1 enqunto troc pivô x com v quicksort(, suvetor esquerdo) quicksort(n-, suvetor direito) void quicksort(int n, int * v) int x = v[0]; int temp; int = 1; int = n-1; if (n<=1) return; do while ( < n && v[] <= x) ++; while (v[] > x) --; if ( < ) temp = v[]; v[] = v[]; v[] = temp; ++; --; while ( <= ); v[0] = v[]; v[] = x; quicksort(,v); quicksort(n-,&v[]);

16 Generlizndo o Algoritmo Quick Sort O desenvolvimento presentdo nos slides nteriores refere-se à ordenção em ordem CRESCENTE de um vetor de INTEIROS. Um primeir generlizção é perceer que prtição divide o vetor em elementos que tendem o critério de ordenção à direit do pivô e elementos que NÃO tendem à esquerd. Por exemplo, ilustrção d prtição pr um ordem DECRESCENTE seri: O critério de ordenção pode ser definido num função uxilir de comprção que é usd em dois momentos no lgoritmo de quick sort, sendo um momento negção do outro (operdor!): sttic int cmpint(int, int ) return < ; void quicksort(int n, int * v) int x = v[0]; int temp; int = 1; int = n-1; if (n<=1) return; do while ( < n &&!cmpint(v[],x)) ++; while (cmpint(v[],x)) --; if ( < ) temp = v[]; v[] = v[]; v[] = temp; ++; --; while ( <= ); v[0] = v[]; v[] = x; quicksort(,v); quicksort(n-,&v[]); Pr qulquer situção só mud o que está em vermelho. O importnte é função de comprção

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Bubble Sort Bubble Sort Ordem Crescente Apenas de interesse didático e de referência A idéia é ir comparando dois vizinhos e trocando

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Quick Sort (Ordenação Rápida) Algoritmo Quick Sort (recursivo) O algoritmo de Quick Sort foi desenvolvido por Sir Charles Hoare

Leia mais

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Quick Sort (Ordenação Rápida) Algoritmo Quick Sort (recursivo) O algoritmo de Quick Sort foi desenvolvido por Sir Charles Hoare

Leia mais

Programação II. Pilhas (stacks) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Pilhas (stacks) Bruno Feijó Dept. de Informática, PUC-Rio Progrmção II Pilhs (stcks) Bruno Feijó Dept. de Informátic, PUC-Rio Pilh Novo elemento é inserido no e cesso é pens o... como num pilh de prtos O único elemento que pode ser cessdo e removido é o do N

Leia mais

Alocação sequencial - Pilhas

Alocação sequencial - Pilhas Alocção seqüencil - pilhs Alocção sequencil - Pilhs Pilhs A estrutur de ddos Pilh é bstnte intuitiv. A nlogi é um pilh de prtos. Se quisermos usr um pilh de prtos com máxim segurnç, devemos inserir um

Leia mais

Programação II. Busca em Vetor (search) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Busca em Vetor (search) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Busca em Vetor (search) Bruno Feijó Dept. de Informática, PUC-Rio Busca em Vetor Problema: Entrada: vetor v com n elementos elemento d a procurar Saída m se o elemento procurado está em

Leia mais

INF 1007 Programação II

INF 1007 Programação II INF 1007 Programação II Aula 09 Ordenação de Vetores Edirlei Soares de Lima Ordenação de Vetores Problema: Entrada: vetor com os elementos a serem ordenados; Saída: mesmo vetor com

Leia mais

Programação II. Tópicos Extras Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Tópicos Extras Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Tópicos Extras Ordenação (sort) Bruno Feijó Dept. de Informática, PUC-Rio qsort Quick Sort da Biblioteca C Ponteiros para Funções Em C é possível definir ponteiros para funções que podem

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Módulo 16 - Ordenação

Módulo 16 - Ordenação Estruturas de Dados Módulo 16 - Ordenação 15/05/2013 (c) Dept. Informática - PUC-Rio 1 Referências Waldemar Celes, Renato Cerqueira, José Lucas Rangel, Introdução a Estruturas de Dados, Editora Campus

Leia mais

Universidade Federal do ABC Avaliação Disciplina Turma Professor Data Instruções para a prova (leia antes de começar): SelectionSort selectonsortrec

