FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA PREDOMINANTEMENTE RESIDENCIAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA PREDOMINANTEMENTE RESIDENCIAL"

Transcrição

1 LL LTVIST PRÂMTRO IMGM SÍNTS UNIONL NTORNO IDNTIIR RLÇÃO DO DIÍIO OM OS LMNTOS D NTORNO, ONSIDRNDO OS TRIUTOS DO LUGR - MSSS DIIDS, RLÇÕS D PROXIMIDD, DIÁLOGO, INTGRÇÃO OU UTONOMI LL DIGO RIVR LL LRO LL RTURO S STUDIO RID KHLO DIGO RIVR O ONJUNTO D DIIÇÕS D S STÁ LOLIZDO N IDD DO MÉXIO, M UM TRRNO D SQUIN NTR S RUS LTVIST DIGO RIVR M UM RGIÃO PRDOMINNTMNT RSIDNIL PLNT D IMPLNTÇÃO SL / m IMPLNTÇÃO IDNTIIR OMO S DÁ OUPÇÃO D PRL DO LOT, DISPOSIÇÃO DO(S) SSO(S) O LOT; OMO S ORGNIZ O GNIMNTO, UM LITUR D RU PR O LOT S DUS DIIÇÕS PRINIPIS, INTRLIGDS POR UM PSSRL, STÃO ISOLDS NO LOT. LOT LÇD RU TOPOGRI IDNTIIR M QU MDID TOPOGRI DO LOT INTRR N ONIGURÇÃO DO PROJTO TNTO N GOMTRI QUNTO N VOLUMTRI TRRNO DIIÇÃO O ONJUNTO OI ONSTRUÍDO M UM ÁR PLN RIXD M RLÇÃO O NÍVL D RU. 3 0 RU LÇD HD SUL SL / m

2 PRÂMTRO IMGM SÍNTS UNIONL ORINTÇÃO SOLR/ INSOLÇÃO IDNTIIR INTRRÊNI D ORINTÇÃO SOLR/INSOLÇÃO N ONIGURÇÃO NO PROJTO, N DTRMINÇÃO D LOLIZÇÃO DOS STORS HD NORT HD SUL HD LST HD OST S SS ORM POSIIONDS D MODO QU S MIORS RTURS ISSM ORINTDS PR HD NORT, QUL TM VNTILÇÃO PRIVILGID MLHOR INSOLÇÃO OND STÃO SITUDOS OS TLIRS D MS S SS, PROPORIONNDO ILUMINÇÃO NTURL NSSSÁRI. N HD ORINTD PR OST, MIS INSOLRD, S RTURS SÃO MÍNIMS OND S NONTR O STOR D SRVIÇO. VNTOS NORDST VNTOS NORT IRULÇÃO SSOS IDNTIIR OMO S RLÇÕS D SSO IRULÇÃO OORRM NO INTRIOR DO LOT, IDNTIIR O(S) SSO(S) XTRIOR - INTRIOR OMO S ORGNIZ IRULÇÃO NO INTRIOR D DIIÇÃO, OS PRINIPIS LUXOS NTR OS MINTS /OU STORS SSO PDSTRS - S RID SSO PDSTRS - S DIGO IRULÇÃO VRTIL IRULÇÃO HORIZONTL O ONJUNTO POSSUI PNS DOIS SSOS DSTINDOS PDSTRS, D UM ORIGINNDO-S UM RU. O SSO O INTRIOR D S D DIGO RIVIR É ITO POR UM SD, À S D RID POR UM RMP (DVIDO ÀS NSSIDDS MOTORS D PROPRITÁRI). M MS S SS IRULÇÃO VRTIL É PROPORIOND POR SDS D VRIDOS TIPOS OMPLXIDDS (XTRNS INTRNS). PLNT IX TÉRRO PLNT IX PVIMNTO NO PVIMNTO TÉRRO É MRDO PLO USO DOS PILOTIS. NOS DMIS PVIMNTOS HÁ POUOS ÁRS DSTINDS XLUSIVMNT IRULÇÃO. NOS DOIS PRIMIROS PVIMNTOS D S D DIGO RIVIR IRULÇÃO HORIZONTL S RSTRING SPÇOS ONINDOS POR UM PRD URV QU LV OS DMIS MINTS. N S D RID NÃO HÁ IRULÇÃO HORIZONTL NSTS PVIMNTOS, VISTO QU OS ÔMODOS STÃO DIRTMNT ONTDOS. NO 3 PVIMNTO XIST UM PSSRL XTRN, LMNTO QU ONT S DUS RSIDÊNIS. PLNT IX 2 PVIMNTO PLNT IX 3 PVIMNTO m ZONMNTO/ STORIZÇÃO IDNTIIR OS USOS DOS MINTS GRUPÁ-LOS SGUNDO ZONS/STORS INS NLISR RTIULÇÃO NTR OS STORS TRLHO ÍNTIMO SRVIÇO M MS S SS O STOR PRDOMINNT É O SOIL, QU STÁ PRSNT M TODOS OS PVIMNTOS. O TÉRRO DS DUS SS É QUS QU SOIL M SU TOTLIDD, OM XÇÃO PNS DOS QURTOS PR OS MPRGDOS. 3 PLNT IX TÉRRO PLNT IX PVIMNTO SOIL NO PVIMNTO, N S D RID, LÉM DOS MINTS SOIIS, TMÉM NONTR-S OZINH - OMPRTILHD NTR S DUS RSIDÊNIS - NQUNTO N S D DIGO HÁ TMÉM UM MINT ÍNTIMO. NS DUS SS, OS TLIRS LOLIZM-S NO 2 PVIMNTO, OND TMÉM S NONTRM MINTS ÍNTIMOS SOIIS. 02 PLNT IX 2 PVIMNTO PLNT IX 3 PVIMNTO m

