Teorema Fatoração Única. Todo inteiro pode ser representado de modo único como o produto de números primos distintos, a menos da ordem dos fatores.

Tamanho: px
Começar a partir da página:

Download "Teorema Fatoração Única. Todo inteiro pode ser representado de modo único como o produto de números primos distintos, a menos da ordem dos fatores."

Transcrição

1 Pricipio de Dirichlet ou da casa dos pombos. Se mais de objetos (pombos) são dispostos em classes (casas de pombo), pelo meos uma das classes (casas de pombo) possui mais de um objeto (pombo). Pricípio da divisão euclidiaa. Se m e são iteiros existem dois iteiros q e r tais que m q r e 0 r. Os úmeros q e r são deomiados, respectivamete, quociete e resto da divisão euclidiaa de m por. Teorema de Bézout. Se a e b são iteiros e d é seu maior divisor comum etão o meor valor positivo da expressão ax + by, ode x e y são iteiros quaisquer, é precisamete d. Teorema Fatoração Úica. Todo iteiro pode ser represetado de modo úico como o produto de úmeros primos distitos, a meos da ordem dos fatores. (Eötvös 1894/1) Prove que as expressões x + 3y e 9x + 5y são divisíveis por 17 para o mesmo cojuto de pares de valores iteiros x e y. Solução. Observe a igualdade 4(x + 3y) = 17(x + y) (9x + 5y). Se x + 3y for divisível pelo 17, (9x + 5y) também será, e vice-versa. Repare que estamos utilizado a importate regra: se um primo (o caso o 17) divide o produto de dois úmeros (o caso são 4 e x + 3y) etão ele divide pelo meos um dos úmeros. (Eötvös 1896/1) Prove que log k log ode k vale a quatidade de fatores primos distitos de. (Eötvös 1898/1) Determie todos os aturais para os quais 1 é divisível por 3. Dica. tete ecotrar um seqüêcia periódica para os restos... essa dica vale para muitos problemas. (Eötvös 1899/3) Prove que, para qualquer valor atural, a expressão de A é divisível por 1897: A Dica. quato vale (a b) multiplicado por 1 1 ( a a b... ab b )? (Eötvös 1900/1) Sejam a, b, c, d iteiros fixos, ode 5 ão divide d. Assuma que existe um iteiro 3 m para o qual am bm cm d é divisível por 5. Prove que existe um iteiro para o qual 5 3 divide d c b a. (Eötvös 1901/1) Prove que, sedo um úmero atural, a expressão é divisível por 5 se e somete se ão é divisível por 4. (Eötvös 1901/3) Sejam a e b aturais cujo maior divisor comum é d. Prove que exatamete d dos úmeros a, a, 3a,..., (b 1)a, ba são divisíveis por b. (Eötvös 190/3) Mostre que toda expressão quadrática Q( x) Ax Bx C pode ser reescrita x( x 1) a forma Q( x) k lx m ode k, l e m depedem dos coeficietes A, B e C. Demostre, em seguida, que Q(x) assume valores iteiros para todo iteiro x se e somete se k, l, m são iteiros. (Eötvös 1903/1) Seja p 1 ( p 1), ode p 1 é primo. Mostre que a soma dos divisores positivos (exceto ) de é igual a. Curiosidade e Desafio. Um úmero atural que é igual a soma de seus divisores positivos, excetuado-se o próprio, é dito ser um úmero perfeito. Até esta data (4/09/00), aida é um problema em aberto saber se existem úmeros perfeitos ímpares. Se existir um tal úmero, ele deverá satisfazer uma quatidade surpreedete de codições, a maioria dos matemáticos acredita que ão existem perfeitos ímpares. Não se sabe, também, se existem ifiitos úmeros perfeitos pares. Nosso desafio é o seguite: você cosegue demostrar a recíproca do exercício da Eötvös, ou seja, que se é um úmero perfeito par etão ele pode ser escrito como p 1 ( p 1) ode p 1 é primo? A primeira demostração deste fato é devida a Leohard Euler. Você cosegue ecotrar alguma restrição para um úmero perfeito ímpar, ou seja, alguma codição que ele deveria satisfazer caso exista? (Eötvös 1906/1) Seja a 1, a,..., a é um rearrajo arbitrário dos úmeros 1,,...,. Prove que, se é ímpar, o produto ( a1 1)( a )...( a ) resulta par. Dica. Ímpar mais ímpar é par... (Eötvös 1907/1) Se p e q são úmeros ímpares, mostre que a equação x px q 0 ão possui raízes x racioais. (Eötvös 1907/3) Seja r/s = 0. k 1kk3... a represetação decimal de um úmero racioal. Visite o site Lista / Págia 1 de 4

2 Prove que ao meos dois dos úmeros r r 1 10 s k1, 1 10 s (10k1 k ),... são iguais. (Eötvös 1908/1) Dado dois ímpares a e b; prove 3 3 que a b é divisível por se e somete se a b é divisível por. (Eötvös 1909/1) Cosidere três úmeros aturais cosecutivos. Prove que o cubo do maior ão pode ser igual à soma dos dois meores. (Eötvös 1910/) Sejam a, b, c, d e u iteiros tais que os úmeros ac, bc + ad, bd são múltiplos de u. Mostre que bc e ad são múltiplos de u. (Eötvös 1911/3) Prove que 3 1 ão é divisível por para ehum iteiro > 1. (Eötvös 191/) Prove que para todo iteiro positivo, será um múltiplo de 8 o úmero 1 A (Eötvös 1913/3) Deixe d deotar o maior divisor comum dos aturais a e b, ad d deotar o mesmo dos aturais a e b. Prove que dd é o maior divisor comum aos quatro úmeros aa, ab, ba, bb. (Eötvös 1917/1) Se a e b são iteiros e as soluções do sistema de equações y x a 0 y xy x b 0 são racioais, etão elas próprias são iteiras. (Eötvös 1917/) No quadrado de um iteiro a, o dígito das dezeas é o sete. Qual é o dígito das uidades? (Eötvös 19/) Prove que x 4 x x ão é o produto de dois poliômios x ax b e x cx d ode c e d são iteiros. (Eötvös 193/3) Prove que, se os termos de uma progressão aritmética ifiita de aturais ão são todos iguais, eles ão podem ser todos primos. (Eötvös 195/1) Sejam a, b, c, d quatro iteiros. Prove que o produto das seis difereças b a, c a, d a, d c, d b, c b é divisível por 1. (Eötvös 195/) Em quatos zeros termia a represetação decimal do úmero 100! = ? (Eötvös 196/) Prove que o produto de quatro aturais cosecutivos ão é um quadrado perfeito. Dica. Some 1 ao produto dos quatro aturais começados por e procure fatorar a expressão em termos de. (Eötvös 197/1) Sejam a, b, c, d quatro iteiros relativamete primos com m = ad bc. Prove que os pares de iteiros (x,y) para os quais ax + by é múltiplo de m são os mesmos pares para os quais cx + dy é múltiplo de m. Seguda Fase, OBM 00, Nível 1) Geraldiho e Magrão saíram de suas casas o mesmo istate com a iteção de um visitar o outro, camihado pelo mesmo percurso. Geraldiho ia pesado um problema de olimpíada e Magrão ia refletido sobre questões filosóficas e em perceberam quado se cruzaram. Dez miutos depois, Geraldiho chegava à casa de Magrão e meia hora mais tarde, Magrão chegava à casa de Geraldiho. Quato tempo cada um deles adou? Observação: Cada um deles ada com velocidade costate. Solução. Geraldio percorreu a distâcia A em t miutos, equato Magrão percorreu uma distâcia B. Neste istate eles se ecotraram. Em seguida: G. percorreu uma distâcia B em 10 miutos; e M., uma distâcia A em 40 miutos. As velocidades são costates, portato A/t = B/10 e B/t = A/40, dode coclui-se A/B = t/10 = 40/t, i.e., t = 0 mi. ) Um grade paiel a forma de um quarto de círculo foi composto com 4 cores, coforme idicado a figura ao lado, ode o segmeto divide o setor em duas partes iguais e o arco itero é uma semicircuferêcia. Qual é a cor que cobre a maior área? Solução. Observe a figura abaixo. Os dois âgulos marcados com traços são iguais. Sabe-se que: um triâgulo iscrito em uma circuferêcia é retâgulo se e somete se tem um de seus lados como diâmetro. Calculase facilmete que a área da parte do oitavo do círculo maior vale a o mesmo que área do semicírculo meor, portato as áreas Verde e Amarelas são iguais, segue-se que a área Azul e Braca são iguais e meores. 3) Nas casas de um tabuleiro 8 por 8 foram escritos úmeros iteiros positivos de forma que a difereça etre úmeros escritos em casas vizihas Visite o site Lista / Págia de 4

3 (quadrados com um lado comum) é 1. Sabe-se que uma das casas está escrito 17 e, em outra, está escrito 3. Calcule a soma dos úmeros escritos as duas diagoais do tabuleiro. Solução. A distâcia míima etre duas diagoais, adado-se de casa em casa viziha, é de 14 passos. Como 17 3 = 14 e 17 e 3 estão escritos, certamete eles estão em diagoais opostas. Em seguida preeche-se uicamete o tabuleiro, e calcula-se uma soma de 16 termos, igual a ) O professor Pardal está estudado o comportameto familiar de uma espécie de pássaro. Os potos A, B, C e D da figura ao lado, represetam a disposição de quatro ihos desses pássaros. O professor costruiu um posto de observação equidistate dos quatro ihos. Todos os ihos e o posto de observação estão em um mesmo ível de altura a partir do solo, a distâcia de B a D é de 16 metros e B A ˆD 45. Determie a distâcia que o posto guarda de cada iho. Solução. Observe a figura abaixo. Um teorema clássico de geometria diz que o âgulo BÂD vale a metade do arco BD. Trace a altura relativa ao lado BD o triâgulo OBD, isósceles e eqüilátero. No triâgulo retâgulo formado, vê-se que o raio da circuferêcia satisfaz OB 8 8. Portato a distâcia pedida é 8. 5) O primeiro úmero de uma seqüêcia é 7. O próximo é obtido da seguite maeira: Calculamos o quadrado do úmero aterior 7 = 49 e a seguir efetuamos a soma de seus algarismos e adicioamos 1, isto é, o segudo úmero é = 14. Repetimos este processo, obtedo 14 = 196 e o terceiro úmero da seqüêcia é = 17 e assim sucessivamete. Qual o 00º elemeto desta seqüêcia? Solução. Calculam-se os primeiros 8 termos: 7, 14, 17, 0, 5, 8, 11, 5,... Há uma repetição de três em três a partir do quito termo. Os termos de ordem múltipla de três, i.e., o sexto termo, o oo termo, etc. resultam em 8. Portato o 001-ésimo termo é o 8, logo o termo pedido é o 11. 6) O ao 00 é palídromo, ou seja, cotiua o mesmo se lido da direita para a esquerda. a) Depois de 00, quais serão os próximos quatro aos palídromos? b) O último ao palídromo, 1991, era ímpar. Quado será o próximo ao palídromo ímpar? c) O último ao palídromo primo acoteceu há mais de 1000 aos, em 99. Determie qual será o próximo ao palídromo primo. Solução. a) os palídromos são claramete 11,, 33 e 44; b) todos os aa são pares, em seguida vem os 3aa3, ímpares, e 3003 é o primeira dessa lista; c) os úmeros de 4 dígitos palídromos são abba = 1001a + 110b, e portato são divisíveis por 11 pois 1001 e 110 são. Os primeiros palídromos de 5 dígitos são 10001, 10101, 1001, 10301, etc. Por verificação direta, vemos que = , = , 1001 = , e ão é divisível por ehum primo meor ou igual que sua raiz quadrada, portato é primo e é a resposta. Obs. Demostre que se um úmero é composto ele é divisível por um iteiro d que satisfaz d. Seguda Fase, OBM 1997, Júior 1) No edificio mais alto de Terra Brasilis moram Eduardo e Augusto. O úmero do adar do apartameto de Eduardo coicide com o úmero do apartameto de Augusto. A soma dos úmeros dos apartametos dos dois é 164. Calcule o úmero do apartameto de Eduardo sabedo que há 1 apartametos por adar. (Por exemplo, o primeiro adar estão os apartametos de 1 a 1, o segudo, de 13 a 4, e assim por diate). ) A professora de Matemática propôs o seguite problema para seus aluos: "Marquem 6 potos sobre uma circuferêcia. Eu quero que vocês pitem o maior úmero de cordas determiadas por estes potos, de modo que ão existam quatro dos potos sobre a circuferêcia determiado um quadrilátero com todos os lados e diagoais coloridos." a) Edmilso ecotrou uma solução correta colorido 1 cordas. Exiba uma maeira de como fazer isto; b) Gustavo Afirmou ter ecotrado uma solução a qual pitara 13 cordas. Mostre que a solução de Gustavo ão está correta. Visite o site Lista / Págia 3 de 4

4 3) Sejam ABCD um quadrado, M o poto médio de AD e E um poto sobre o lado AB. P é a iterseção de EC e MB. Mostre que a reta DP divide o segmeto EB em dois segmetos de mesma medida. 4) Mostre que existem ifiitos iteiros positivos satisfazedo simultaeamete as seguites codições: a) é ímpar; b) possui exatamete 100 divisores positivos; c) existem exatamete 1997 triâgulos retâgulos, dois a dois ão cogruetes, de lados iteiros e como medida de um dos catetos. 5) Seja 1 um iteiro. Temos lâmpadas alihadas e umeradas, da esquerda para a direita, de 1 a. Cada lâmpada pode estar acesa ou apagada. A cada segudo, determia-se a lâmpada apagada de maior úmero e iverte-se o estado desta (de acesa para apagada ou de apagada para acesa) e das lâmpadas posteriores (as lâmpadas de maior úmero). a) Mostre que em algum mometo todas as lâmpadas estarão acesas (e o processo se ecerrará); b) Supoha que iicialmete todas as lâmpadas estejam apagadas. Determie depois de quatos segudos todas as lâmpadas estarão acesas; c) Supoha agora = 11 e que o iício somete as lâmpadas de úmeros 6, 7 e 10 estejam acesas. Mostre que após exatamete 1997 segudos todas as lâmpadas estarão acesas. Terceira Fase, OBM 1998, Nível 1) Prove que em qualquer petágoo covexo existem dois âgulos iteros cosecutivos cuja soma é maior ou igual a 16. ) No triâgulo ABC, D é o poto médio de AB e E o poto do lado BC tal que BE = EC. Dado que os âgulos ADC e BAE são iguais, ecotre o âgulo BAC. 3) Em um jogo existem 0 buracos vazios em fila e o jogador deve colocar um pio em cada buraco de acordo com as seguites regras: a) Se colocar um pio em um buraco e se os dois buracos vizihos estiverem vazios, o pio permaece. b) Se colocar um pio em um buraco e se um dos buracos vizihos estiver ocupado, o pio deste buraco viziho deve ser retirado. c) Se colocar um pio em um buraco e se os dois buracos vizihos estiverem ocupados, etão um dos pios vizihos deve ser retirado. Determie qual é o úmero máximo de pios que podem ser colocados. 4) São dados 15 úmeros aturais maiores que 1 e meores que 1998 tais que dois quaisquer são primos etre si. Mostre que pelo meos um desses 15 úmeros é primo. Dica. Pombos...!? Terceira Fase, OBM 1999, Nível 1) Seja ABCDE um petágoo regular tal que a estrela ACEBD tem área 1. Sejam P iterseção etre AC e BE e Q a iterseção etre BD e CE. Determie a área de APQD. ) Um reio é formado por dez cidades. Um cidadão muito chato foi exilado da cidade A para a cidade B, que é a cidade do reio mais loge de A. Após um tempo, ele foi expulso da cidade B para a cidade C do reio mais loge de B. Sabe-se que a cidade C ão é a mesma cidade A. Se ele cotiuar sedo exilado dessa maeira, é possível que ele retore à cidade A? Nota: as distâcias etre as cidades são todas diferetes. 3) Adriao, Bruo e Carlos disputaram uma série de partidas de têis de mesa. Cada vez que um jogador perdia, era substituído pelo que estava a esperar. A primeira partida foi disputada por Adriao e Bruo. Sabe-se que Adriao veceu 1 partidas e Bruo 1. Quatas vezes Adriao e Bruo se efretaram? 4) Prove que há pelo meos um algarismo diferete de zero etre a a. e a a. casa decimal de após a vírgula. Dica. Prove, iicialmete, que é irracioal. Visite o site Lista / Págia 4 de 4

5 This documet was created with WiPDF available at The uregistered versio of WiPDF is for evaluatio or o-commercial use oly.

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a: 01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 01 GABARITO COMENTADO 1) a + b + c + d + 4 + + = 1 a + b + c + + + 4 = 1 a + b + c + d + 9 = 1 a + b + c +

Leia mais

A maneiras. Concluindo, podemos obter

A maneiras. Concluindo, podemos obter Matemática A. o ao TESTE DE AVALIAÇÃO DE MATEMÁTICA.º ANO PROPOSTA DE RESOLUÇÃO. A soma de todos os termos da liha de ordem do triâgulo de Pascal é ; assim, para esta liha, tem-se 96 log 96 log. O elemeto

Leia mais

Matemática Revisão MASTER I

Matemática Revisão MASTER I Matemática Revisão MASTER I Professor Luiz Amaral. (Uerj 009) Maurre Maggi foi a primeira brasileira a gahar uma medalha olímpica de ouro a modalidade salto em distâcia. Em um treio, o qual saltou vezes,

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Um úmero atural é primo quado ele

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

Gabarito do Simulado da Primeira Fase - Nível Beta

Gabarito do Simulado da Primeira Fase - Nível Beta Gabarito do Simulado da Primeira Fase - Nível Beta Questão potos Serão laçados dois dados: um dado azul de 4 faces, umeradas de a 4, e um dado vermelho de 8 faces, umeradas de a 8 a Determie a probabilidade

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-44 Cálculo Diferecial e Itegral II (Escola Politécica) Terceira Lista de Exercícios - Professor: Equipe de Professores 0.1. Vide Lista,

Leia mais

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto] [Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste (Cadero 1+ Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos: Cadero

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

SOLUÇÃO RESOLUÇÃO LÓGICA QUANTITATIVA GRADUAÇÃO 27/05/2007 1ª QUESTÃO. y y. y y. y são tais que: Duas seqüências: ( ) x e ( )

SOLUÇÃO RESOLUÇÃO LÓGICA QUANTITATIVA GRADUAÇÃO 27/05/2007 1ª QUESTÃO. y y. y y. y são tais que: Duas seqüências: ( ) x e ( ) PG ª QUESTÃO Duas seqüêcias: ( ) e ( ) são tais que: ( ) + ; razão de geométrica progressão uma é seqüêcia A Escreva os 6 primeiros termos da seqüêcia ( ) ( ) 8 8 ) ( 8 8 8 8 ) ( 6 6 ª QUESTÃO O triâgulo

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x

COMENTÁRIOS ATIVIDADES PROPOSTAS. 2. Lembrando... II. K = x K = (7 2 ) x K = x Matemática aula COMENTÁRIOS ATIVIDADES PARA SALA. Pelo algoritmo da divisão, temos: I. q + r II. + ( + 3) q + r + q+ r+ 3q + + 3q q 7 5. N 5. 8 x N 5. 3x Número de divisores ( + )(3x + ) 3x + 7 x um úmero

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 05/06/06 Para a costrução de uma jaela a sala de um teatro, eiste a dúvida se ela deve ter a forma de um retâgulo, de um círculo ou etão da figura formada pela

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Escola Secudária da Sé-Lamego Ficha de Trabalho de Matemática Ao Lectivo 00/0Cojuto R - Operações com radicais, racioalização de deomiadores e equadrametos 0.º Ao Nome: N.º: Turma: NÚMEROS IRRACIONAIS

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

CADERNO DE QUESTÕES. Nível 3. 1ª Olimpíada de Matemática do Distrito Federal. Segunda Fase - 20 de agosto de º, 2º e 3º Anos do Ensino Médio

CADERNO DE QUESTÕES. Nível 3. 1ª Olimpíada de Matemática do Distrito Federal. Segunda Fase - 20 de agosto de º, 2º e 3º Anos do Ensino Médio CADERNO DE QUESTÕES 1ª Olimpíada de Matemática do Distrito Federal Nível 3 1º, º e 3º Aos do Esio Médio Nome completo Seguda Fase - 0 de agosto de 017 Edereço completo Complemeto (casa, apartameto, bloco)

Leia mais

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada: MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ] Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Prova 3 Matemática ... GABARITO 4 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 4 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Exame Nacional de Matemática A 1 a Fase 2017

Exame Nacional de Matemática A 1 a Fase 2017 Exame Nacioal de Matemática A a Fase 07 Proposta de Resolução Versão Nuo Miguel Guerreiro I Chave da Escolha Múltipla ABDABCDC. Pretedem-se formar úmeros aturais de quatro algarismos com os algarismos

Leia mais

Prova 3 Matemática ... GABARITO 2 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 2 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA XI OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA OLIMPÍADA REGIONAL DE MATEMÁTICA SANTA CATARINA - UFSC Gabarito da Prova a fase de 008 Nível 3. Seja N a a a a

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

QUESTÕES OBJETIVAS., definida por f ( x) b,

QUESTÕES OBJETIVAS., definida por f ( x) b, 9) Cosidere uma fução f : uma progressão: a) aritmética decrescete. b) geométrica decrescete. c) aritmética crescete. d) geométrica crescete. e) costate. QUESTÕES OBJETIVAS x, defiida por f ( x) b, com

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011 Campus Pato Braco Prova Parcial Matemática Discreta para Computação 20 Aluo(a): Data: 08/04/20. (,5p) Explicar o Paradoxo de Cator. Use como base o seguite: Teorema de Cator: Para qualquer cojuto A, a

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

2 A) E) 2 3 B) 2 3. Questão 03. é real. Então. , em que n é o menor inteiro positivo tal que 1. i z w é igual a A) 3 i. Questão 04

2 A) E) 2 3 B) 2 3. Questão 03. é real. Então. , em que n é o menor inteiro positivo tal que 1. i z w é igual a A) 3 i. Questão 04 : cojuto dos úmeros aturais : cojuto dos úmeros reais : cojuto dos úmeros reais NOTAÇÕES arg z : argumeto do úmero compleo z a, b : a b A \ B : A e B ão-egativos i : uidade imagiária; i A : complemetar

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

a) 1 hora c) 3 horas b) 2 horas d) 4 horas

a) 1 hora c) 3 horas b) 2 horas d) 4 horas MN RNÁUTI PRTMNT NSIN SL PRPRTÓRI TS R NURS MISSÃ o N PR 00 PRV MTMÁTI 9 de setembro de 000 NM: SSINTUR: Trascreva estes dados para sua folha de respostas. INSRIÇÃ: PRV: - MTÉRI: 0 GRIT 0 0 0 0 05 0 07

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Questão 02. é (são) verdadeira(s) A) apenas I. B) apenas II. C) apenas III. D) apenas I e II. E) Nenhuma. Questão 03 8 A) 9 B) C)

Questão 02. é (são) verdadeira(s) A) apenas I. B) apenas II. C) apenas III. D) apenas I e II. E) Nenhuma. Questão 03 8 A) 9 B) C) 0 ITA "A matemática é o alfabeto com que Deus escreveu o mudo" Galileu Galilei Notações : cojuto dos úmeros aturais;,,,... i z : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA PROGRESSÃO GEOMÉTRICA 9º ANO MATEMÁTICA PROF. ALDO 4º BIM Questão A sequêcia umérica c é defiida como c = a b, com, em que a e b são progressões aritmética e geométrica, respectivamete. Sabedo-se que a

Leia mais

GRUPO I Duração: 50 minutos

GRUPO I Duração: 50 minutos Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

A B C A e B A e C B e C A, B e C

A B C A e B A e C B e C A, B e C 2 O ANO EM Matemática I RAPHAEL LIMA Lista 6. Durate o desfile de Caraval das escolas de samba do Rio de Jaeiro em 207, uma empresa especializada em pesquisa de opiião etrevistou 40 foliões sobre qual

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0 - Probabilidades - 12º ano Metas (C.A.)

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0 - Probabilidades - 12º ano Metas (C.A.) AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho º 0 - Probabilidades - 1º ao Metas (C.A.) 1. Um cojuto X tem 10 elemetos. Quatos subcojutos de X, com 3 elemetos, é possível formar?. Exprima cada uma

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shie, Colégio Etapa Nível Itermediário.. GRAFOS. O que são e para que servem grafos? Defie-se grafo como o par (V, A) ode V = {v, v,...,v } é um cojuto de vértices e

Leia mais

Resolução do 1 o Teste

Resolução do 1 o Teste DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA 1 o SEMESTRE 2015/2016 Resolução do 1 o Teste 21 de ovembro de 2015 Duração: 2 Horas Istruções: Leia atetamete a prova os 15 miutos previstos para esse efeito.

Leia mais