Universidade Federal do ABC Avaliação Disciplina Turma Professor Data Instruções para a prova (leia antes de começar): SelectionSort selectonsortrec Universidade Federal do ABC Avaliação: Prova 02 Disciplina: BC1424 - Algoritmos e Estruturas de Dados I Turma: Noturno Professor: Jesús P. Mena-Chalco Data: 03/05/2016 Nome completo: RA: Instruções para

Leia mais

Unidimensional pois possui apenas uma única dimensão

Unidimensional pois possui apenas uma única dimensão Vetores e Mtrizes José Augusto Brnusks Deprtmento de Físic e Mtemátic FFCLRP-USP Sl 6 Bloco P Fone (6) 60-6 Nest ul veremos estruturs de ddos homogênes: vetores (ou rrys) e mtrizes Esss estruturs de ddos

Leia mais

Uso da memória. Estruturas de Dados Aulas 3 e 4: Uso da memória e Vetores. Alocação estática da memória. Alocação estática da memória (2)

Uso da memória. Estruturas de Dados Aulas 3 e 4: Uso da memória e Vetores. Alocação estática da memória. Alocação estática da memória (2) Estruturs de Ddos Auls 3 e 4: Uso d memóri e Vetores 08/03/2009 e 10/03/2009 Uso d memóri Existem 3 mneirs de reservr o espço d memóri: Vriáveis glois (estátics) Espço existe enqunto progrm estiver executndo

Leia mais

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto

Análise Léxica. Construção de Compiladores. Capítulo 2. José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto Construção de Compildores Cpítulo 2 Análise Léxic José Romildo Mlquis Deprtmento de Computção Universidde Federl de Ouro Preto 2014.1 1/23 1 Análise Léxic 2/23 Tópicos 1 Análise Léxic 3/23 Análise léxic

Leia mais

Problemas e Algoritmos

Problemas e Algoritmos Problems e Algoritmos Em muitos domínios, há problems que pedem síd com proprieddes específics qundo são fornecids entrds válids. O primeiro psso é definir o problem usndo estruturs dequds (modelo), seguir

Leia mais

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES)

LINGUAGEM DE PROGRAMAÇÃO ESTRUTURADA CAPÍTULO 6 ARRAYS (VETORES E MATRIZES) LINGUGEM DE PROGRMÇÃO ESTRUTURD CPÍTULO 6 RRYS VETORES E MTRIZES trdução do termo rry pr língu portugues seri rrnjo. Em progrmção, empreg-se este termo pr representção de um vriável com diversos elementos

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

Universidade Federal de Santa Maria Colégio Agrícola de Frederico Westphalen Curso Superior de Tecnologia em Sistemas para Internet

Universidade Federal de Santa Maria Colégio Agrícola de Frederico Westphalen Curso Superior de Tecnologia em Sistemas para Internet Aula 17 Quick Sort Universidade Federal de Santa Maria Colégio Agrícola de Frederico Westphalen Curso Superior de Tecnologia em Sistemas para Internet Prof. Bruno B. Boniati www.cafw.ufsm.br/~bruno Ordenação

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

INF1007: Programação 2 6 Ordenação de Vetores. 01/10/2015 (c) Dept. Informática - PUC-Rio 1

INF1007: Programação 2 6 Ordenação de Vetores. 01/10/2015 (c) Dept. Informática - PUC-Rio 1 INF1007: Programação 2 6 Ordenação de Vetores 01/10/2015 (c) Dept. Informática - PUC-Rio 1 Tópicos Introdução Ordenação bolha (bubble sort) Ordenação por seleção (selection sort) 01/10/2015 (c) Dept. Informática

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Módulo 16 - Ordenação. Referências

Módulo 16 - Ordenação. Referências Estruturas de Dados Módulo 6 - Ordenação /5/006 (c) Dept. Informática - PUC-Rio Referências Waldemar Celes, Renato Cerqueira, José Lucas Rangel, Introdução a Estruturas de Dados, Editora Campus (004) Capítulo

Leia mais

Programação de Computadores II. Cap. 16 Ordenação

Programação de Computadores II. Cap. 16 Ordenação Programação de Computadores II Cap. 16 Ordenação Livro: Waldemar Celes, Renato Cerqueira, José Lucas Rangel. Introdução a Estruturas de Dados, Editora Campus (2004) Slides adaptados dos originais dos profs.:

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Classificação de Dados

Classificação de Dados Engenharia de CONTROLE e AUTOMAÇÃO Classificação de Dados Aula 03 DPEE 1038 Estrutura de Dados para Automação Curso de Engenharia de Controle e Automação Universidade Federal de Santa Maria beltrame@mail.ufsm.br

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

(a) Indique, em português, o que realiza a seguinte função. [4 pontos]

(a) Indique, em português, o que realiza a seguinte função. [4 pontos] Universidade Federal do ABC Avaliação: Prova 02 Disciplina: MCTA028 - Programação Estruturada Turma: Noturno - A1 Professor: Jesús P. Mena-Chalco Data: 01/12/2016 Nome completo: RA: Instruções para a prova

Leia mais

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação

Linguagens Regulares e Autômatos de Estados Finitos. Linguagens Formais. Linguagens Formais (cont.) Um Modelo Fraco de Computação LFA - PARTE 1 Lingugens Regulres e Autômtos de Estdos Finitos Um Modelo Frco de Computção João Luís Grci Ros LFA-FEC-PUC-Cmpins 2002 R. Gregory Tylor: http://strse.cs.trincoll.edu/~rtylor/thcomp/ 1 Lingugens

Leia mais

INF 1007 Programação II

INF 1007 Programação II INF 1007 Programação II Aula 08 Busca em Vetor Edirlei Soares de Lima Busca em Vetor Problema: Entrada: vetor v com n elementos; elemento d a procurar; Saída: m se o elemento procurado

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Estrutura de Dados. Algoritmos de Ordenação. Prof. Othon M. N. Batista Mestre em Informática

Estrutura de Dados. Algoritmos de Ordenação. Prof. Othon M. N. Batista Mestre em Informática Estrutura de Dados Algoritmos de Ordenação Prof. Othon M. N. Batista Mestre em Informática Roteiro Introdução Ordenação por Inserção Insertion Sort Ordenação por Seleção Selection Sort Ordenação por Bolha

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens:

3. Seja Σ um alfabeto. Explique que palavras pertencem a cada uma das seguintes linguagens: BCC244-Teori d Computção Prof. Lucíli Figueiredo List de Exercícios DECOM ICEB - UFOP Lingugens. Liste os strings de cd um ds seguintes lingugens: ) = {λ} ) + + = c) {λ} {λ} = {λ} d) {λ} + {λ} + = {λ}

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Linguagem C: Ordenação

Linguagem C: Ordenação Instituto de C Linguagem C: Ordenação Luis Martí Instituto de Computação Universidade Federal Fluminense lmarti@ic.uff.br - http://lmarti.com Tópicos Principais Introdução Algoritmos de ordenação Ordenação

Leia mais

Classificação e Pesquisa de Dados

Classificação e Pesquisa de Dados Clssificção e Pesquis de Ddos Auls 06 Clssificção de ddos por Troc: QuickSort Exercício Supoh que se desej clssificr o seguite vetor: O R D E N A Assum que chve prticiodor está posição iicil do vetor e

Leia mais

se vai Devagar Devagar se vai longe longe...

se vai Devagar Devagar se vai longe longe... Compelm M et e tn át os de M ic Devgr Devgr se se vi vi o o longe... longe 130 ) Describe the pttern by telling how ech ttribute chnges. A c) Respost possível: b B B B A b b... A b) Drw or describe the

Leia mais

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches

CT-234. Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches CT-234 Estruturs de Ddos, Análise de Algoritmos e Complexidde Estruturl Crlos Alberto Alonso Snches CT-234 7) Busc de pdrões Knuth-Morris-Prtt, Boyer-Moore, Krp-Rbin Pdrões e lfbetos Pdrões (ptterns ou

Leia mais

Ordenação dos elementos de um vector

Ordenação dos elementos de um vector Sumário Funções e vetores Menismo de pssgem dos vetores Aplição dos oneitos no desenvolvimento de funções de ordenção e de prour em vetores. Algoritmos de ordenção e de prour em vetores Algoritmo I: Bule-Sort