3 LÇD PRÂMTRO IMGM SÍNTS UNIONL ORGNIZÇÃO SPIL NLISR O SPÇO NO INTRIOR DO DIÍIO M PLNT ORT S IMPLIÇÕS DS SOLUÇÕS SPIIS M TRMOS D UNIONLIDD, RLÇÕS D MPLIDÃO/ONINMNTO, JOGO D PISOS M NÍVIS, T. INTRIOR D DIIÇÃO XTRIOR D DIIÇÃO PILOTIS OS SPÇOS MIS MPLOS ORRSPONDM ÀS ÀRS D TRLHO XPOSIÇÃO, NQUNTO OS MIS ONINDOS OS STORS ÍNTIMOS, SOIIS D SRVIÇO DS SS. O GRND PNO D VIDRO LOLIZDO N HD NORT D S D DIGO RIVIR PRMIT UM LT INIDNI D LUMINOSIDD, MS SU ORINTÇÃO VORÁVL O PROTJ D INSOLÇÃO DIRT. O 2º PVIMNTO D S D DIGO ONT OM UM MZNINO - ORINTDO PR UM PÉ-DIRITO DUPLO - ILUMINDO PLO MIOR PNO D VIDRO UTILIZDO -, DSD O QUL S SS O TRRÇO À PSSRL QU ONT O TRRÇO D S D RID KHLO. S GRNDS RTURS LOLIZDS NS DUS SS PROPORIONM UM GRND INTRÇÃO NTR O MIO INTRIOR O XTRIOR. ORT SL /00 20m ORML GOMTRI D PLNT IDNTIIR OMO S ORGNIZM IDIMNSIONLMNT OS SPÇOS: D ORM LINR, RDIL, ONÊNTRI, RLÇÕS D HIRRQUI, T. IXO 0 IXO 03 IXO 0 º PVIMNTO SPÇO ONTIDO N MLH STRUTURL SD PRINIPL (RSIDÊNI) SD SUNDÁRI (TRRÇO) PONT D LIGÇÃO NTR S SS LMNTOS D POIO PR O NNMNTO IND QU S SS POSSUM SISTM STRUTURIS SIMILRS, OS RITMOS S ONSQUNTS MODULÇÕS SÃO DIRNTS INDPNDNTS. S DUS SS, M TRMOS GRIS, S DSNVOLVM PRTIR D RLÇÃO QU OS DIRNTS SPÇOS MNTÊM OM S DIRNTS SDS. PONT QU Z LIGÇÃO NTR S DUS SS OD O LINHMNTO D SQUNI D PILRS PRSNTS NO IXO 03. D 2º PVIMNTO IXO 0 IXO 02 IXO 03 IXO 04 TÉRRO PLNTS IXS SL /00 3º PVIMNTO 20m VOLUMTRI 3 IDNTIIR OS PRINÍPIOS DOTDOS PR PROPOST D VOLUMTRI: SPÇOS DLIMITDOS/DINIDOS POR PLNOS, VOLUM ÚNIO, JOGO D VOLUMS, VOLUMS DIRNTS PR D LOO D TIVIDDS, DIIÇÃO UTILIZNDO O RURSO D "GRND ORT", STRTÉGIS OMPOSITIVS SIMÉTRIS OU SSIMÉTRIS (DINÂMIS OU STÁTIS), RLÇÃO HIOS/VZIOS (RTURS/HMNTOS). S D RID É MRD POR UM VOLUM PRISMÁTIO PRINIPL, (POID M PILRS) NO QUL S NIXM UM MIO ILINDRO. NO TÉRRO, JUNTO OS PILOTIS, NONTR-S OUTRO PRISM MNOR RUDO OM RLÇÃO O PRINIPL. S D DIGO É ORMD POR UM NÚLO PRINIPL QU S SUDIVID M DOIS VOLUMS. SD SPIRL É OPLD O VOLUM PRINIPL N HD OST, NQUNTO N HD LST OUTRO PRISM S SOM O ONJUTO. S ORS ONTIDS NO PROJTO PRMITM UM OUTR INTRPRTÇÃO VOLUMÉTRI. NQUNTO S D RID POSSU UM ÚNI OR, PSSNDO UM IDI D VOLUM, S D DIGO POSSUI DUS ORS (RNO VRMLHO) TRDUZINDO IDI D PLNOS QU S ONTM. ORT D S D DIGO RIVIR PRMD D SHDS RMTM DIÍIOS INDUSTRIIS. 03

4 PRÂMTRO IMGM SÍNTS ORML "HDS" IDNTIIR S HÁ OORRÊNI D STRTÉGIS OMPOSITIVS NS HDS (D LINHMNTOS, MTRIIS, T.) DO USO D ORNMNTOS. RTURS LMNTOS RSNTDOS ÀS VOLUMTRIS PRINIPIS S HDS POSSUM ORS ORTS USDS N RQUITTUR POPULR MXIN. HÁ UM VRIÇÃO QUNTO S DIMNSOS INTNSIDD DS RTURS. SS TO POD SR XPLIDO PL ORINTÇÃO DOS ÔMODOS. LGUNS LMNTOS (SDS, GURD ORPO, SHDS) DÃO IMPRSSO D TRM SIDO RSNTDOS OS VOLUMS PRINIPIS S DSTNDO NS HDS. ONSTRUTIVO MTRIIS O OJTIVO DST ITM É IDNTIIR OS DIRNTS MTRIIS UTILIZDOS SUS RLÇÕS OM ORM D S LÓGI ONSTRUTIV ONRTO TUOS/IXILHOS D RRO LJ NRVURD OM PRNHIMNTO M TIJOLOS D RRO LVNRI D TIJOLOS RVSTIMNTO M TIJOLOS D RRO OS PILRS, S VIGS, S SDS SÃO M ONRTO RMDO. S LJS QU OMPLTM O SISTM STRUTURL D S SO LSSIIDS OMO LJS NRVURDS OM PRNHIMNTO M LOOS D TIJOLOS. O GURD ORPO QU R OS TRRÇOS DS DUS SS PONT SSIM OMO S SQUDRIS SÃO MTÁLIOS. PDR S PRDS D VDÇÃO DS SS SO D TIJOLOS. VIDRO LÓGI STRUTURL TRVÉS D DSNHOS NLÍTIOS US-S NTNDR QUIS SÃO OS DIRNTS OMPONNTS STRUTURIS DO PROJTO (VIGS, PILRS, ROS, PÓRTIOS, PRDS STRUTURIS, T.) VIDNIR O PPL QU XRM NO ONJUNTO IXO D LINHMNTO STRUTURL. TRÍPLI D SUSTNTÇÃO D IX D'ÁGU. SDS PRINIPIS SUPORT PR OS NOS PILRS SÇÃO 20 x 20 STRUTUR D S D DIGO É OMPOST POR PILRS, NQUNTO S D RID POR 0 PILRS. NO TOTL, S SS POSSUM 2 PILRS, SNDO 2 (S D RID) OM SÇÃO D x OUTROS 2 ( S D RIVR) OM SÇÃO D 7x7. N S D DIGO, S VIGS POSSUM LTUR D 3M, XTO S VIGS D POIO D ORT QU POSSUM LTUR D 30M, MSM LTUR DS NONTRDS N S D RID. PILRS SÇÃO 7 x IXO D LINHMNTO STRUTURL D PILRS SÇÃO x PONT VIGS PLNTS IXS SL /00 20m

5 PRÂMTRO IMGM SÍNTS ONSTRUTIVO LJ NRVURD OM MNT ORTUR PRINIPL D S D RID, UM LJ IMPRMILIZNT NRVURD OM MNT IMPRMILIZNT, É PLN LJ INLIND UTILIZD OMO TRRÇO QU S ONT OUTRO, D MNOR ORTUR DIMSNÃO N S D DIGO. TODO O RSTNT D ORTUR PONT D LIGÇÃO D S D DIGO RIVIR É ORMDO POR SHDS. PRTND-S IDNTIIR SOLUÇÃO D ORTUR (PLN, INLIND, TLH, S, MIST, T.) OS DISTINTOS LMNTOS QU OMPÕ (MDIRMNTO, TLHS, LHS, LJS, VIGS, PINGDIRS, RRMTS, T.) OMPRNDR O UNIONMNTO DSTS OMPONNTS OMO PRT D UM SISTM PROLONGMNTO D LJ DO 3º PV. D RS. DIGO RIVR ORT D IX D SD D RSIDÊNI RID KHLO IXS D ÁGU IRL PLNT D ORT SL /20 2 0m LMNTOS D DQUÇÃO LIMÁTIOS PRTND-S DISTINGUIR OS DIRNTS LMNTOS D DQUÇÃO LIMÁTIOS - ILTROS, VDÇÕS, RISS, MPNS -, D UM DLS MRDO POR MTRIIS ORMS D UNIONMNTO DIRNTS NTR OS LMNTOS D DQUÇÃO LIMÁTIOS DSTM-S OS RISS QU O RQUITTO DSNHOU PR OS SHDS D S D DIGO RIVIR. STS ORM ITOS D SSTO, UM MTRIL IROSO INLTRÁVL O OGO QU TU OMO ISOLNT TÉRMIO IMPD NTRD D INSOLÇÃO DIRT N S. OUTRO TOR IMPORTNT É O GRND NÚMRO D RTURS PRSNTS N HD NORT,D OND PROVÉM O MIOR ÍNDI D VNTILÇÃO D RGIÃO, PROVONDO ITOS D VTILÇÃO RUZD HMINÉ, O QU JUD MNIZR O LIM QUNT PRSNT DURNT LGUNS PRÍODOS DO NO, SSIM OMO, SSSZ D RTURS D HD OST, RTRIZD POR UM MIOR INIDÊNI SOLR DURNT TODO NO, O QU DIIULT PNTRÇÃO DO LOR NO INTRIOR D RSIDÊNI. HDS SISTMS D RTURS SL /00 20m SISTMS D RTURS 3 O OJTIVO NST ITM É IDNTIIR SPIIIDD DS SQUDRIS D S - MTRIIS, ORMS D RIR, TMNHOS, T. TÉRRO º PVIMNTO º PVIMNTO 3º PVIMNTO PORT PDRÃO 2 PORT OM NDIR 3 PORT MRÃO 4 JNL X 2 JNL X 4 JNL X 7 JNL X 2 JNL 2 X 7 JNL 4 X 4 0 JNL X 2 S JNLS SÃO TODS D VIDRO IXILHOS D RRO OM RTUR SULNT SGUM UM MODULÇÃO QUDRD VRINDO SU DISPOSIÇÃO D ORDO OM OS MINTS. NOS NHIROS STORS D SRVIÇO SÃO UTILIZDOS MÓDULOS MNORS (4,) ORMDOS POR DOIS OU QUTRO QUDRDOS DISPOSTOS M IT. NOS DORMITÓRIOS MINTS D STR NONTRM-S MÓDULOS INTRMDIÁRIOS (,,7) QU VRIM D ORDO OM RSIDÊNI (RID OU DIGO). UM PONTO M OMUM, S DÁ N PRSNÇ DOS GRNDS PINÉIS D VIDRO (,0), SITUDOS NS ÁRS D STÚDIO TLIR. PLNTS IXS m

platibanda com rufo metálico h:120cm +12.91 m telha em fibro cimento 12% calha platibanda com rufo metálico h:120cm

platibanda com rufo metálico h:120cm +12.91 m telha em fibro cimento 12% calha platibanda com rufo metálico h:120cm QURO ÁRS STTÍSTI: ÁRS ONSTRUÍS: etiz rua YYYY etiz rua N etiz etiz º PVIMNTO (TÉRRO):,m² ººº PVIMNTO (TIPO - x):,m² x=,m² PVIMNTO TÉNIO (RRILTIX 'ÁU):,m² ÁR TOTL ONSTRUÍ:,m² ÁR OMPUTÁVL:,m² ÁR NÃO OMPUTÁVL:,m²

Leia mais

basalto malhadinha a escolha natural

basalto malhadinha a escolha natural slto mlhdinh slto mlhdinh A Eoslto Loliz-s nos Cnhs m Pont do Sol, ddis à trnsformção omrilizção d pdr ornmntl d lçd m slto. As pdrs usds são provnints d Pdrir d Mlhdinh, sujits um rigoroso prosso d slção.

Leia mais

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth FUNCIONL ENTORNO IDENTIFICR RELÇÃO DO EDIFÍCIO COM OS ELEMENTOS DE ENTORNO, CONSIDERNDO OS TRIBUTOS DO LUGR - MSSS EDIFICDS, RELÇÕES DE PROXIMIDDE, DIÁLOGO, INTEGRÇÃO OU UTONOMI O ENTORNO D CSH #9 É COMPOSTO

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls formlids imigrção pgr su bggm

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

LEI n 45712002 De 29 de abril de 2002.

LEI n 45712002 De 29 de abril de 2002. PREFEITURA i1 UN ICLPL I)I (;ARRI Prç Mrchl Dodoro d Fonsc s/ny Cntro. CEP: 49.830-0()0 CGC 13 112669/0001-17 * Tlfon (0'x79)354 1240 1 E-Mil: LEI n 45712002 D 29 d bril d 2002. Autoriz o Podr Excutivo

Leia mais

GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC

GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC Tópio 01 Tópio 02 Tópio 03 Tópio 04 Tópio 05 Tópio 06 Tópio 07 Tópio 08 Tópio 09 Tópio 10 Tópio 11 ÍNDICE Sistems de Projeções Estudo

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

PLANTA DE COBERTURA ESCALA... 1/75

PLANTA DE COBERTURA ESCALA... 1/75 2.56 20.00 15 1.84 RU ÇÍ 01 14 1.58.83 1.50 2.50 12.00 7.20 ' '.85 I J 01 02 05 06 07 08 09 10 11 12 13 14 TERÇ TERÇ ENVOLTÓRI E PROTEÇÃO À RIÇÃO IRET TRELIÇ RETNGULR EM LH 1.55 1.50 34.00 RU RÚN 20.00

Leia mais

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então:

da submatriz A ij elemento a ij, indicado por Exemplo: Dada a matriz A , onde os Resolução: det A23 n 2 sobre o corpo dos reais, então: Dfinição S ( i Dtrminnts um mtri qudrd d ordm n sor o orpo dos ris ssoimos um slr d R hmdo dtrminnt d omo sndo som d todos os trmos d form ond os t ( k k índis k i s ds oluns ssumm tods s rrumçõs possívis

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Curso grátis Inglês pr vigm Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls

Leia mais

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02.

VAGA VIVA 3 ESTRATÉGIA. GARAGEM (1º e 2ºpav) LUCAS PICCOLI WEINMANN. parking loft em Porto Alegre. Avenida Mauá. Rua General Câmara 02. Trss rso Loro Tr R rl âmr R sso o Nsmto R Sqr mpos 1:250 STUÇÃO TUL 20m PLNTÇÃO prk lot m Porto lr LOLZÇÃO 1 LUS POL WNNN Urs rl o Ro r o Sl Trlho olsão rso 2014.1 Ortor rt Pxoto Púlo pês Sls rm Lojs r

Leia mais

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA:

1. GRANDEZAS FÍSICAS 2. VETORES 3. SOMA DE VETORES Regra do Polígono Grandezas Escalares Grandezas Vetoriais DATA: NOME: TURMA: NOME: TURMA: DATA: 1. GRANDEZAS FÍSICAS 1.1. Grndzs Esclrs São totlmnt dfinids somnt por um lor numérico ssocido um unidd d mdid. Exmplos: Tmpo mss comprimnto tmprtur nrgi crg létric potncil létrico corrnt

Leia mais

QUESTIONÁRIO. Senhor(a) Professor(a),

QUESTIONÁRIO. Senhor(a) Professor(a), 2013 QUSTIONÁRIO O PROSSOR Senhor(a) Professor(a), O Sistema Nacional de valiação da ducação ásica, S, é composto por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes e os questionários

Leia mais

EFEITOS DO COMPRIMENTO DO CONDUTO DE ADMISSÃO NA PERFORMANCE DE UM MOTOR DE COMBUSTÃO INTERNA

EFEITOS DO COMPRIMENTO DO CONDUTO DE ADMISSÃO NA PERFORMANCE DE UM MOTOR DE COMBUSTÃO INTERNA I Jornd Cintíic VI FIPA do CEFET Bmbuí Bmbuí/MG - 2008 EFEITOS DO COMPRIMENTO DO CONDUTO DE ADMISSÃO NA PERFORMANCE DE UM MOTOR DE COMBUSTÃO INTERNA José RICARDO SODRÉ; Rodrigo CAETANO COSTA; Rodrigo HERMAN

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO

BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO I. HISTÓRICO O projto surgiu m 2006, por dmnd d FAP - Fdrção d Agriultur Puári do DF do Sindisuinos. Os rsultdos lnçdos no primiro momnto

Leia mais

Alteração da seqüência de execução de instruções

Alteração da seqüência de execução de instruções Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr,

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos

Cap. 19: Linkage Dois pares de genes localizados no mesmo par de cromossomos homólogos Cp. 19: Linkge Dois pres de genes loclizdos no mesmo pr de cromossomos homólogos Equipe de iologi Linkge Genes ligdos: ocorrem qundo dois ou mis genes estão loclizdos no mesmo cromossomo. Esses genes não

Leia mais

Funções do Corpo. 1 Funções da Pele e Estruturas Relacionadas. a b c d e f g h i j

Funções do Corpo. 1 Funções da Pele e Estruturas Relacionadas. a b c d e f g h i j Funçõs o Corpo Pr itos risto os proutos poio n BDR/SAPA, o CRTIC Guimrãs soliit qu iniqu qul unção o orpo m qu o luno prsnt mior inpi/limitção. Assinl pns mis prominnt iniqu o rsptivo quntiior. 1 Funçõs

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

INFORMATIVO 02 / 2009 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO

INFORMATIVO 02 / 2009 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO 2inf08 HMF (23.01.29) INFORMATIVO 02 / 29 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO Em 22.12.28 foi publicd Li Complmntr 128. El ltrou

Leia mais

QUESTIONÁRIO DO DIRETOR. Senhor(a) Diretor(a),

QUESTIONÁRIO DO DIRETOR. Senhor(a) Diretor(a), 2013 QUSTONÁRO O RTOR Senhor(a) iretor(a), s avaliações do Sistema Nacional de valiação da ducação ásica (S) são compostas por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

Manual de Utilização do Hosp

Manual de Utilização do Hosp Mnul_Hosp_10_10_vr_1.o Mnul Utilizção o Hosp Mnul_Hosp_10_10_vr_1.o ÍNDICE CARO USUÁRIO LEIA COM ATENÇÃO.... 3 PASSO A PASSO 1º ACESSO... 3 INFORMAÇÕES IMPORTANTES DA OPERADORA... 3 TAGS DE PREENCHIMENTO

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa

UTL Faculdade de Motricidade Humana. Mestrado em Reabilitação Psicomotora. Estágio CERCI Lisboa UTL Fculd Motricid Humn Mstrdo m Rbilitção Psicomotor Estágio CERCI Lisbo Sssão Activid no Mio Aquático 16/11/2011 Clint: C.M., L.V., A.E., F.C. S.C. domínio Nom Dscrição Obj. Esp. Mtriis Estrtégis Critério

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

ADESIVO PARAFUSO TRANSPORTE 2 7

ADESIVO PARAFUSO TRANSPORTE 2 7 9 0 Nº O ITM Nº PÇ QT. 0.00. - STRUTUR RVISÃO 0 0 N.. LOLIZÇÃO SRIÇÃO - RTIR O ONJUNTO MORTOR RONTL 0 T SOLIITO POR MOIIO POR 9/0/0 GUILHRM RNNO - SI 0.00.(x) / NTR 0.00.(x) 09/0/0 RNNO RNNO 0.00. - RLO

Leia mais

O atrito de rolamento.

O atrito de rolamento. engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet

Leia mais

+ fotos e ilustrações técnicas de outras usinas

+ fotos e ilustrações técnicas de outras usinas Imgns problms mbintis no sul Snt Ctrin, corrnts s tivis minrção crvão, su lvgm su uso m usin trmlétric + fotos ilustrçõs técnics outrs usins Fotos fits por Oswl Svá ntr 1992 2001, durnt visits fits juntmnt

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?

Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo? N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

banco bolsa passo a passo

banco bolsa passo a passo Bno Bols Bno Bols it tr or trnç no ols psso psso pso kg imnsõs rto: P (A9 x L39 x P39m), G (A33 x L5 x P43m) tmpo stimo onstrução 3h nívl áil usto stimo R$ 0 suport té 90kg (G) 50kg (P) rrmnts srr tio-tio,

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Oportunidade de Negócio: OFICINA DE CONVERSÃO - GNV

Oportunidade de Negócio: OFICINA DE CONVERSÃO - GNV Oportunidde de Negócio: OFICINA DE CONVERSÃO - GNV Mio/2007 1 OPORTUNIDADE DE NEGÓCIO FICHA BÁSICA SEGMENTO: Prestção de Serviço Conversão de motores utomotivos (GNV) DESCRIÇÃO: Oficin pr montgem de Kit

Leia mais

Plugues e Tomadas Industriais

Plugues e Tomadas Industriais Plugues e Toms Inustriis Linh Inustril Instlções mis onfiáveis e segurs. CARACTERÍSTICAS GERAIS A Linh e Plugs e Toms Inustriis Soprno é ini pr onexão e iversos equipmentos, em mientes sujeitos pó, águ,

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

geometria descritiva exercícios eber nunes ferreira geometria descritiva

geometria descritiva exercícios eber nunes ferreira geometria descritiva exercícios RPRSNTÇÃO TRIÉRI SÓLIOS SÓLIOS PÁGIN 01 SÇÃO PLN / SÓLIOS PÁGIN 27 RIR GRNZ SÇÃO PLN PÁGIN 54 RÍIOS PLNIFIÇÃO PÁGIN 73 2 RPRSNTÇÃO TRIÉRI SÓLIOS MPLO UO POIO PL S () NO PH UO OM S () ISTNT 1,0

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

LIXO NA PRAIA DE ITAPUÃ (SALVADOR-BAHIA): ESTUDO COMPARATIVO ENTRE FINAIS DE SEMANA E DIAS ÚTEIS

LIXO NA PRAIA DE ITAPUÃ (SALVADOR-BAHIA): ESTUDO COMPARATIVO ENTRE FINAIS DE SEMANA E DIAS ÚTEIS LIXO NA PRAIA DE ITAPUÃ (SALVADOR-BAHIA): ESTUDO COMPARATIVO ENTRE FINAIS DE SEMANA E DIAS ÚTEIS Wlter Rmos Pinto Cerqueir Universidde Estdul de Feir de Sntn, Deprtmento de Ciênis Biológis, Museu de Zoologi,

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Notas de aulas 1 IFSP Mecânica Técnica

Notas de aulas 1 IFSP Mecânica Técnica Nots de uls 1 IFSP Meâni Téni 1. Revisão de trigonometri. Sistems de uniddes. Algrismos signifitivos. 2. Coneito de vetor. Som de vetores. Deomposição de forçs. 3. Equilírio de um ponto mteril. 4. Digrm

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação Experiênci I Crcterístic de egulção do Gerdor de Corrente Contínu com Excitção em Derivção 1. Introdução Neste ensio máquin de corrente contínu ANEL trblhrá como gerdor utoexcitdo, não sendo mis necessári

Leia mais

Rev /00. Metalúrgica Netz Ltda. Fone/FAX: (55) Endereço: RS 344, KM 43,5 - ao lado da AGCO do Brasil. Santa Rosa - RS.

Rev /00. Metalúrgica Netz Ltda. Fone/FAX: (55) Endereço: RS 344, KM 43,5 - ao lado da AGCO do Brasil. Santa Rosa - RS. TÁLOO PÇS Rev. 05.2013/00 ROÇIR Metalúrgica Netz Ltda. one/x: (55) 3511-1500 ndereço: RS 344, KM 43,5 - ao lado da O do rasil. Santa Rosa - RS. ÍNI R 1,3 (VISÃO RL ROIR RIOL 1300) 01 R 1,3 (LIST PÇS ROIR

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO EXXA -SL 3 4 7 8 9 0 QUIPMNTOS ONTROLOS XX SL (L44) - RJ4- /SNSORS - IM SOPOR 30.400.83.7 XX SL (L44) - RJ4- /SNSORS - IM MUTIR 30.400.84. IRM INTRLIÇÃO UTOMÇÃO XX -SL 3 0// INTIIÇÃO OS SNSORS UMI PRSSÃO /03/4

Leia mais

Capri L.138 / A.101 / P. 77,5 cm

Capri L.138 / A.101 / P. 77,5 cm BERÇO & CM Cpri L.38 /.0 / P. 77,5 m Gur ss mnul l po srvir pr futurs onsults m so vris, lmbrno qu nossos móvis tm rnti 2 nos. Pr surnç o su bbê, li om muit tnção tos s instruçõs nts iniir montm. MNUL

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Armazenamento de Sementes de Milho em Recipientes Reutilizáveis

Armazenamento de Sementes de Milho em Recipientes Reutilizáveis Arznnt d Snt d Milh Rcipint Rutilizávi Miz Sd Strg In Rubl Cntinr SANAZÁRIO, Ann Chritin 1. kinzri@yh.c.br; COELHO, Fábi Cunh 1. fclh@unf.br; VIEIRA, Hnriqu Durt 1. hnriqu@unf.br; RUBIM, RqulL Filh 1.

Leia mais

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013

TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 TERMO ADITIVO A CONVENÇÃO COLETIVA DE TRABALHO 2012/2013 NÚMERO DE REGISTRO NO MTE: CE000313/2013 DATA DE REGISTRO NO MTE: 07/03/2013 NÚMERO DA SOLICITAÇÃO: MR011016/2013 NÚMERO DO PROCESSO: 46205.003892/2013-28

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica Stmro 2014 www.tgut.om.r 1/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi Stmro 2014 www.tgut.om.r 2/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi A TguT stá rpginno lin T-olr pr pstils râmi. O tul

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas

Análise de Circuitos Trifásicos Desequilibrados Utilizando-se Componentes Simétricas Análise de Circuitos Trifásicos Desequilibrdos Utilizndo-se Componentes Simétrics Prof. José Rubens Mcedo Jr. Exercício: Um determind crg trifásic, ligd em estrel flutunte, é limentd pels seguintes tensões

Leia mais