Soluções E-Procurement
|
|
- João Henrique Ribeiro Figueiredo
- 2 Há anos
- Visualizações:
Transcrição
1 Soluçõs -Procurm Móulos Vgs Aprsção Dspss Tomé A. Gl Jro/2003
2 Sumáro: Soluçõs - Procurm 2 Soluçõs - Procurm m xrp 3 Prcps Vgs 4 Solução 5 Móulo vgs 7 Móulo Rlóros Aprsção spss 8 Cls 9 Cocos Ús 10 2/10
3 Soluçõs -Procurm Aplcçõs xrprs Rsourc Plg (XRP) Prmm gsão procssos qusção ou roc formção comérco lcróco r us ou ms s. C po r um úmro lmo colborors cr grr procssos. 1 Usr 1 Usr 2 Usr... Usr Usr 1 Usr 2 Usr... Usr 1 Dos Dos Dos Dos Dos Dos Wbzção Gsão procssos Wbzção Dos Dos Dos Dos Dos Dos 3 Usr 1 Usr 2 Usr... Usr Usr 1 Usr 2 Usr... Usr /10
4 Soluçõs -Procurm m XRP Prcps vgs: Aumo prouv os procssos ros vo : C ulzor comuc rcm com o forcor/cl ( coro com s rgrs sblcs pl mprs); A orgzção, o ulzor o forcor êm oos msm formção; Toos os rvs m qulqur momo pom sbr o so o procsso; Possívl lgção rc o ssm cobl fçs mprs pr procssmo uomáco os movmos coblíscos pgmos. Rução corol cusos: Lbr pssos rfs rors; Não css msrção crlz; Cohcmo os cusos globs; Grção síscs coro com orggrm mprs; Rcuprção o IVA m spss o srgro Cohcmo sobr qul o srvço prso, vo: síscs compls sobr mpos rspos; O forcor m xcm msm formção qu o ulzor. 4/10
5 Solução A solução svolv pl scr Dgl pr grr procssos o coco xrp sg-s. Po sr cofgur à m, coro com s csss orgzção, xso já os sgus móulos pré-fos: Rqusção Gsão coomo bs Imoblzo R--Cr Gsão Rclmçõs Sugsõs Rlóros, Aprsção spss mos Hrrqus & Cosul Vgs Gsão Sls Formção vlção smpho Gsão Procssos Formuláros Auorzçõs GSTÃO D UTILIZADORS síscs 5/10
6 Fucols comus oos os móulos Irfc m browsr; Solução mullgu com cosolção; Workflow prsolzávl coro com s rgrs orgzção; Possbl mprssão cosrução formuláros; Possbl roução ouros rfcs (WAP, PDA s); Possbl síscs rlóros; Complo progrm uorzçõs por vos vlors; Possbl scrro; Compl gsão férs spobls; Complo rgso logs; Gsão ulzors ou m lrv, fácl coxão ouros progrms gsão rcursos humos; Écrs uvos, com o máxmo 4 boõs, o qu sps formção o ulzor; Fácl rlgção com soluçõs RP [SAP Orcl Fc já spoívl]; 6/10
7 Vgs O móulo coss um plcção workflow qu prm gsão os procssos vgs orgzção. Tr o cclo complo o procsso, s mrcção vgm, é à prsção o rlóro cro cos. Com roução s móulo pss sr possívl à orgzção: q Grr o cclo complo vgm, s rqusção é à prsção o rlóro; q Corolr o orçmo vgs, qur ívl globl, qur vsão/prmo; q vr um cojuo rfs qu ão grm vlor crsco, omm ívl msrvo. D r s prcps fucols scmos: Prpro pr grr Avão/Comboo, Hol R--cr; Igrção com os prcps bookg gs; Possbl lrção vgs m qulqur momo; Vrfcção cbmo orçml uorzção. 7/10
8 Rlóros prsção spss Prm prsção spss, o purmo os slos, o cálculo jus cuso, qur pr spss orgs por um procsso vgm, qur pr spss sols. D r s prcps fucols scmos: Aé cco vss o msmo rlóro; Múlplos príoos vgs; Lhs cofgurávs; Possbl ssocr spcfcçõs IVA; Possbl spcfcr prâmros pr cobl; Fácl cofgurção fórmul jus cuso; Possbl smulção; Possbl rr vrção cmbl ssoc spss com crão créo. 8/10
9 Já sls m: rcsso Porugl Vgs, Aprsção Dspss, Formção Avlção Dsmpho, R--Cr, Gsão Rclmçõs Sugsõs. rcsso Brsl Vgs Aprsção Dspss uropcr Porugl R-Cr Rproução os écrs com uorzção os cls 9/10
10 Cocos rços ús: SCRITA DIGITAL, S.A. fíco Csl Ru Cslho, 39, 10º F LISBOA Tlfo : Fx : Wb : Drcor Grl : Tomé A. Gl ml : Móvl : /10
Código PE-ACSH-2. Título:
CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu
RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES
RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.
Planejamento Estratégico
Pljmo Esrégco Iformvo o Pljmo Esrégco Usc Ao 1 Nº 1 Fvrro 2009 Pljmo Esrégco Iformvo o Pljmo Esrégco Usc Mssão Eucr, por mo o so, psqus xsão, pr promovr qul susbl o mb v. A Usc, por mo os gsors rprss Ror,
A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).
4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo
Associação de Resistores e Resistência Equivalente
Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos
ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO. Prof. Dr. Roberto Valdés Puentes
ORGANIZAÇÃO DIDÁTICA DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO: O PLANEJAMENTO Prf. Dr. Rbr Vdés Pus PPGED/FACED/UFU rbrpus@fcd.ufu.br MOMENTOS DO PROCESSO DE ENSINO, APRENDIZAGEM E DESENVOLVIMENTO
Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt
1 Instituto de Geografia e Ordenamento do Território da Universidade de Lisboa (IGOT-UL) 2 Instituto Superior de Agronomia Universidade de Lisboa
MODELOS ESPACIALMENTE EXPLÍCITOS DE ANÁLISE DE DINÂMICAS LOCAIS: O CASO DA VEGETAÇÃO NATURAL POTENCIAL NO APOIO AO PLANEAMENTO E ORDENAMENTO TERRITORIAL Frncsco Gutrrs1, Eusébo Rs1, Crlos Nto1 José Crlos
Situação Atual e Perspectivas das Culturas do Cará (Dioscorea sp.) e do Taiá (Colocasia esculenta) no Sul do Brasil
Sção Al Prspcvs s Clrs o Crá (Doscor sp.) o Tá (Colocs scl) o Sl o Brsl Jrz José V Müllr 1 Iroção A proção crá á o á-jpão é rlz promm m pqs proprs, como m v complmr o ssm provo. O cosmo é rlzo prcplm por
9. MODELAGEM DE CONVERSORES: MODELO DA CHAVE PWM
Fns Chs C. 9 Mlgm nrsrs: ml h PWM J. A. Pml 9. MOEAGEM E CONERSORES: MOEO A CHAE PWM As lgs báss nrsrs CCCC ssum um h nrl ur nãnrl sss lmns lnrs nrns n m. A njun ss us hs r nm h PWM [9.]. O bj ns íul é
+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares
Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn
TÓPICOS EM MATEMÁTICA AVANÇADA PARA A ENGENHARIA: Álgebra Linear, Geometria Analítica, Cálculo e Equações Diferenciais,
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA/SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ENGENHARIA CIVIL/ DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MÉTODOS NUMÉRICOS EM ENGENHARIA TÓPICOS
Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N
sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses
II L ATA N. 19/XIV. Conselheiro Fernando da Costa Soares.
jf II L Comissão Ncionl Eliçõs ATA N. 19/XIV Tv lugr no di vint qutro jniro dois mil doz, sssão númro znov d Comissão Ncionl Eliçõs, n sl runiõs sit n Av. D. Crlos 1, n. 128 7. ndr, m Lisbo, sob prsidênci
NESS-A TOUCH SCREEN 7" C/ MODEM
6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.
Processamento Digital de Sinais
Procssmto Digitl Siis Mrclo Bsílio Joquim São Crlos - Íic Aprstção i Cpítulo Siis Sistms tmpo iscrto. Itroução. Siis Tmpo Discrto. Siis tmpo iscrto básicos.. Squêci mostr uitári.. Squêci gru uitário..
Alteração da seqüência de execução de instruções
Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt
DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL
3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4
que indica que, através do operador H, pode-se determinar y(t) para qualquer u(t).
8. REPRESENÇÃO NO ESPÇO DE ESDOS 8. Coco so ( prsção srá f o omío o mpo coío; s frçs com o cso scro são pqs srão prss posrorm). rprsção r/sí m ssm lr só é ál qo, o mpo cl, o ssm sá o so scoáro. ssm é ál
CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA
S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m
Manhã Tarde Noite. Sala 252 - Escola cultura e Sociedade II para o curso de Pedagogia, Prof. Lino.
S g n d Mnhã Td No Sl 251 LD Rpsnção m S Hll, dscpln do PPGE, Po. Mác Ondn. Sl 252 EBOPP T1 o nvsl, Po.ª Eln, 50 lnos. Sl 253 Pojo Novos Cmnhos Poª Glsn Sl 254 Fndmnos SócoHsóco Flosócos d Edcção T5 p
Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)
Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no
ESTADO-MAIOR DO EXÉRCITO OBJETIVO ROTEIRO XXXXXXXXXXXXXXXXXX
STO-MOR O XÉRCTO OBJTVO 5 PRSTR OS PRCPS SPCTOS S STRUÇÕS GRS PR CORRSPOÊC O XÉRCTO B10- G-01.001 S STRUÇÕS GRS PR OS TOS MSTRTVOS O XÉRCTO - B10-G-01.003 1 / 23 2 / 23 XXXXXXXXXXXXXXXXXX ROTRO do CS CS/GP
MECANISMOS DE REAÇÕES
/4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor
Matrizes - Teoria ...
Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd
PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES
PREÇOS APLICÁVEIS ÀS CHAMADAS DESTINADAS A SERVIÇOS NÃO GEOGRÁFICOS DE OUTROS OPERADORES OPS DE DESTINO SERVIÇ O DE DESTIN O REDE MÓVEL DE ORIGEM (Fixa/ Móvl/ Ambas) DATA DE EFEITOS Cadência d taxação
MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33
Métodos umércos - ntegrção umérc Escol áutc.d.henrque MÉTODOS UMÉRCOS ntegrção umérc por Cheds Smpo Époc /3 Escol áutc.d.henrque de 33 Sumáro Regrs áscs Regrs do Rectngulo Regr do Trpézo Regr de Smpson
Sistemas e Sinais (LEIC) Resposta em Frequência
Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória
CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM...
C CORÇÃO NOIV - 1. O SNHOR É OM INTR: /C# C7+ /C# O SNHOR É OM C7+ SU MOR UR PR SMPR L É OM... Letra e Música: avi Silva C CORÇÃO NOIV - 2. SNTO É O TU NOM M TO TRR S OUVIRÁ UM NOVO SOM UM CNÇÃO MOR PRCORRRÁ
O Uso da Álgebra Linear nas Equações Diferenciais
Uso d Álgr ir s Equçõs ifriis íi Gri ol úi Rsd rir Bofim Fuldd d mái FT Uivrsidd Fdrl d Urlâdi UFU 88 - Urlâdi ril d 8 Rsumo Álgr ir é um supor mmáio pr muis árs d iêi Vrmos omo lgus d sus rsuldos podm
21/07/2015 13:36:51 ARTE MODA ARTE ARQUITETURA ARQUITETURA ENTRETENIMENTO MODA DESTINO GASTRONOMIA GASTRONOMIA MODA POLINÉSIA FRANCESA. CAPA 24.
R 3 R R D S VL L Ó S L U D K LÃ W -S / 3 SH FW -S Ã P UL F S SP / / : 8:3 3// 8/ 3/ : 6: SPCL - PRU C VCÊ UC VU.in 7 R Ú 8 9 - R$,,9 R$ CP.in S D PP R S G GS S - R$, 9 R D : : U Q R VG D R SÃ PU L FS H
Mackenzie Voluntario. Caro apoiador, Redes sociais: 8668 de 30/11/1981), que atua em solo brasileiro há 141 anos.
C, O Mkz Vlá é m j sl Mkz, sm fs lvs (D º 8668 3/11/1981), q m sl bsl há 141 s. Iml m 24, m m l fl ssblz, mblz g s s ss gs, gss, lbs, fsss, ls, gs ls, fs, s, mgs fmls m mvm xmçã s ms q bgm s ss m, lém
INSTRUÇÕES DE MONTAGEM REF.: REF.: VT-801
NSTRUÇÕS D MONTM R.: R.: VT-8 VT-8 R.: L-8 R.: L-8 MPORTNT: PRODUTO BRCDO COM CPS D MDP MD 15MM UNDOS M D 3MM COM PNTUR ULTRVOLT. RRMNTS 20 MN COL NDÚSTR COMÉRCO D MÓVS LTD RU RLNDO BCCN, 6 BRRO VNDOS
Variáveis aleatórias Conceito de variável aleatória
Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação
Março 2017 *Consulte-nos condições de pagamento a prestações I
L A N E M U SR IN O I R Ó A RO ã i c i F 0 mm sjurss s * r M d 3 é S t Mr 07 *Csult-s cdiõs d pgmt prstõs. 800 83 4 5 I www.dtlxprss.pt ã Prm URBINA PREMIUM PACK DE IMPRESSÃO - 4 Elit HD Putty - 4 Elit
TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.
No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv
1 Introdução e Base Matemática
J. A. M. Flipp Souz Iroução Bs Mmáic Iroução Bs Mmáic Iroução Bs Mmáic 3. O úmro imgiário 3. Númros complxos 4.3 Oprçõs com úmros complxos 9.4 O so o co-so.5 A qução Eulr 5.6 A g 7.7 As ivrss so, co-so
1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R
píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos
Teoria dos Grafos Aula 11
Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.
DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS LRC MULTILINHAS C/ IHM
4 5 6 7 8 9 0 QUIPNOS ONROLOS 5 LINS RSRIOS OU LINS ONLOS LIN RSRIOS IR INRLIÇÃO UOÇÃO NSS LR ULILINS O I 8 0/0/5 URÇÃO LRÇÃO OS UNIUS, RPOSIIONNO O POLI LRÇÂO N LIS RIIS LOUV 7 7 0/0/5 LRO O LYOU, SUSIUIO
INSTRUÇÕES DE MONTAGEM
NSTRUÇÕS D MONTM R.: VT-815 R.: L-822 MPORTNT: PRODUTO BRCDO COM CPS D MDP MD 15MM UNDOS M D 3MM COM PNTUR ULTRVOLT. RRMNTS 20 MN COL NDÚSTR COMÉRCO D MÓVS LTD RU RLNDO BCCN, 6 BRRO VNDOS CX POSTL 847
TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.
Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,
RESOLUÇÃO Matemática APLICADA FGV Administração - 06-06-10
QUESTÃO 1 VESTIBULAR FGV 2010 JUNHO/2010 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DISCURSIVO São curiosos os números. Às vezes é mis útil rredondá-los do que trblhr com seu vlor
Arquitetura de Sistemas Web
Arquittura d Sistmas Wb Rprsntação dsign arquittural d sistmas Wb Uso da UML Visõs Arquitturais Basa na tação d Jim Conalln WAE UML Rfrência Jim Conalln. Building Wb Application with UML Addison-Wsly,
Redes Bayesianas. » Microsoft: em 1993 contratam Eric Horvitz, David Heckerman e Jack Breese
Rds Bss Rds Bss São dgrms qu orgzm o cohcmto um dd ár trvés d um mpmto tr cuss ftos Os sstms sdos m rds Bss são cpzs d grr utomtcmt prdçõs ou dcsõs msmo stução d stêc d lgums pçs d formção Mrcos mportts:»
PLANEAMENTO E PROGRAMAÇÃO DO TREINO DE ATLETAS DE ½ FUNDO E FUNDO
PLM PGMÇÃ LS ½ F F SPÊS BLÓGS S SÂS ½ F F 800M 1500M 3000M SÂS 5000M 10000M ½ M. M. L L FQÊ.Í L Z ÍVL B B LÁ SV B XSV 22 LÁ SV 14 B XSV FQ.. MX. 8 MS SV 6 B XSV FQ.. MX. -15 4 3 B B ÓB GLL. B B LPLÍ 2
Criando Valor para o Negócio com a Solução SAP para Gestão de Capital Humano
Crian Valor o Ngócio a SAP Gstão Capital Hno Grans Grans Dsafi Dsafi na na Gstão Gstão Rcurs Rcurs Hn Hn Gstão Talnt Gstão Talnt Atrair rtr o talnto quan o mrca é Atrair Atrair Atrair rtr rtr rtr talnto
PLR Por quê? d L i i q u e z b l d d R t i i e n a a e b d E i t a d d d P t i i ro u v a e é l l d B F t i R t u s c a e r n c a e p o e su a o
.. u p v g c C C O ) F h C I ( É, - p c c ç u u g w w p g c u F C I ã ) A U E ( C D h W k N f N h C F. z c v p ç p g u ) k M U ( E ã A M ) P S ( M P S E k M G p v h F C O ã b S Apc gc Agc Ag c R z O v
4. Análise de Sistemas de Controle por Espaço de Estados
Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico
ANÁLISE DE ESTRUTURAS I
IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:
EM NOME DO PAI ====================== j ˆ«. ˆ««=======================
œ» EM NOME O PI Trnscçã Isbel rc Ver Snts Pe. Jãzinh Bm & # #6 8 j. j... Œ. ll { l l l l n me d Pi e d Fi lh ed_es & #. 2. #. _. _ j.. Œ. Œ l l l j {.. l. pí t Sn t_ mém Sn t_ mém LÓRI O PI Trnscçã Isbel
Calendário de Treinamentos 2014 Academia Grundfos. Bem-vindos a Academia Grundfos
Clnário Trinmntos 24 Acmi Grunfos Bm-vinos Acmi Grunfos Grunfos Brsil Acmi Grunfos Clnário 24 1 2008 2006 7 200 i m c A s r o t u r t s n I p i Equ 2004 Ds 2004 Acmi Grunfos nftiz importânci qu tribuimos
Quadro de conteúdos. Eu Gosto M@is Integrado 1 o ano. Lição 1 As crianças e os lugares onde vivem
Quadro de conteúdos Eu Gosto M@is Integrado 1 o ano Língua Portuguesa Matemática História Geografia Ciências Naturais Arte Inglês ABC da passarinhada O alfabeto Quantidade A ideia de quantidade Eu, criança
A INDÚSTRIA DO SEGURO NO BRASIL: UMA ANÁLISE COMPARATIVA DAS CINCO MAIORES COMPANHIAS SEGURADORAS 1
I SEMEAD JR A INDÚSTRIA DO SEGURO NO BRASIL: UMA ANÁLISE COMPARATIVA DAS CINCO MAIORES COMPANHIAS SEGURADORAS 1 Lucn Stcrn Btst 2 Ttn Rbro Cost 3 Yum Hr 4 Rubns Fmá 5 RESUMO: O rsco smpr rprsntou um procupção
1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2
Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um
Torção. Tensões de Cisalhamento
orção O esuo ese cpíulo será iviio em us pres: 1) orção e brrs circulres ) orção e brrs não circulres. OÇÃO E BS CICULES Sej um brr circulr com iâmero e comprimeno., solici por um momeno e orção, como
Visão Geral Métodos construtivos Métodos construtivos O Mercado Visão de Negócios Alguns números Principais diferenciais
Shw C TÓPICOS Vã Gl Mé cv Mé cv O Mc Vã Ngóc Alg ú Pcp fc Rl N vç Pc Q fz Vã Gl A ESTRUTURA ECOLÓGICA CONSTRUTORA, g c l é c cçã à v pcpçã q lz écc clógc. Sb p v é pf pívl v, p g cl c fã. N çã ppc c, c
IMPACTO DAS NORMAS BRASILEIRAS DE CONTABILIDADE APLICADAS AO SETOR PÚBLICO P PARA OS PROFISSIONAIS E OS SISTEMAS CONTÁBEIS NBC TSP 16 de 01 a 10
IMPACTO DAS NORMAS BRASILEIRAS DE CONTABILIDADE APLICADAS AO SETOR PÚBLICO P PARA OS PROFISSIONAIS E OS SISTEMAS CONTÁBEIS NBC TSP 16 d 01 10 PALESTRANTE: Domingos Poubl d Cstro Rio d Jniro, 28 d gosto
DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES
0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O
Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç
Í I t ç ã C m f g S P A 9 3 2? I f m ç õ s R l s Itçã Est tg é m m m sé p xl stlçã, tblshtg mtçã pts Cs Smll Bsss (tg Lksys Bsss Ss). Q. Cm fg SPA932? R. O SPA932 é m sl tmt 32-btt p SPA962. C SPA932 f
CAPÍTULO 9 COORDENADAS POLARES
Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El
Projeto de extensão Judô Escolar certifica alunos da Escola de Ensino Básico Professor Mota Pires
Projto xtnsão Judô Escolr crtific lunos d Escol Ensino Básico Profssor Mot Pirs No di 7 julho 2015 form crtificdos os lunos d Escol Ensino Básico Profssor Mot Pirs, Arrnguá, qu prticiprm do curso Judô
Aula de hoje. Códigos numéricos. Códigos binários. Armazenamento de dados. Armazenamento de dados. Armazenamento de dados
SCC 24 - Introdução à Programação para Engenharias Aula de hoje Códigos numéricos Professor: André C. P. L. F. de Carvalho, ICMC-USP Pos-doutorando: Isvani Frias-Blanco Monitor: Henrique Bonini de Britto
Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.
Cotabilomtria Prof.: Patricia Maria Bortolo, D. Sc. Dimsioado Amostras Itrvalos d Cofiaça m Auditoria Fot: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Toria Aplicaçõs,
Correção da fuvest ª fase - Matemática feita pelo Intergraus
da fuvest 009 ª fase - Matemática 08.0.009 MATEMÁTIA Q.0 Na figura ao lado, a reta r tem equação y x no plano cartesiano Oxy. Além dis so, os pontos 0,,, estão na reta r, sendo 0 = (0,). Os pontos A 0,
GRAVITAÇÃO UNIVERSAL
GVIÇÃO UNIVESL z- u ci féric u fr chubo rio, l qu u uprfíci ngnci uprfíci xrn fr chubo p plo cnro priii fr chubo r D coro co Li Grição Unirl, qul rá forç co qu fr chubo rirá u pqun fr locliz à iânci, o
White Paper. Boas Práticas de E-mail Marketing
White Paper Boas Práticas de E-mail Marketing Saiba como alguns cuidados simples podem melhorar os resultados de suas campanhas de e-mail marketing Para garantir a qualidade no mix de comunicação atual,
Índice. Introdução. Pré-requisitos. Requisitos. Dispositivos suportados
Índic Introdução Pré-rquisitos Rquisitos Dispositivos suportados Listas d vrificação do rgistro Componnts Utilizados Passos d configuração Vrificação Cisco rlacionado apoia discussõs da comunidad Introdução
Control Lab - Cronograma de Rodadas
NºRodada: 1 Data de Envio da Amostra: 20/03/2007 Ensaio: Enterobacter sakazakii Matriz: Fórmulas lácteas infantis em pó Total de 13 Página 1 de 16 NºRodada: 1 Data de Envio da Amostra: 20/03/2007 Ensaio:
A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS
Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado
Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )
.(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução
1 Sm ª 13. Então, se dispôs Davi com os seus homens, uns seiscentos, saíram de Queila e se foram sem rumo certo. Ziclague
1 Sm. 23.13ª 13 Então, s dspôs Dv om os ss homns, ns ssntos, sírm d Q s form sm rmo rto. Z 1 Sm 27.1-3 1 Dss, porém, Dv onso msmo: Pod sr q m d vnh prr ns mãos d S; nd há, pos, mhor pr mm do q fr pr trr
Carta Convite para Seleção de Preceptores. Desenvolvimento de Competência Pedagógica para a prática da Preceptoria na Residência Médica
ASSOCIAÇÃO BRASILEIRA DE EDUCAÇÃO MÉDICA (ABEM) Av. Brsil, 4036 sls 1006/1008 21040-361 Rio de Jneiro-RJ Tel.: (21) 2260.6161 ou 2573.0431 Fx: (21) 2260.6662 e-mil: rozne@bem-educmed.org.br Home-pge: www.bem-educmed.org.br
Funções de Transferência
Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO
Resumo da última aula. Compiladores. Conjuntos de itens LR(0) Exercício SLR(1) Análise semântica
Resumo d últim ul Compildores Verificção de tipos (/2) Análise semântic Implementção: Esquems -tribuídos: Mecnismo bottom-up direto Esquems -tribuídos: Mecnismo top-down: Necessit grmátic não recursiv
1 Fórmulas de Newton-Cotes
As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como
Análises de sistemas no domínio da frequência
prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico
Algumas considerações iniciais:
Progrm d álulo d otmzção do n d ntrd íd do oltor olr trvé d orrlçõ r rd d rg m lnh lzd. lgum ondrçõ n: Condçõ d orção do fludo: t modlção não v lvr m ont vrçõ d tmrtur ud lo trto l borção do lor rovnnt
PORTÕES DE CORRER / PORTÕES DE ABRIR CATÁLOGO FERRAGENS SERRALHARIA ACESSÓRIOS PARA PORTÕES. Edição: 345-1
PORTÕES DE CORRER / PORTÕES DE BRIR CTÁLOGO FERRGENS SERRLHRI CESSÓRIOS PR PORTÕES Edição: 345-1 ÍNDICE PORTÕES UTOPORTNTES Pág: 3» 7 PORTÕES DE CORRER - POIDOS Pág: 8» 17 PORTÕES DE CORRER - SUSPENSOS
EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS
MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS
INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como
J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido
= 1, independente do valor de x, logo seria uma função afim e não exponencial.