Leia mais

Projeto e Análise de Algoritmos

Projeto e Análise de Algoritmos Projeto e Análise de Algoritmos Aula 09 Algoritmos de Ordenação Edirlei Soares de Lima Ordenação Problema: Entrada: conjunto de itens a 1, a 2,..., a n ; Saída: conjunto de itens

Leia mais

( ) superchaves da relação lembramos. ( ) e associativa (a equijunção ocorre apenas em alguns casos ( ) ( ) (sendo L R a lista de colunas de R):

( ) superchaves da relação lembramos. ( ) e associativa (a equijunção ocorre apenas em alguns casos ( ) ( ) (sendo L R a lista de colunas de R): ERRT DO LIVRO FUNDMENTOS DE BSES DE DDOS Págin (2.º prágrfo, ntepenúltim Págin 33 (Secção 2.5.1.2, 3.º prágrfo ) Págin 34 (Secção 2.5.1.3, último prágrfo, 1.ª Págin 35 (Tbel, colun Lugres ) Nest medid,

Leia mais

Oferta - Gabarito. Questão 1: CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA

Oferta - Gabarito. Questão 1: CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 1113 TEORIA MICROECONÔMICA I PROFESSOR: JULIANO ASSUNÇÃO TURMA: JA Ofert - Gbrito 19 Questão 1: A função custo de um firm é dd por c() = 3 /3 / +

Leia mais

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1

DCC-UFRJ Linguagens Formais Primeira Prova 2008/1 DCC-UFRJ Lingugens Formis Primeir Prov 28/. Constru um utômto finito determinístico que ceite lingugem L = {w ( ) w contém pelos menos dois zeros e no máximo um }. 2. Use o lgoritmo de substituição pr

Leia mais

Programação II. Listas Encadeadas (Linked Lists) Bruno Feijó Dept. de Informática, PUC-Rio

Programação II. Listas Encadeadas (Linked Lists) Bruno Feijó Dept. de Informática, PUC-Rio Programação II Listas Encadeadas (Linked Lists) Bruno Feijó Dept. de Informática, PUC-Rio Vetores vs Estruturas Dinâmicas Vetores (arrays): Ocupa um espaço contíguo de memória Permite acesso randômico

Leia mais

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29

Sumário. Volta às aulas. Vamos recordar? Regiões planas e seus contornos Números Sólidos geométricos... 29 Sumário Volt às uls. Vmos recordr?... 7 1 Números... 10 Números... ej como tudo começou... 11 Os números de 0 10... 13 A dezen... 18 Os números de 0 1... 1 Números e dinheiro... 23 Ordem nos números...

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

ALGORITMOS E ESTRUTURAS DE DADOS CES-11 Prof. Paulo André Castro Sala 110 Prédio da Computação IECE - ITA

ALGORITMOS E ESTRUTURAS DE DADOS CES-11 Prof. Paulo André Castro Sala 110 Prédio da Computação   IECE - ITA ALGORITMOS E ESTRUTURAS DE DADOS CES-11 Prof. Paulo André Castro pauloac@ita.br Sala 110 Prédio da Computação www.comp.ita.br/~pauloac IECE - ITA MÉTODOS MAIS EFICIENTES QUE O(N 2 ) Método Quicksort Método

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Algoritmos e Estruturas de Dados. Décima sexta aula: Quicksort

Algoritmos e Estruturas de Dados. Décima sexta aula: Quicksort Algoritmos e Estruturas de Dados Décima sexta aula: Quicksort Nesta aula vamos Estudar o quicksort. Considerar algumas variantes: Quicksort geral, parametrizando a função de comparação. Quicksort com partição

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Árvore estritamente binária É uma árvore onde todos os nós que não são folha possuem dois filhos.

Árvore estritamente binária É uma árvore onde todos os nós que não são folha possuem dois filhos. Árvore estritmente binári É um árvore onde todos os nós que não são folh possuem dois filhos. Ex.: 434 Árvore binári complet Um árvore binári complet de profundidde d é um árvore estritmente binári onde

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

INF 1010 Estruturas de Dados Avançadas

INF 1010 Estruturas de Dados Avançadas INF 1010 Estruturas de Dados Avançadas Listas de Prioridades e Heaps 1 Listas de Prioridades Em muitas aplicações, dados de uma coleção são acessados por ordem de prioridade A prioridade associada a um

Leia mais

operation a b result operation a b MUX result sum i2 cin cout cout cin

operation a b result operation a b MUX result sum i2 cin cout cout cin Módulo 5 Descrição e simulção em VHDL: ALU do MIPS Ojectivos Pretende-se que o luno descrev, n lingugem VHDL, circuitos comintórios reltivmente complexos, usndo, pr esse efeito, lguns mecnismos d lingugem

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Descobrir Matemática com a Música realizado na Casa da Música em Outubro 2007

Descobrir Matemática com a Música realizado na Casa da Música em Outubro 2007 Descorir Mtemátic com Músic relizdo n Cs d Músic em Outuro 2007 O conceito principl deste workshop é o de simetri - se de todos os pdrões, n rte, n ciênci, n nturez, e portnto tmém nos pdrões musicis -

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

Teorema Fundamental do Cálculo - Parte 1

Teorema Fundamental do Cálculo - Parte 1 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte Neste texto vmos provr um importnte resultdo que nos permite clculr integris definids. Ele pode ser enuncido como

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

ÁRVORES ABB (ÁRVORES BINÁRIAS DE BUSCAS) Sérgio Carlos Portari Júnior

ÁRVORES ABB (ÁRVORES BINÁRIAS DE BUSCAS) Sérgio Carlos Portari Júnior ÁRVORES ABB (ÁRVORES BINÁRIAS DE BUSCAS) Sérgio Carlos Portari Júnior Árvore Binária de Busca (ABB) o valor associado à raiz é sempre maior que o valor associado a qualquer nó da sub-árvore à esquerda

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

CONSTRUÇÃO DE ALGORITMOS E PROGRAMAS

CONSTRUÇÃO DE ALGORITMOS E PROGRAMAS CONSTRUÇÃO DE ALGORITMOS E PROGRAMAS O computdor é cpz de mnipulr e rmzenr um grnde quntidde de ddos ou informções com lto desempenho, liberndo o homem pr outrs trefs ns quis o seu conhecimento é indispensável.

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Algoritmos e Programação de Computadores Profs: Ronaldo Castro de Oliveira Anilton Joaquim da Silva

Algoritmos e Programação de Computadores Profs: Ronaldo Castro de Oliveira Anilton Joaquim da Silva Algoritmos e Programação de Computadores Profs: Ronaldo Castro de Oliveira ronaldo.co@ufu.br Anilton Joaquim da Silva anilton@ufu.br Introdução Uma das aplicações mais estudadas e realizadas sobre arranjos

Leia mais

Hierarquia de Chomsky

Hierarquia de Chomsky Universidde Ctólic de Pelots Centro Politécnico 364018 Lingugens Formis e Autômtos TEXTO 1 Lingugens Regulres e Autômtos Finitos Prof. Luiz A M Plzzo Mrço de 2011 Hierrqui de Chomsky Ling. Recursivmente

Leia mais

Projeto de Compiladores Professor Carlos de Salles

Projeto de Compiladores Professor Carlos de Salles Projeto de Compildores 2006.1 Professor Crlos de Slles Trlho 1 Autômto pr Plvrs Reservds Ojetivo do trlho: implementr um progrm que recee como entrd um list de plvrs reservds e define como síd um função

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

CURSO DE ESTRUTURA DE DADOS MÓDULO: ALGORITMOS DE ORDENAÇÃO E PESQUISA PROFESSORA: DANIELA ELOISE FLÔR COLABORADORA: MARIA CAROLINA SILA VANUCHI

CURSO DE ESTRUTURA DE DADOS MÓDULO: ALGORITMOS DE ORDENAÇÃO E PESQUISA PROFESSORA: DANIELA ELOISE FLÔR COLABORADORA: MARIA CAROLINA SILA VANUCHI CURSO DE ESTRUTURA DE DADOS MÓDULO: ALGORITMOS DE ORDENAÇÃO E PESQUISA PROFESSORA: DANIELA ELOISE FLÔR COLABORADORA: MARIA CAROLINA SILA VANUCHI O QUE SÃO ALGORITMOS DE ORDENAÇÃO? São algoritmos que organizam

Leia mais

ntexto finição presentação áfica ilização TempMed(input,output); Var Var Begin Begin readln(t1); readln(t1); readln(t2); readln(t2);

ntexto finição presentação áfica ilização TempMed(input,output); Var Var Begin Begin readln(t1); readln(t1); readln(t2); readln(t2); Arrys (tbels) Co (1) Imgine-se que é necessário efectur o cálculo d médi do primeiro trimestre do no. Com os conhecimentos presentdos té qui o progrm senvolver seri proximdmente Progrm Progrm TempMed(input,output);

Leia mais

Fluxo de execução e blocos básicos

Fluxo de execução e blocos básicos Otimizção Fluxo de execução e blocos básicos Compildores II Melhorr código mke it better, não mke it best Não deve lterr semântic originl do progrm Tipos locis ou globis Precoce Constnt folding 6-6 0 Simplificções

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

4 GRAFOS NÃO-ORIENTADOS. 4.1 Definições. O caminho v 1, v 2,..., v n conecta v 1 a v n. Ciclo: caminho de um vértice a ele mesmo de comprimento

4 GRAFOS NÃO-ORIENTADOS. 4.1 Definições. O caminho v 1, v 2,..., v n conecta v 1 a v n. Ciclo: caminho de um vértice a ele mesmo de comprimento GRAFOS Aspectos geris Grfos orientdos Problems clássicos sobre grfos orientdos Grfos não-orientdos GRAFOS NÃO-ORIENTADOS. Definições m grfo não-orientdo tmbém é chmdo de grfo nãodirigido, ou breidmente

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês

Algoritmos em Grafos: Circuitos de Euler e Problema do Carteiro Chinês CAL (00-0) MIEIC/FEUP Algoritmos em Grfos (0-0-0) Algoritmos em Grfos: Circuitos de Euler e Prolem do Crteiro Chinês R. Rossetti, A.P. Roch, A. Pereir, P.B. Silv, T. Fernndes FEUP, MIEIC, CPAL, 00/0 Circuitos

Leia mais

Integrais Duplas em Regiões Limitadas

Integrais Duplas em Regiões Limitadas Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não

Leia mais

1 A Integral de Riemann

1 A Integral de Riemann Medid e Integrção. Deprtmento de Físic e Mtemátic. USP-RP. Prof. Rfel A. Rosles 22 de mio de 27. As seguintes nots presentm lgums limitções d integrl de Riemnn com o propósito de justificr construção d

Leia mais

Física D Extensivo V. 2

Física D Extensivo V. 2 Físic D Extensivo V. Exercícios 01) ) 10 dm =,1. 10 5 cm b) 3,6 m = 3,6. 10 3 km c) 14,14 cm = 14,14. 10 dm d) 8,08 dm = 8,08. 10 3 cm e) 770 dm = 7,7. 10 1 m 0) ) 5,07 m = 5,07. 10 dm b) 14 dm = 1,4.

Leia mais

E m Física chamam-se grandezas àquelas propriedades de um sistema físico

E m Física chamam-se grandezas àquelas propriedades de um sistema físico Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.

Leia mais

Programação II. Tipos Estruturados

Programação II. Tipos Estruturados Programação II Tipos Estruturados Parte 1: struct Parte 2: Ponteiros para Estrutura Estruturas e Memória Bruno Feijó Dept. de Informática, PUC-Rio struct Dados Compostos Até agora tipos simples: char,

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

Método de ordenação - objetivos:

Método de ordenação - objetivos: Método de ordenação - objetivos: Corresponde ao processo de rearranjar um conjunto de objetos em uma ordem ascendente ou descendente. Facilitar a recuperação posterior de itens do conjunto ordenado. São

Leia mais

Autômatos determinísticos grandes

Autômatos determinísticos grandes Autômtos determinísticos grndes Arnldo Mndel 27 de outubro de 2009 A construção dos subconjuntos implic n seguinte firmtiv: se um lingugem é reconhecid por um utômto não-determinístico com n estdos, então

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais