Soluções E-Procurement

Tamanho: px
Começar a partir da página:

Download "Soluções E-Procurement"

Transcrição

1 Soluçõs -Procurm Móulos Vgs Aprsção Dspss Tomé A. Gl Jro/2003

2 Sumáro: Soluçõs - Procurm 2 Soluçõs - Procurm m xrp 3 Prcps Vgs 4 Solução 5 Móulo vgs 7 Móulo Rlóros Aprsção spss 8 Cls 9 Cocos Ús 10 2/10

3 Soluçõs -Procurm Aplcçõs xrprs Rsourc Plg (XRP) Prmm gsão procssos qusção ou roc formção comérco lcróco r us ou ms s. C po r um úmro lmo colborors cr grr procssos. 1 Usr 1 Usr 2 Usr... Usr Usr 1 Usr 2 Usr... Usr 1 Dos Dos Dos Dos Dos Dos Wbzção Gsão procssos Wbzção Dos Dos Dos Dos Dos Dos 3 Usr 1 Usr 2 Usr... Usr Usr 1 Usr 2 Usr... Usr /10

4 Soluçõs -Procurm m XRP Prcps vgs: Aumo prouv os procssos ros vo : C ulzor comuc rcm com o forcor/cl ( coro com s rgrs sblcs pl mprs); A orgzção, o ulzor o forcor êm oos msm formção; Toos os rvs m qulqur momo pom sbr o so o procsso; Possívl lgção rc o ssm cobl fçs mprs pr procssmo uomáco os movmos coblíscos pgmos. Rução corol cusos: Lbr pssos rfs rors; Não css msrção crlz; Cohcmo os cusos globs; Grção síscs coro com orggrm mprs; Rcuprção o IVA m spss o srgro Cohcmo sobr qul o srvço prso, vo: síscs compls sobr mpos rspos; O forcor m xcm msm formção qu o ulzor. 4/10

5 Solução A solução svolv pl scr Dgl pr grr procssos o coco xrp sg-s. Po sr cofgur à m, coro com s csss orgzção, xso já os sgus móulos pré-fos: Rqusção Gsão coomo bs Imoblzo R--Cr Gsão Rclmçõs Sugsõs Rlóros, Aprsção spss mos Hrrqus & Cosul Vgs Gsão Sls Formção vlção smpho Gsão Procssos Formuláros Auorzçõs GSTÃO D UTILIZADORS síscs 5/10

6 Fucols comus oos os móulos Irfc m browsr; Solução mullgu com cosolção; Workflow prsolzávl coro com s rgrs orgzção; Possbl mprssão cosrução formuláros; Possbl roução ouros rfcs (WAP, PDA s); Possbl síscs rlóros; Complo progrm uorzçõs por vos vlors; Possbl scrro; Compl gsão férs spobls; Complo rgso logs; Gsão ulzors ou m lrv, fácl coxão ouros progrms gsão rcursos humos; Écrs uvos, com o máxmo 4 boõs, o qu sps formção o ulzor; Fácl rlgção com soluçõs RP [SAP Orcl Fc já spoívl]; 6/10

7 Vgs O móulo coss um plcção workflow qu prm gsão os procssos vgs orgzção. Tr o cclo complo o procsso, s mrcção vgm, é à prsção o rlóro cro cos. Com roução s móulo pss sr possívl à orgzção: q Grr o cclo complo vgm, s rqusção é à prsção o rlóro; q Corolr o orçmo vgs, qur ívl globl, qur vsão/prmo; q vr um cojuo rfs qu ão grm vlor crsco, omm ívl msrvo. D r s prcps fucols scmos: Prpro pr grr Avão/Comboo, Hol R--cr; Igrção com os prcps bookg gs; Possbl lrção vgs m qulqur momo; Vrfcção cbmo orçml uorzção. 7/10

8 Rlóros prsção spss Prm prsção spss, o purmo os slos, o cálculo jus cuso, qur pr spss orgs por um procsso vgm, qur pr spss sols. D r s prcps fucols scmos: Aé cco vss o msmo rlóro; Múlplos príoos vgs; Lhs cofgurávs; Possbl ssocr spcfcçõs IVA; Possbl spcfcr prâmros pr cobl; Fácl cofgurção fórmul jus cuso; Possbl smulção; Possbl rr vrção cmbl ssoc spss com crão créo. 8/10

9 Já sls m: rcsso Porugl Vgs, Aprsção Dspss, Formção Avlção Dsmpho, R--Cr, Gsão Rclmçõs Sugsõs. rcsso Brsl Vgs Aprsção Dspss uropcr Porugl R-Cr Rproução os écrs com uorzção os cls 9/10

10 Cocos rços ús: SCRITA DIGITAL, S.A. fíco Csl Ru Cslho, 39, 10º F LISBOA Tlfo : Fx : Wb : Drcor Grl : Tomé A. Gl ml : Móvl : /10

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Planejamento Estratégico

Planejamento Estratégico Pljmo Esrégco Iformvo o Pljmo Esrégco Usc Ao 1 Nº 1 Fvrro 2009 Pljmo Esrégco Iformvo o Pljmo Esrégco Usc Mssão Eucr, por mo o so, psqus xsão, pr promovr qul susbl o mb v. A Usc, por mo os gsors rprss Ror,

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes

ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO Prf. Dr. Rbr Vdés Pus PPGED/FACED/UFU rbrpus@fcd.ufu.br MOMENTOS DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

1 Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa (IGOT-UL) 2 Instituto Superior de Agronomia Universidade de Lisboa

1 Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa (IGOT-UL) 2 Instituto Superior de Agronomia Universidade de Lisboa MODELOS ESPACIALMENTE EXPLÍCITOS DE ANÁLISE DE DINÂMICAS LOCAIS: O CASO DA VEGETAÇÃO NATURAL POTENCIAL NO APOIO AO PLANEAMENTO E ORDENAMENTO TERRITORIAL Frncsco Gutrrs1, Eusébo Rs1, Crlos Nto1 José Crlos

Leia mais

Situação Atual e Perspectivas das Culturas do Cará (Dioscorea sp.) e do Taiá (Colocasia esculenta) no Sul do Brasil

Situação Atual e Perspectivas das Culturas do Cará (Dioscorea sp.) e do Taiá (Colocasia esculenta) no Sul do Brasil Sção Al Prspcvs s Clrs o Crá (Doscor sp.) o Tá (Colocs scl) o Sl o Brsl Jrz José V Müllr 1 Iroção A proção crá á o á-jpão é rlz promm m pqs proprs, como m v complmr o ssm provo. O cosmo é rlzo prcplm por

Leia mais

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM

9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é

Leia mais

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais,

TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais, UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA/SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ENGENHARIA CIVIL/ DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MÉTODOS NUMÉRICOS EM ENGENHARIA TÓPICOS

Leia mais

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t).

que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t). 8. REPRESENÇÃO NO ESPÇO DE ESDOS 8. Coco so ( prsção srá f o omío o mpo coío; s frçs com o cso scro são pqs srão prss posrorm). rprsção r/sí m ssm lr só é ál qo, o mpo cl, o ssm sá o so scoáro. ssm é ál

Leia mais

II L ATA N. 19/XIV. Conselheiro Fernando da Costa Soares.

II L ATA N. 19/XIV. Conselheiro Fernando da Costa Soares. jf II L Comissão Ncionl Eliçõs ATA N. 19/XIV Tv lugr no di vint qutro jniro dois mil doz, sssão númro znov d Comissão Ncionl Eliçõs, n sl runiõs sit n Av. D. Crlos 1, n. 128 7. ndr, m Lisbo, sob prsidênci

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Procssmto Digitl Siis Mrclo Bsílio Joquim São Crlos - Íic Aprstção i Cpítulo Siis Sistms tmpo iscrto. Itroução. Siis Tmpo Discrto. Siis tmpo iscrto básicos.. Squêci mostr uitári.. Squêci gru uitário..

Leia mais

Alteração da seqüência de execução de instruções

Alteração da seqüência de execução de instruções Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL 3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4

Leia mais

ESTADO-MAIOR DO EXÉRCITO OBJETIVO ROTEIRO XXXXXXXXXXXXXXXXXX

ESTADO-MAIOR DO EXÉRCITO OBJETIVO ROTEIRO XXXXXXXXXXXXXXXXXX STO-MOR O XÉRCTO OBJTVO 5 PRSTR OS PRCPS SPCTOS S STRUÇÕS GRS PR CORRSPOÊC O XÉRCTO B10- G-01.001 S STRUÇÕS GRS PR OS TOS MSTRTVOS O XÉRCTO - B10-G-01.003 1 / 23 2 / 23 XXXXXXXXXXXXXXXXXX ROTRO do CS CS/GP

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Manhã Tarde Noite. Sala 252 - Escola cultura e Sociedade II para o curso de Pedagogia, Prof. Lino.

Manhã Tarde Noite. Sala 252 - Escola cultura e Sociedade II para o curso de Pedagogia, Prof. Lino. S g n d Mnhã Td No Sl 251 LD Rpsnção m S Hll, dscpln do PPGE, Po. Mác Ondn. Sl 252 EBOPP T1 o nvsl, Po.ª Eln, 50 lnos. Sl 253 Pojo Novos Cmnhos Poª Glsn Sl 254 Fndmnos SócoHsóco Flosócos d Edcção T5 p

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES

PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES OPS DE DESTINO SERVIÇ O DE DESTIN O REDE MÓVEL DE ORIGEM (Fixa/ Móvl/ Ambas) DATA DE EFEITOS Cadência d taxação

Leia mais

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM...

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM... C CORÇÃO NOIV - 1. O SNHOR É OM INTR: /C# C7+ /C# O SNHOR É OM C7+ SU MOR UR PR SMPR L É OM... Letra e Música: avi Silva C CORÇÃO NOIV - 2. SNTO É O TU NOM M TO TRR S OUVIRÁ UM NOVO SOM UM CNÇÃO MOR PRCORRRÁ

Leia mais

O Uso da Álgebra Linear nas Equações Diferenciais

O Uso da Álgebra Linear nas Equações Diferenciais Uso d Álgr ir s Equçõs ifriis íi Gri ol úi Rsd rir Bofim Fuldd d mái FT Uivrsidd Fdrl d Urlâdi UFU 88 - Urlâdi ril d 8 Rsumo Álgr ir é um supor mmáio pr muis árs d iêi Vrmos omo lgus d sus rsuldos podm

Leia mais

21/07/2015 13:36:51 ARTE MODA ARTE ARQUITETURA ARQUITETURA ENTRETENIMENTO MODA DESTINO GASTRONOMIA GASTRONOMIA MODA POLINÉSIA FRANCESA. CAPA 24.

21/07/2015 13:36:51 ARTE MODA ARTE ARQUITETURA ARQUITETURA ENTRETENIMENTO MODA DESTINO GASTRONOMIA GASTRONOMIA MODA POLINÉSIA FRANCESA. CAPA 24. R 3 R R D S VL L Ó S L U D K LÃ W -S / 3 SH FW -S Ã P UL F S SP / / : 8:3 3// 8/ 3/ : 6: SPCL - PRU C VCÊ UC VU.in 7 R Ú 8 9 - R$,,9 R$ CP.in S D PP R S G GS S - R$, 9 R D : : U Q R VG D R SÃ PU L FS H

Leia mais

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos.

Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos. C, O Mkz Vlá é m j sl Mkz, sm fs lvs (D º 8668 3/11/1981), q m sl bsl há 141 s. Iml m 24, m m l fl ssblz, mblz g s s ss gs, gss, lbs, fsss, ls, gs ls, fs, s, mgs fmls m mvm xmçã s ms q bgm s ss m, lém

Leia mais

Redes Bayesianas. » Microsoft: em 1993 contratam Eric Horvitz, David Heckerman e Jack Breese

Redes Bayesianas. » Microsoft: em 1993 contratam Eric Horvitz, David Heckerman e Jack Breese Rds Bss Rds Bss São dgrms qu orgzm o cohcmto um dd ár trvés d um mpmto tr cuss ftos Os sstms sdos m rds Bss são cpzs d grr utomtcmt prdçõs ou dcsõs msmo stução d stêc d lgums pçs d formção Mrcos mportts:»

Leia mais

Março 2017 *Consulte-nos condições de pagamento a prestações I

Março 2017 *Consulte-nos condições de pagamento a prestações I L A N E M U SR IN O I R Ó A RO ã i c i F 0 mm sjurss s * r M d 3 é S t Mr 07 *Csult-s cdiõs d pgmt prstõs. 800 83 4 5 I www.dtlxprss.pt ã Prm URBINA PREMIUM PACK DE IMPRESSÃO - 4 Elit HD Putty - 4 Elit

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

1 Introdução e Base Matemática

1 Introdução e Base Matemática J. A. M. Flipp Souz Iroução Bs Mmáic Iroução Bs Mmáic Iroução Bs Mmáic 3. O úmro imgiário 3. Númros complxos 4.3 Oprçõs com úmros complxos 9.4 O so o co-so.5 A qução Eulr 5.6 A g 7.7 As ivrss so, co-so

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM 4 5 6 7 8 9 0 QUIPNOS ONROLOS 5 LINS RSRIOS OU LINS ONLOS LIN RSRIOS IR INRLIÇÃO UOÇÃO NSS LR ULILINS O I 8 0/0/5 URÇÃO LRÇÃO OS UNIUS, RPOSIIONNO O POLI LRÇÂO N LIS RIIS LOUV 7 7 0/0/5 LRO O LYOU, SUSIUIO

Leia mais

Quadro de conteúdos. Eu Gosto M@is Integrado 1 o ano. Lição 1 As crianças e os lugares onde vivem

Quadro de conteúdos. Eu Gosto M@is Integrado 1 o ano. Lição 1 As crianças e os lugares onde vivem Quadro de conteúdos Eu Gosto M@is Integrado 1 o ano Língua Portuguesa Matemática História Geografia Ciências Naturais Arte Inglês ABC da passarinhada O alfabeto Quantidade A ideia de quantidade Eu, criança

Leia mais

Arquitetura de Sistemas Web

Arquitetura de Sistemas Web Arquittura d Sistmas Wb Rprsntação dsign arquittural d sistmas Wb Uso da UML Visõs Arquitturais Basa na tação d Jim Conalln WAE UML Rfrência Jim Conalln. Building Wb Application with UML Addison-Wsly,

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 06-06-10

RESOLUÇÃO Matemática APLICADA FGV Administração - 06-06-10 QUESTÃO 1 VESTIBULAR FGV 2010 JUNHO/2010 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO São curiosos os números. Às vezes é mis útil rredondá-los do que trblhr com seu vlor

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

A INDÚSTRIA DO SEGURO NO BRASIL: UMA ANÁLISE COMPARATIVA DAS CINCO MAIORES COMPANHIAS SEGURADORAS 1

A INDÚSTRIA DO SEGURO NO BRASIL: UMA ANÁLISE COMPARATIVA DAS CINCO MAIORES COMPANHIAS SEGURADORAS 1 I SEMEAD JR A INDÚSTRIA DO SEGURO NO BRASIL: UMA ANÁLISE COMPARATIVA DAS CINCO MAIORES COMPANHIAS SEGURADORAS 1 Lucn Stcrn Btst 2 Ttn Rbro Cost 3 Yum Hr 4 Rubns Fmá 5 RESUMO: O rsco smpr rprsntou um procupção

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

IMPACTO DAS NORMAS BRASILEIRAS DE CONTABILIDADE APLICADAS AO SETOR PÚBLICO P PARA OS PROFISSIONAIS E OS SISTEMAS CONTÁBEIS NBC TSP 16 de 01 a 10

IMPACTO DAS NORMAS BRASILEIRAS DE CONTABILIDADE APLICADAS AO SETOR PÚBLICO P PARA OS PROFISSIONAIS E OS SISTEMAS CONTÁBEIS NBC TSP 16 de 01 a 10 IMPACTO DAS NORMAS BRASILEIRAS DE CONTABILIDADE APLICADAS AO SETOR PÚBLICO P PARA OS PROFISSIONAIS E OS SISTEMAS CONTÁBEIS NBC TSP 16 d 01 10 PALESTRANTE: Domingos Poubl d Cstro Rio d Jniro, 28 d gosto

Leia mais

Projeto de extensão Judô Escolar certifica alunos da Escola de Ensino Básico Professor Mota Pires

Projeto de extensão Judô Escolar certifica alunos da Escola de Ensino Básico Professor Mota Pires Projto xtnsão Judô Escolr crtific lunos d Escol Ensino Básico Profssor Mot Pirs No di 7 julho 2015 form crtificdos os lunos d Escol Ensino Básico Profssor Mot Pirs, Arrnguá, qu prticiprm do curso Judô

Leia mais

Criando Valor para o Negócio com a Solução SAP para Gestão de Capital Humano

Criando Valor para o Negócio com a Solução SAP para Gestão de Capital Humano Crian Valor o Ngócio a SAP Gstão Capital Hno Grans Grans Dsafi Dsafi na na Gstão Gstão Rcurs Rcurs Hn Hn Gstão Talnt Gstão Talnt Atrair rtr o talnto quan o mrca é Atrair Atrair Atrair rtr rtr rtr talnto

Leia mais

PLANEAMENTO E PROGRAMAÇÃO DO TREINO DE ATLETAS DE ½ FUNDO E FUNDO

PLANEAMENTO E PROGRAMAÇÃO DO TREINO DE ATLETAS DE ½ FUNDO E FUNDO PLM PGMÇÃ LS ½ F F SPÊS BLÓGS S SÂS ½ F F 800M 1500M 3000M SÂS 5000M 10000M ½ M. M. L L FQÊ.Í L Z ÍVL B B LÁ SV B XSV 22 LÁ SV 14 B XSV FQ.. MX. 8 MS SV 6 B XSV FQ.. MX. -15 4 3 B B ÓB GLL. B B LPLÍ 2

Leia mais

PLR Por quê? d L i i q u e z b l d d R t i i e n a a e b d E i t a d d d P t i i ro u v a e é l l d B F t i R t u s c a e r n c a e p o e su a o

PLR Por quê? d L i i q u e z b l d d R t i i e n a a e b d E i t a d d d P t i i ro u v a e é l l d B F t i R t u s c a e r n c a e p o e su a o .. u p v g c C C O ) F h C I ( É, - p c c ç u u g w w p g c u F C I ã ) A U E ( C D h W k N f N h C F. z c v p ç p g u ) k M U ( E ã A M ) P S ( M P S E k M G p v h F C O ã b S Apc gc Agc Ag c R z O v

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

EM NOME DO PAI ====================== j ˆ«. ˆ««=======================

EM NOME DO PAI ====================== j ˆ«. ˆ««======================= œ» EM NOME O PI Trnscçã Isbel rc Ver Snts Pe. Jãzinh Bm & # #6 8 j. j... Œ. ll { l l l l n me d Pi e d Fi lh ed_es & #. 2. #. _. _ j.. Œ. Œ l l l j {.. l. pí t Sn t_ mém Sn t_ mém LÓRI O PI Trnscçã Isbel

Leia mais

Calendário de Treinamentos 2014 Academia Grundfos. Bem-vindos a Academia Grundfos

Calendário de Treinamentos 2014 Academia Grundfos. Bem-vindos a Academia Grundfos Clnário Trinmntos 24 Acmi Grunfos Bm-vinos Acmi Grunfos Grunfos Brsil Acmi Grunfos Clnário 24 1 2008 2006 7 200 i m c A s r o t u r t s n I p i Equ 2004 Ds 2004 Acmi Grunfos nftiz importânci qu tribuimos

Leia mais

White Paper. Boas Práticas de E-mail Marketing

White Paper. Boas Práticas de E-mail Marketing White Paper Boas Práticas de E-mail Marketing Saiba como alguns cuidados simples podem melhorar os resultados de suas campanhas de e-mail marketing Para garantir a qualidade no mix de comunicação atual,

Leia mais

Visão Geral Métodos construtivos Métodos construtivos O Mercado Visão de Negócios Alguns números Principais diferenciais

Visão Geral Métodos construtivos Métodos construtivos O Mercado Visão de Negócios Alguns números Principais diferenciais Shw C TÓPICOS Vã Gl Mé cv Mé cv O Mc Vã Ngóc Alg ú Pcp fc Rl N vç Pc Q fz Vã Gl A ESTRUTURA ECOLÓGICA CONSTRUTORA, g c l é c cçã à v pcpçã q lz écc clógc. Sb p v é pf pívl v, p g cl c fã. N çã ppc c, c

Leia mais

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç Í I t ç ã C m f g S P A 9 3 2? I f m ç õ s R l s Itçã Est tg é m m m sé p xl stlçã, tblshtg mtçã pts Cs Smll Bsss (tg Lksys Bsss Ss). Q. Cm fg SPA932? R. O SPA932 é m sl tmt 32-btt p SPA962. C SPA932 f

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GVIÇÃO UNIVESL z- u ci féric u fr chubo rio, l qu u uprfíci ngnci uprfíci xrn fr chubo p plo cnro priii fr chubo r D coro co Li Grição Unirl, qul rá forç co qu fr chubo rirá u pqun fr locliz à iânci, o

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Correção da fuvest ª fase - Matemática feita pelo Intergraus

Correção da fuvest ª fase - Matemática feita pelo Intergraus da fuvest 009 ª fase - Matemática 08.0.009 MATEMÁTIA Q.0 Na figura ao lado, a reta r tem equação y x no plano cartesiano Oxy. Além dis so, os pontos 0,,, estão na reta r, sendo 0 = (0,). Os pontos A 0,

Leia mais

Carta Convite para Seleção de Preceptores. Desenvolvimento de Competência Pedagógica para a prática da Preceptoria na Residência Médica

Carta Convite para Seleção de Preceptores. Desenvolvimento de Competência Pedagógica para a prática da Preceptoria na Residência Médica ASSOCIAÇÃO BRASILEIRA DE EDUCAÇÃO MÉDICA (ABEM) Av. Brsil, 4036 sls 1006/1008 21040-361 Rio de Jneiro-RJ Tel.: (21) 2260.6161 ou 2573.0431 Fx: (21) 2260.6662 e-mil: rozne@bem-educmed.org.br Home-pge: www.bem-educmed.org.br

Leia mais

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado

Leia mais

Funções de Transferência

Funções de Transferência Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Resumo da última aula. Compiladores. Conjuntos de itens LR(0) Exercício SLR(1) Análise semântica

Resumo da última aula. Compiladores. Conjuntos de itens LR(0) Exercício SLR(1) Análise semântica Resumo d últim ul Compildores Verificção de tipos (/2) Análise semântic Implementção: Esquems -tribuídos: Mecnismo bottom-up direto Esquems -tribuídos: Mecnismo top-down: Necessit grmátic não recursiv

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

27 e 30 de Abril de 2012

27 e 30 de Abril de 2012 27 30 Arl 2012 Movção Cr coómc coloc fo co à IPSS o ív: Acução Vll coómco-fcr Scor fuml mporâc Socl Ecoómc Movção Imporâc coómc rc IPSS coom Porugu m 2008 rá o upror : 1.7% o VAB 2.9% rmurçõ 2.4% o coumo

Leia mais

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 NÚMERO DE REGISTRO NO MTE: CE000313/2013 DATA DE REGISTRO NO MTE: 07/03/2013 NÚMERO DA SOLICITAÇÃO: MR011016/2013 NÚMERO DO PROCESSO: 46205.003892/2013-28

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

PALMA. Catálogo de QRCode. 1. Encontre o QRCode 2. Com a câmera do celular mire no QRCode. 3. Comece a aula. www.programapalma.com.

PALMA. Catálogo de QRCode. 1. Encontre o QRCode 2. Com a câmera do celular mire no QRCode. 3. Comece a aula. www.programapalma.com. R PALMA Programa de Alfabetização na Língua Materna Inovação, Educação e Soluções Tecnológicas Catálogo de QRCode www.programapalma.com.br 1. Encontre o QRCode 2. Com a câmera do celular mire no QRCode

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

Disciplina: Português Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33.

Disciplina: Português Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33. Disciplina: Português Período: 1º Unidade 1 Eu me comunico Linguagem : formal e informal Variação regional de vocabulário Usando diferentes linguagens Ortografia: L e U,A/AI; E/I; O/OU; Usando diferentes

Leia mais

Currículo e Aulas Previstas

Currículo e Aulas Previstas Rua Dr. Francisco Sá Carneiro, N.º 8 Telef. 231 920 454/5 Fax: 231 920 300 Sítio web http://www.aemrt.pt E-mail aemortagua@aemrt.pt Currículo e Aulas Previstas Ano Letivo: 2015/2016 Área: Português 1.º

Leia mais

Implementação de um sistema de controle inteligente utilizando a lógica fuzzy

Implementação de um sistema de controle inteligente utilizando a lógica fuzzy Implmntção d um sistm d control intlignt utilizndo lógic fuzzy Rsumo Mrclo Bilobrovc (UEPG - CEFET - PR) mbilo@upg.br Rui Frncisco Mrtins Mrçl (CEFET - PR) mrcl@pg.cftpr.br João Luis Kovlski (CEFET - PR)

Leia mais

Currículo e Aulas Previstas

Currículo e Aulas Previstas Rua Dr. Francisco Sá Carneiro, N.º 8 Telef. 231 920 454/5 Fax: 231 920 300 Sítio web http://www.aemrt.pt E-mail aemortagua@aemrt.pt Currículo e Aulas Previstas Ano Letivo: 2013/2014 Português 1.º Ano DMÍNIS

Leia mais

ATIVIDADE DE SALA (02)

ATIVIDADE DE SALA (02) COLÉGIO PLÍNIO LEITE CIÊNCIAS BIOLÓGICAS 2º Píd/2014 6º ANO ESCOLAR - ENSINO FUNDAMENTAL Nm: Pfss (): ATIVIDADE DE SALA (02) Tum: º: D: / / VALOR:... Mds ppss p suu d T Mus ds gs dés d suu d T bsvm-s m

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência

Capítulo 3. Análise de Sinais Dep. Armas e Electronica, Escola Naval V1.1 - Victor Lobo 2004. Page 1. Domínio da frequência Dp. Armas Elcronica, Escola Naval V. - Vicor Lobo 004 Capíulo 3 Transformadas ourir ourir Discra Bibliografia Domínio da frquência Qualqur sinal () po sr composo numa soma xponnciais complxas Uma xponncial

Leia mais

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica Stmro 2014 www.tgut.om.r 1/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi Stmro 2014 www.tgut.om.r 2/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi A TguT stá rpginno lin T-olr pr pstils râmi. O tul

Leia mais

ALTERAÇÃO Nº1 CONCURSO PARA APRESENTAÇÃO DE CANDIDATURAS AVISO N.º 12/SI/2015

ALTERAÇÃO Nº1 CONCURSO PARA APRESENTAÇÃO DE CANDIDATURAS AVISO N.º 12/SI/2015 ALTERAÇÃO Nº1 CONCURSO PARA APRESENTAÇÃO DE CANDIDATURAS AVISO N.º 12/SI/2015 SISTEMA DE INCENTIVOS INVESTIGAÇÃO E DESENVOLVIMENTO TECNOLÓGICO VALE I&D 30 DE JULHO DE 2015 Págin 1 d 3 Altrção o Aviso d

Leia mais

Avalanche de Informação

Avalanche de Informação Avalanche de Informação Marcos N. Lessa Xerox Global Services marcos.lessa@xerox.pt SIAP 2009 1 Qual é o problema? Sobrecarga de infoem papel: O mito do escritório sem papel: 15,2 triliões de páginas são

Leia mais

Questionário sobre o Ensino de Leitura

Questionário sobre o Ensino de Leitura ANEXO 1 Questionário sobre o Ensino de Leitura 1. Sexo Masculino Feminino 2. Idade 3. Profissão 4. Ao trabalhar a leitura é melhor primeiro ensinar os fonemas (vogais, consoantes e ditongos), depois as

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

LEI n 45712002 De 29 de abril de 2002.

LEI n 45712002 De 29 de abril de 2002. PREFEITURA i1 UN ICLPL I)I (;ARRI Prç Mrchl Dodoro d Fonsc s/ny Cntro. CEP: 49.830-0()0 CGC 13 112669/0001-17 * Tlfon (0'x79)354 1240 1 E-Mil: LEI n 45712002 D 29 d bril d 2002. Autoriz o Podr Excutivo

Leia mais

Uma publicação que é referência no setor

Uma publicação que é referência no setor ublic qu é rfrêci Vlt r rfiii ii frcêuc, viári, c, bitclgi, litíci, quíic fi, quit hitlr, i vi qu cl cti é u xigêci, rvit Cl Cti fc luçõ tclógic r rli brilir. C iibui irigi, ublic g rtt ghri ut, r Quli,

Leia mais

A ferramenta de planeamento multi

A ferramenta de planeamento multi A frramnta d planamnto multi mdia PLANVIEW TELEVISÃO Brv Aprsntação Softwar d planamnto qu s basia nas audiências d um príodo passado para prvr asaudiências d um príodo futuro Avrsatilidad afacilidad d

Leia mais

EDITAL N.º 24/2016 EDITAL PROCESSO SELETIVO ESPECÍFICO PARA INGRESSO DE FRONTEIRIÇOS 2016

EDITAL N.º 24/2016 EDITAL PROCESSO SELETIVO ESPECÍFICO PARA INGRESSO DE FRONTEIRIÇOS 2016 EDITAL N.º 24/2016 EDITAL PROCESSO SELETIVO ESPECÍFICO PARA INGRESSO DE FRONTEIRIÇOS 2016 O REITOR DA UNIVERSIDADE FEDERAL DO PAMPA, no uso d suas atribuiçõs lgais statutárias, torna público st Edital

Leia mais

A Diretoria de Relações Internacionais da Fundação de Ensino e Pesquisa do Sul de Minas - 1. OBJETIVO 2. PRÉ-REQUISITOS. Re~ unis

A Diretoria de Relações Internacionais da Fundação de Ensino e Pesquisa do Sul de Minas - 1. OBJETIVO 2. PRÉ-REQUISITOS. Re~ unis Crid pel Lei Estdul nn 2. 766/63 CNPJ.: 21.420.85610001-96 - lrrsc Estdul. ISENTA Entidde M ntenedor do Grupo Educcionl Uni: Centro Universitdrio do Sul d Mins - UNIS Fculdde Bum- FABE Fculdde Três Ponts

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

1 A ELE A GLÓRIA 2 AINDA QUE A FIGUEIRA 3 AO ERGUERMOS 4 ATRAI O MEU CORAÇÃO 5 DEUS É BOM 6 EM ESPÍRITO, EM VERDADE 7 EM TODO TEMPO 8 EU TE QUERO

1 A ELE A GLÓRIA 2 AINDA QUE A FIGUEIRA 3 AO ERGUERMOS 4 ATRAI O MEU CORAÇÃO 5 DEUS É BOM 6 EM ESPÍRITO, EM VERDADE 7 EM TODO TEMPO 8 EU TE QUERO 1 L GLÓRI 2 IND QU FIGUIR 3 O RGURMOS 4 TRI O MU CORÇÃO 5 DUS É OM 6 M SPÍRITO, M VRDD 7 M TODO TMPO 8 U T QURO 9 LOUV 10 LOUV TI 11 MIS QU UM MIGO 12 M DLITO M TI 13 ND LÉM DO SNGU 14 O LÃO D TRIO D JUDÁ

Leia mais

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável ELECRÓNCA DE POÊNCA CA Aplicções: versores Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção iierrupíveis (UPS) vridores de frequêci foes de limeção móveis quecimeo

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

LOCALIZAÇÃO E ALOCAÇÃO DE DISPOSITIVOS DE LIGAÇÃO EM REDE DE COMPUTADORES USANDO HEURÍSTICA DE BUSCA TABU

LOCALIZAÇÃO E ALOCAÇÃO DE DISPOSITIVOS DE LIGAÇÃO EM REDE DE COMPUTADORES USANDO HEURÍSTICA DE BUSCA TABU LOLIZÇÃO E LOÇÃO DE DISPOSITIVOS DE LIGÇÃO EM REDE DE OMPUTDORES USNDO HEURÍSTI DE BUS TBU íbl lbrto Vlcpo Igco Robrto Déguz Glvão Vrgílo osé Mrts Frrr Flho* 3 3 UFR OPPE Progr Eghr Proução Brsl tro Tcolog

Leia mais

jj j?nota que o Conselho Supremo vae dirigir ájvilemanha

jj j?nota que o Conselho Supremo vae dirigir ájvilemanha Hp Drr LÃ LL rç lgrph CRRBMNH mprss m ppl HLMBRG BCH C«klm r - K Gr DUR FLl MMN -rz^rpr r - Plgpps? Prprr DMUND BNCUR J Drr 558 ÇRd 5698 Cdmsrçã 7 Cd - Chrs - - prs m ppl NRDKG k C«RDCÇÃ 778 Lrg &Bb Cr

Leia mais

CONTROLE AVES DE VENDA EXPOSIÇÃO 2014 ORLANDO NASCIMENTO- 21 98825-5609/96739-8619

CONTROLE AVES DE VENDA EXPOSIÇÃO 2014 ORLANDO NASCIMENTO- 21 98825-5609/96739-8619 CONTROLE AVES DE VENDA EXPOSIÇÃO 2014 CRIADOR TELEFONE GAIOLA ANEL SEXO NOMENCLATURA VALOR OBS ORLANDO NASCIMENTO- 21 98825-5609/96739-8619 1 IB-105-40-13 FM CN OP AM MF IN 100,00 BANCO: 2 BB-3992-44-11

Leia mais

DET. ESGOTO 1 DET. ESGOTO 2

DET. ESGOTO 1 DET. ESGOTO 2 DET. ESGOTO 4 0,02 (40) -0,42 CI-01 DET. ESGOTO 5 mm i=1% i=1% i=1% TQ-6 CS-01 i=1% COMPRESSOR GENTES TQ-6 CV-4 DET. ESGOTO 1 i=1% (49) -0,51 CS-03 CI-03 mm i=1% CS-05 DET. ESGOTO 7 CUIDDOS BÁSICOS i=1%

Leia mais

Atum grelhado com cogumelos e legumes

Atum grelhado com cogumelos e legumes Atm ghdo om ogmos gms Qm dss dt s s ht? Ess smn nts do nv sov mn m oo Ms nm o sso om m! Ontm no jnt mos m doso tm, om ogmos s stdos, svdos om nos snf ogânos! É s sms! E fo m dí! Ingdnts: Atm fso ( 2 osts

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

INCLUSO. consulte RELÓGIO DIGITAL. Vinhedo Tel: 55 (19) 3886-3003 Daniela - (19) 3515-5673

INCLUSO. consulte RELÓGIO DIGITAL. Vinhedo Tel: 55 (19) 3886-3003 Daniela - (19) 3515-5673 ML E 9.9.235.582 O V - º37 - BL/MO/JUHO/2013 V E O O HOW-OOM EEL E M E OM.04 07 quím E LO.01 lu MELHO EÇO MEO OVE!!! M u MEO E EEU.02.08 MEE f EE ul l B Ep p qu m: m Vál 01 /m 3013 /julh 2013 LUO ul ELO

Leia mais