6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0
Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.
Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz
27 e 30 de Abril de 2012
27 30 Arl 2012 Movção Cr coómc coloc fo co à IPSS o ív: Acução Vll coómco-fcr Scor fuml mporâc Socl Ecoómc Movção Imporâc coómc rc IPSS coom Porugu m 2008 rá o upror : 1.7% o VAB 2.9% rmurçõ 2.4% o coumo
PALMA. Catálogo de QRCode. 1. Encontre o QRCode 2. Com a câmera do celular mire no QRCode. 3. Comece a aula. www.programapalma.com.
R PALMA Programa de Alfabetização na Língua Materna Inovação, Educação e Soluções Tecnológicas Catálogo de QRCode www.programapalma.com.br 1. Encontre o QRCode 2. Com a câmera do celular mire no QRCode
Currículo e Aulas Previstas
Rua Dr. Francisco Sá Carneiro, N.º 8 Telef. 231 920 454/5 Fax: 231 920 300 Sítio web http://www.aemrt.pt E-mail aemortagua@aemrt.pt Currículo e Aulas Previstas Ano Letivo: 2015/2016 Área: Português 1.º
TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013
TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 NÚMERO DE REGISTRO NO MTE: CE000313/2013 DATA DE REGISTRO NO MTE: 07/03/2013 NÚMERO DA SOLICITAÇÃO: MR011016/2013 NÚMERO DO PROCESSO: 46205.003892/2013-28
A DERIVADA DE UM INTEGRAL
A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,
Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.
Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu
Currículo e Aulas Previstas
Rua Dr. Francisco Sá Carneiro, N.º 8 Telef. 231 920 454/5 Fax: 231 920 300 Sítio web http://www.aemrt.pt E-mail aemortagua@aemrt.pt Currículo e Aulas Previstas Ano Letivo: 2013/2014 Português 1.º Ano DMÍNIS
Estudo de diversidade populacional: efeito da taxa de mutação
IA369 - Guwn & Von Zubn (s/98) Estuo vrsa populaconal: fto a taxa mutação. Ausênca prssão sltva ausênca mutação é assumo qu caa nvíuo a população é ao por um cromossomo hapló qu o crossovr é unform. um
jj j?nota que o Conselho Supremo vae dirigir ájvilemanha
Hp Drr LÃ LL rç lgrph CRRBMNH mprss m ppl HLMBRG BCH C«klm r - K Gr DUR FLl MMN -rz^rpr r - Plgpps? Prprr DMUND BNCUR J Drr 558 ÇRd 5698 Cdmsrçã 7 Cd - Chrs - - prs m ppl NRDKG k C«RDCÇÃ 778 Lrg &Bb Cr
RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse
ANEXO II MODELO DE PROPOSTA
Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl
Implementação de um sistema de controle inteligente utilizando a lógica fuzzy
Implmntção d um sistm d control intlignt utilizndo lógic fuzzy Rsumo Mrclo Bilobrovc (UEPG - CEFET - PR) mbilo@upg.br Rui Frncisco Mrtins Mrçl (CEFET - PR) mrcl@pg.cftpr.br João Luis Kovlski (CEFET - PR)
Ondas Electromagnéticas
Faculdad d ghaa Odas lcomagécas Op - MIB 007/008 Pogama d Ópca lcomagsmo Faculdad d ghaa Aáls Vcoal (vsão) aulas lcosáca Magosáca 8 aulas Odas lcomagécas 6 aulas Ópca Goméca 3 aulas Fbas Ópcas 3 aulas
Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos
Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici