, α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0

Tamanho: px
Começar a partir da página:

Download ", α 1 α + 1 d dx (log x ) = 1 1. x dx = log x, x 0"

Transcrição

1 Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE o SEM. 006/07 5 a FICHA DE EXERCÍCIOS PRIMITIVAÇÃO DE FUNÇÕES ELEMENTARES Primitivação é a operação inversa a erivação. Mais precisamente, uma primitiva e uma função f é uma função F com erivaa F = f, i.e. tal que F () = f(). Escreveremos então que F () = f(), o que significa precisamente que F é uma função com erivaa F = f. Notem que F = f (F + c) = f para qualquer constante c R, pelo que se F é uma primitiva e f, então F + c também é uma primitiva e f. O objectivo esta ficha é aprener a encontrar primitivas e algumas funções elementares, quano essas primitivas poem também ser epressas como funções elementares. Aqui, o termo função elementar significa uma função que poe ser epressa por aição, multiplicação, ivisão e composição e funções polinomiais, potências, funções trigonométricas, hiperbólicas e respectivas inversas, e funções eponencial e logaritmo. I. Primitivas Imeiatas. As fórmulas para as erivaas e algumas funções bem nossas conhecias, conuzem à seguinte tabela e primitivas imeiatas: (α ) = α α α = α+, α α + (log ) = = log, 0 (e ) = e e = e (a ) = (log a)a a = a log a, a R+ \ {} (sen ) = cos cos = sen (cos ) = sen sen = cos (tan ) = cos () = tan cos () (cot ) = sen () = cot sen ()

2 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA ( + 5 (senh ) = cosh (cosh ) = senh (arcsen ) = (arctan ) = + (argsenh ) = + (argcosh ) = cosh = senh senh = cosh = arcsen = arctan + = argsenh + = argcosh Temos também que f (f + g) = + g (f + g) = f + g e f (cf) = c cf = c f, para qualquer constante c R. Usano estes factos, etermine uma primitiva e caa uma as seguintes funções. ) 5 ) + 3) + 5 4) 5) ) 7) 0) ) 8) ( + ) 3 9) cos () 4 3 3) 4) + 6) 6 sen () ) tan () ) cot () 5) 7) e +3 8) e 9) 3e + 0) ) a b ) 3 5) cos() 6) sen() cos() + 3) 3 + 4) 3 sen() 7) senh() + 3 cosh()

3 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 3 II. Primitivas Quase-Imeiatas. A fórmula para a erivaa a função composta iz-nos que F () = (F (u())) = F (u()) u () f() F (u()) = f(u()) u (). Esta fórmula, combinaa com a tabela anterior e primitivas imeiatas, conuz à seguinte tabela e primitivas quase-imeiatas. u() α u () = u()α+, α α + u () = log u() u() e u() u () = e u() a u() u () = au() log a, a R+ \ {} cos(u())u () = sen(u()) sen(u())u () = cos(u()) u () = tan(u()) cos (u()) u () = cot(u()) sen (u()) cosh(u())u () = senh(u()) senh(u())u () = cosh(u()) u () = arcsen(u()) u () u () = arctan(u()) + u () u () = argsenh(u()) + u () u () = argcosh(u()) u ()

4 4 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 Temos assim por eemplo que sen (cos ) tan = cos = = log cos cos e cos (sen ) cot = sen = = log sen sen Usano estes factos, etermine uma primitiva e caa uma as seguintes funções. ) 5 ) + 3) 4) 5) 6) ) sen() 8) cos(3) 9) sen() cos() 0) sen( ) ) cos( ) ) cos( + ) 3) sen( ) 4) cos( ) 5) sen(/) 6) cos( 3 ) 7) sen( 3 + ) 8) sen( ) cos( ) 9) sen 3 () cos() 0) cos() sen () ) e 5 3) e + e + e 3 5) e 6) e 8) e e e 9) 3 7 3) 3) ) e + e 35) e 4 ) sen() cos () 4) e 7) e/ 30) ) e + + e 36) + 3 e + e 37) e sen(e ) 38) e sen () sen() 39) log cos(log ) log(log ) 40) 4) 4) log ( + ) 43) tan() 44) cot(5 7) 45) tan( ) 46) sen (3) 47) tan cos () 48) tan 3 ()

5 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA ) a 50) 3 5) 8 + e 55) e 53) 56) a + 5) ( + ) 54) e + e a ) senh( + ) cosh( + ) III. Primitivas e Funções Racionais. É possivel primitivar qualquer função racional, i.e. qualquer função f = p/q com p e q polinómios, em termos e funções elementares (cf. Spivak). Ilustramos aqui esse facto quano p é um polinómio e grau e q é um polinómio o terceiro grau a forma q() = 3 + b + b + b 0. A primitiva e f = p/q epene essencialmente a natureza este polinómio enominaor. Caso. O polinómio enominaor q tem 3 raizes reais istintas, i.e. q() = ( α)( β)( γ), com α, β, γ R, α β γ α. Neste caso, a função racional f = p/q poe ser escrita na forma pelo que f() = A α + B β + C, com A, B, C R, γ f() = A log α + B log β + C log γ. Caso. O polinómio enominaor q tem uma raiz real simples e outra raiz real upla, i.e. q() = ( α)( β), com α, β R, α β. Neste caso, a função racional f = p/q poe ser escrita na forma pelo que f() = A α + B β + C, com A, B, C R, ( β) f() = A log α + B log β Caso 3. O polinómio enominaor q tem uma raiz real tripla, i.e. q() = ( α) 3, com α R. Neste caso, a função racional f = p/q poe ser escrita na forma f() = C β. A α + B ( α) + C, com A, B, C R, ( α) 3

6 6 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 pelo que f() = A log α B α C ( α). Caso 4. O polinómio enominaor q tem apenas uma raiz real simples, i.e. q() = ( α)(( a) + b ), com α, a, b R, b 0. Neste caso, a função racional f = p/q poe ser escrita na forma f() = A α + B + C, com A, B, C R, ( a) + b pelo que f() = A log α + B + C ( a) + b, one a última primitiva é quase-imeiata, poeno ser epressa usano as funções logaritmo e arco tangente. Usano estes factos, etermine uma primitiva e caa uma as seguintes funções. ) ( + )( ) 4) 5 7) ) ( )( + ) 3 3) ( )( + ) + 3 6) ( + ) ( 3) 9) ) 5) 8) ) 5) + + 8) ( )( + ) ) ) ( 4)( + ) 7) 4 3) 6) ) (4 )( + ) + ) ( ) 5) ( + )( ) 8) + + 0) + ) ( + 3)( ) 4 ( + )( + 3) ( )( + ) ) 6) 9) + (4 )( + ) ( )( + ) ) 7) 30) ( )( + + ) ( + )( + ) + ( + )( + 3) ( + )( + + )

7 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 7 IV. Primitivação por Partes. A fórmula para a erivaa o prouto e uas funções u e v, (u v) = u v + u v u v = (u v) u v, á origem à fórmula e primitivação por partes: u() v () = u() v() u () v(). Esta fórmula é particularmente útil quano a função que queremos primitivar poe ser epressa como o prouto e uma função u, cuja erivaa é mais simples o que u, com uma função v com primitiva imeiata ou quase-imeiata v. Há ois truques que são usaos e forma frequente na primitivação por partes. O primeiro é escrever f() = f() e consierar u = f e v =. Obtem-se então que f() = f() f (). Por eemplo, log = log = log = log = log. O seguno truque é usar primitivação por partes para encontrar f em termos a própria f e epois resolver em orem à f. Por eemplo, log = log = log log log log = (log ) pelo que log log = (log (log ) ) =. Usano estes factos, etermine uma primitiva e caa uma as seguintes funções. ) sen ) cos 3) e 4) log 5) (log ) 6) sen 7) cos 8) e 9) log( + ) 0) sen () ) cos () ) sen 3 () 3) cos 3 () sen () 4) 3 e 5) e a sen(b) 6) cos(log ) 7) arcsen 8) arctan 9) arctan 0) arctan(/ ) ) arctan( ) ) 3 + 3) ) (log ) 3

8 8 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 5) log(log ) 8) log 9) 6) log 7) (log ) log( + ) + 30) cos() log( + cos ) 3) sen() log( + sen ) 3) cosh() cos() 33) senh 34) cosh 35) senh () 36) cosh () V. Primitivação por Substituição. A fórmula para a erivaa a função composta, já referia nesta ficha, á origem à fórmula e primitivação por substituição: ( ) f() = f(u(t))u (t) t. t=u () O proceimento associao à utilização esta fórmula para eterminar f() poe ser resumio nos seguintes 3 passos: (i) consierar a substituição = u(t) e = u (t) t em f() ; (ii) encontrar f(u(t))u (t) t como função elementar a variável t; (iii) fazer a substituição inversa t = u () na função elementar obtia em (ii). Usano a substituição inicaa, etermine uma primitiva e caa uma as seguintes funções. 5 ) ( + )( + ), = t ), = t 3) ( ), = t 4) ( + ) + 3, + 3 = t 5) ( + 3) +, + = t 6) + +, + = t 7) +, + = t 8) 3 3 ( + 4 ), = t3 9) + 3, = t6 0) +, t = ) +, t = + 3) ) + e, t = + e 4) + e, t = e + e (e )( + e ), t = e

9 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 9 e 4 5) e +, t = e 6) ( + log ()), t = log log 7) (log() ), t = log 8) log ( log ), t = log cos 9) 4 + sen (), t = sen 0) cos + sen (), t = sen sen ) 4 + cos (), t = cos ) sen + cos (), t = cos cos 3) + sen cos (), t = sen 4) sen + cos sen (), t = cos sen() 5) ( sen ) cos (), t = sen 6) sen() cos ( + cos ()), t = cos 7) cos, t = sen() 8) sen, t = cos() 9) cos ( sen ), t = sen() 30) sen ( + cos ), t = cos() 3) cosh, t = senh() 3) senh, t = cosh() tan 33), t = tan 34) + tan + tan, t = tan 35) +, = tan t 36) +, = senh t 37), = 38) cos t, = cosh t 39), = sen t 40), = sen t 4), t = 4) +, t = + 43) +, = tan t 44) +, = senh t 45), t = 46), = cos t 47), = cosh t 48), = sen (t) ( )

10 0 CDI I - LEIC-TAGUS, LERCI, LEGI, LEE SEM. 006/07 FICHA 5 VI. Treino Complementar. Usano qualquer um os métoos e primitivação inicaos anteriormente, etermine uma primitiva e caa uma as seguintes funções. ) e ( + e ) ) 4) 7) ( + ) 8) e e + e + 3) 5) + + 6) ( + ) 9) ) + 4 ) 3 ) + 3) ( ) ( + ) 3 4) 6) log(cos ) tan 7) sen3 () cos () 9) tan () 0) cos 3 () ) arctan ( + ) 5) tan 8) cos 3 () ) sen 3 () 3) arctan 4) arctan( + ) + 5) arctan 6) arctan ( + ) 3 7) arctan( ) 8) log( + ) 9) log( + ) 30) log(a + ) 3) arcsen(/) 3) arcsen(/) 33) arcsen( ) 34) e 37) 40) 43) 35) log( + ) 36) (arcsen ) log 38) e log( + e + ) 39) ( + ) ) 4) tan ( + ) ( + + ) 44) 3 ( + + ) 3 45) 6 +

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 3 a FICHA DE EXERCÍCIOS Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. / 3 a FICHA DE EXERCÍCIOS Primitivação é a operação inversa a

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê?

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê? Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC o Sem. 9/ 9 a FICHA DE EXERCÍCIOS I. Integrais Impróprios. ) Quais dos seguintes

Leia mais

3 Cálculo Diferencial. Diferenciabilidade

3 Cálculo Diferencial. Diferenciabilidade 3 Cálculo Diferencial Diferenciabiliae EXERCÍCIOS RESOLVIDOS. Para caa uma as seguintes funções etermine o omínio e iferenciabiliae e calcule as respectivas erivaas: a, b e, c ln, e. a f ( = é iferenciável

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE ABRIL DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 21 17 DE ABRIL DE 2017 EQUAÇÕES DIFERENCIAIS Equações iferenciais são equações (algébricas) one figuram funções e erivaas e várias orens e funções.

Leia mais

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1

Mais derivadas. g(x)f (x) f(x)g (x) g(x) 2 cf(x), com c R cf (x) x r, com r R. rx r 1 Universiae e Brasília Departamento e Matemática Cálculo 1 Mais erivaas Neste teto vamos apresentar mais alguns eemplos importantes e funções eriváveis. Até o momento, temos a seguinte tabela e erivaas:

Leia mais

5 Cálculo Diferencial Primitivação

5 Cálculo Diferencial Primitivação 5 Cálculo Diferencial Primitivação. Determine uma primitiva de cada uma das funções: a) + 3 3, b) + +, c) +, d) 3 3 +, e) 3, f) 5, 3 e g) h) 3 + 4 + e, i) cos + sen, sen() j) sen(), k) + sen, l) cos, m)

Leia mais

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 )

a) Represente na forma de um intervalo ou de uma união disjunta de intervalos o domínio D da função definida pela expressão: f(x) = log 1 x 1 ) Instituto Superior Técnico Departamento e Matemática Secção e Álgebra e Análise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEFT, MEBiom o Sem. 20/2 2//20 Duração: h30mn.,5 val.) a) Represente na

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 2 a FICHA DE EXERCÍCIOS - PARTE 2

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2010/11 2 a FICHA DE EXERCÍCIOS - PARTE 2 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 010/11 a FICHA DE EXERCÍCIOS - PARTE I. Representação gráfica

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

Regras do Produto e do Quociente. Regras do Produto e do Quociente

Regras do Produto e do Quociente. Regras do Produto e do Quociente UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regras o Prouto e

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica.

Estudar o logaritmo natural. Fazer aplicações da primitiva da função logarítmica. Aula O logaritmo natural Objetivos Estuar o logaritmo natural. Fazer aplicações a erivaa a função logarítmica. Fazer aplicações a primitiva a função logarítmica. Na aula passaa vimos a conhecia fórmula

Leia mais

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003

Regras de Derivação Notas de aula relativas ao mês 11/2003 Versão de 13 de Novembro de 2003 Regras e Derivação Notas e aula relativas ao mês 11/2003 Versão e 13 e Novembro e 2003 Já sabemos a efinição formal e erivaa, a partir o limite e suas interpretações como: f f a + h) f a) a) = lim, 1)

Leia mais

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0

y f(x₁) Δy = f(x₁) - f(x₀) Δx =X₁-X₀ f(x₀) f(x0 + h) - f(x0) h f(x + h) - f(x) h f'(x) = lim 1 DEFINIÇÃO DE DERIVADAS 2 DIFERENCIABILIDADE h 0 DEFINIÇÃO DE Graficamente, poemos efinir a erivaa e um ponto como a inclinação a reta tangente = f() ou a taa e variação instantânea e em relação a. Suponha que temos uma função f() e queremos saber a

Leia mais

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como:

Acadêmico(a) Turma: Capítulo 4: Derivada. A derivada por ser entendida como taxa de variação instantânea de uma função e expressa como: 1 Acaêmico(a) Turma: Capítulo 4: Derivaa 4.1 Definição A erivaa por ser entenia como taxa e variação instantânea e uma função e expressa como: f (x) = y = y x Eq. 1 Assim f (x) é chamao e erivaa a função

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação Soluções. a 3 3 + 3 4 4, b + log, > 0, + c = 3 + = 5 5 3 3 + = 5 3 +, 5 3 d 3 3 3 + 4, e 4 3 = 3 + 3 3 = + 3, 3 f 5 6 5 6, g 4 log3 + 4, h log + e, i log + sen, j tg, k e tg, l sen +, m cose,

Leia mais

5 Cálculo Diferencial Primitivação (Soluções)

5 Cálculo Diferencial Primitivação (Soluções) 5 Cálculo Diferencial rimitivação Soluções. a + 4 4, b + log, > 0, + c = + = 5 5 + = 5 +, d 4, 5 4 + e = + = +, f 5 5 6 6, g 4 log + 4, h log + e, i log + sen, j sen sen cos cos, k = = log + sen, + sen

Leia mais

31 a Aula AMIV LEAN, LEC Apontamentos

31 a Aula AMIV LEAN, LEC Apontamentos 31 a Aula 20041126 AMIV LEAN, LEC Apontamentos (RicaroCoutinho@mathistutlpt) 311 Métoo os coeficientes ineterminaos 3111 Funamentação Vamos agora aborar a EDO e coeficientes constantes, mas não homogénea:

Leia mais

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante:

[ ] = 0, constante. Algumas Regras para Diferenciação. Algumas Regras para Diferenciação. d dx. A Regra da Constante: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. A regra a constante

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003

A Regra da Cadeia Continuação das notas de aula do mês 11/03 Versão de 20 de Novembro de 2003 A Regra a Caeia Continuação as notas e aula o mês /03 Versão e 20 e Novembro e 2003 Agora queremos entener o que acontece com a erivaa e uma composição e funções. Antes e mais naa, lembremos a notação

Leia mais

Integral de Linha e Triedro de Frenet

Integral de Linha e Triedro de Frenet Cálculo III Departamento e Matemática - ICEx - UFMG Marcelo Terra Cunha Integral e Linha e Triero e Frenet Na aula anterior iniciamos o estuo as curvas parametrizaas. Em particular, interpretamos a erivaa

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Professor Mauricio Lutz DERIVADAS

Professor Mauricio Lutz DERIVADAS DERIVADAS Eplorano a iéia e erivaa Vamos iniciar a eploração intuitiva a iéia e erivaa por meio a ieia e variação e uma unção: Observemos que, quano a variável inepenente passa por e vai até, o conjunto

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Primeira Lista de Eercícios de Cálculo Diferencial e Integral I - MTM Prof. Júlio César do Espírito

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Derivadas das Funções Hiperbólicas Inversas

Derivadas das Funções Hiperbólicas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas as Funções

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos

Tópicos de Física Clássica I Aula 4 A identidade de Beltrami; a notação δ e alguns exemplos Tópicos e Física Clássica I Aula 4 A ientiae e Beltrami; a notação δ e alguns eemplos a c tort A seguna forma a equação e Euler-Lagrange Consiere F F [y), y ); ]. Então: F Agora consiere Da primeira equação

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

ISEP - LEI - AMATA - 1S. 2009/10 CÁLCULO INTEGRAL EM IR

ISEP - LEI - AMATA - 1S. 2009/10 CÁLCULO INTEGRAL EM IR ISEP - LEI - AMATA - S. 009/0 ÁLULO INTEGRAL EM IR álclo Integral em IR Primitiva No cálclo iferencial a qestão fnamental era: Daa ma fnção f(), como eterminar a sa erivaa f ()? Agora a qestão qe se coloca

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

2 5 3 x 3 1. x 5 x 2

2 5 3 x 3 1. x 5 x 2 4 rimitivação 4. rimitivação Soluções. a + 4 4, b + ln, > 0, + c = + = 5 5 + = 5 +, 5 d + 4, e 4 = + = +, f e, g ln +, h, e i + ln, j 4 cosh/4, k cos, l tg, m cotg, n arctg, o arctg/, p = = 4 arcsen, q

Leia mais

Cálculo Diferencial e Integral I Fichas 6 e 7 de Exercícios LEGM/MEC 1 o semestre 2014/15

Cálculo Diferencial e Integral I Fichas 6 e 7 de Exercícios LEGM/MEC 1 o semestre 2014/15 Cálculo Diferencial e Integral I Fichas 6 e 7 de Exercícios LEGM/MEC o semestre 204/5 Miguel Abreu, Manuel Ricou Secção de Álgebra e Análise Departamento de Matemática Instituto Superior Técnico 9 de Novembro

Leia mais

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x.

RESUMO DERIVADAS. A derivada nada mais é do que a inclinação da reta tangente a y=f(x) ou a taxa de variação instantânea de y em relação a x. RESUMO DERIVADAS DEFINIÇÃO A erivaa naa mais é o que a inclinação a reta tangente a y=f(x) ou a taxa e variação instantânea e y em relação a x. x 0 f(x +h) f(x ) f (x 0 ) = lim h 0 h 0 0 DIFERENCIABILIDADE

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Aula n o 2: Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais e erivação; Derivar funções utilizano

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

DEMEGI DEPARTAMENTO DE ENGENHARIA MECÂNICA E GESTÃO INDUSTRIAL ANÁLISE MATEMÁTICA I

DEMEGI DEPARTAMENTO DE ENGENHARIA MECÂNICA E GESTÃO INDUSTRIAL ANÁLISE MATEMÁTICA I DEMEGI DEPARTAMENTO DE ENGENHARIA MECÂNICA E GESTÃO INDUSTRIAL ANÁLISE MATEMÁTICA I 1º Ano Licenciaturas: Engenharia Mecânica Gestão e Engenharia Industrial Ano lectivo: 2004/2005, 3ª Edição. Regente da

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 08: Regra a Caeia. Derivação Implícita. Derivaa a Função Inversa. Objetivos a Aula Conhecer e aplicar a regra a caeia; Utilizar a notação e

Leia mais

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso.

Projeto 3. 8 de abril de y max y min. Figura 1: Diagrama de um cabo suspenso. Cabos suspensos Projeto 3 8 e abril e 009 A curva escrita por um cabo suspenso pelas suas etremiaes é enominaa curva catenária. y ma y min 0 Figura 1: Diagrama e um cabo suspenso. A equação que escreve

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO Projecto Delfos: Escola de Matemática Para Jovens 1 Uma função, f, é uma aplicação de um conjunto, D, que designamos por domínio, para um conjunto, C, designado por contra-domínio, segundo uma lei, f(x),

Leia mais

(b) lim. n 3 2. (e) lim

(b) lim. n 3 2. (e) lim Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEGM, LET, MEC o SEM. 008/09 6 a FICHA DE EXERCÍCIOS I. I. Derivação Logarítmica. Calcule

Leia mais

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x)

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x) 7. Regras Básicas e Derivação 0. regra a soma: [f () + g ()] 0 = f 0 () + g 0 () 0. regra a iferença [f () g ()] 0 = f 0 () g 0 () 0. regra o routo [f () :g ()] 0 = f () g 0 () + f 0 () g () 04. regra

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores ō Eame - 2 de Janeiro de 2008-3h00m Solução Problema (0,5 val.) Seja f() = log(3 2 ) + 3. (a) Determine

Leia mais

6 a Ficha de Exercícios

6 a Ficha de Exercícios Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise 6 Fich de Eercícios I. Primitivção por Prtes. Determine primitivs pr s seguintes funções: 6 ) sen ) cos 3) e 4) log 5) (log)

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS

Universidade de Trás-os-Montes e Alto Douro. Biomatemática/ Matemática I FOLHAS PRÁTICAS Universidade de Trás-os-Montes e Alto Douro Biomatemática/ Matemática I FOLHAS PRÁTICAS Licenciaturas em Arquitectura Paisagista, Biologia e Geologia (ensino) e Biologia (cientíco) Ano lectivo 004/005

Leia mais

Primitivação. A primitivação é a operação inversa da derivação.

Primitivação. A primitivação é a operação inversa da derivação. Primitivação A primitivação é a operação inversa da derivação. Definição: Seja f uma função definida num intervalo I. Qualquer função F definida e diferenciável em I tal que F x fx, para todo o x I, diz-se

Leia mais

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial

Trigonometria e funções trigonométricas. Funções trigonométricas O essencial Trigonometria e funções trigonométricas Funções trigonométricas O essencial Funções seno e cosseno Designa-se por função seno (respetivamente, função cosseno) e representa-se por sin ou sen (respetivamente,

Leia mais

Derivadas de Funções Trigonométricas

Derivadas de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Funções

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [ Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. 04/5 a FICHA DE EXERCÍCIOS 0. Desigualdades e Módulos. Mostre que:.. R : + < =, 7, +.. R

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Departamento de Engenharia Civil Disciplina: Cálculo I. 1ª Avaliação 2013/1 ) Calcule os limites abaio: (3,0) ª Avaliação 03/ a) + ( a) a lim a a + ( a) a ( a) ( + ) lim = lim = lim( + = + a a a a ) a a b) lim 0 + + + + + + lim = lim = lim 0 0 + + 0 ( ) ( + + ) = lim = lim = =

Leia mais

ANÁLISE MATEMÁTICA I

ANÁLISE MATEMÁTICA I DEMec / DEIG DEPARTAMENTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA INDUSTRIAL E GESTÃO ANÁLISE MATEMÁTICA I CONTEÚDO TEÓRICO E APLICAÇÕES Prof. Carlos A. Conceição António Setembro 2013 ii PREFÁCIO

Leia mais

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada:

Cálculo Numérico Computacional Exercícios. que coïncida com f até na terceira derivada: Cálculo Numérico Computacional Exercícios fórmula e Taylor T. Praciano-Pereira Dep. e Matemática Univ. Estaual Vale o Acaraú Sobral, 7 e fevereiro e 7 Relembrano: Fórmula e Taylor A equação a reta tangente

Leia mais

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP IRUITOS ELÉTRIOS APLIAÇÕES DAS EQUAÇÕES DIFERENIAIS DA FORMA x t x t x t x ( t) s Prof. Flávio A. M. iarrone Escola Politécnica a USP Teoria Para resolver a equação iferencial x ( t) x( t) x( t) xs( t),

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, =

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica Universidade Federal do ABC Aula 18 Substituição Trigonométrica BCN0402-15 FUV SUBSTITUIÇÃO TRIGONOMÉTRICA Substituição Trigonométrica Introdução: Um exemplo A área de um círculo ou uma elipse é dada por

Leia mais

Uma breve introdução ao estudo de equações diferenciais 1

Uma breve introdução ao estudo de equações diferenciais 1 Uma breve introução ao estuo e equações iferenciais 1 2 Pero Fernanes Este texto tem o objetivo e apresentar os métoos e resolução os moelos mais básicos e equações iferenciais. A ieia é fornecer um treinamento

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento Jaime Carvalho e Silva Princípios de Análise Matemática Aplicada Suplemento 2002/2003 2 Departamento de Matemática Universidade de Coimbra Contacto com o autor: jaimecs@mat.uc.pt Página de apoio: http://www.mat.uc.pt/~jaimecs/index_aulas.html

Leia mais

Gr aficos de Fun c oes Elementares

Gr aficos de Fun c oes Elementares Gráficos de Funções Elementares O gráfico de uma f.r.v.r. é uma curva ou uma união de curvas. Para a sua determinação é necessário conhecer o comportamento da função. Entre os vários aspectos da teoria

Leia mais

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella

A Forma Geométrica dos Cabos Suspensos Prof. Lúcio Fassarella A Forma Geométrica os Cabos Suspensos Prof. Lúcio Fassarella - 008 - Problema: Determinar a forma eométrica e um cabo e comprimento L suspenso em suas extremiaes por postes e mesma altura H separaos por

Leia mais

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

Equações Diofantinas Lineares

Equações Diofantinas Lineares Equações Diofantinas Lineares Equações, com uma ou mais incógnitas, e que se procuram soluções inteiras esignam-se habitualmente por Equações iofantinas. Vamos apenas consierar as equações iofantinas lineares,

Leia mais

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10

Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10 Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Derivadas de funções reais de variável real

Derivadas de funções reais de variável real Derivadas de funções reais de variável real O conceito de derivada tem grande importância pelas suas inúmeras aplicações em Matemática, em Física e em muitas outras ciências. Neste capítulo vamos dar a

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 12º ano Ano Letivo

Leia mais

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES

CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES CURSO DE CÁLCULO I PROF. MARCUS V. S. RODRIGUES FORTALEZA - 009 Curso e Cálculo I Capítulo SUMÁRIO Capítulo Limite e continuiae.. Limites: Um conceito intuitivo.. Limites: Técnicas para calcular 9.. Limites:

Leia mais

1. Polinómios e funções racionais

1. Polinómios e funções racionais Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f(x) e F(x) definidas em um intervalo I R, para todo x I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F (x) = f(x) Exemplos: F(x) = x é uma antiderivada

Leia mais

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas

Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin. CM041- Cálculo I. Lista 5: Derivadas Universiae Feeral o Paraná Centro Politécnico ET-DMAT Pro. Maria Eugênia Martin CM04- Cálculo I Lista 5: Derivaas Eercício. O gráico ilustra a unção posição e um carro. Use a orma o gráico para eplicar

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ).

(a) f(x) = x 3 x (b) f(x) = x (c) f(x) = 3 x (d) f (x) = 1 x x se x < 1 (1 x) 2 se 1 x. f f(a + h) f(a h) (a) = lim. = f(x 1 ) x 1 f (x 1 ). Ministério a Eucação Universiae Tecnológica Feeral o Paraná Campus Campo Mourão Wellington José Corrêa ā Lista e Cálculo Diferencial e Integral I Curso: Bacharelao em Ciências a Computação DAMAT, 205 Nome:

Leia mais

OUTRAS TÉCNICAS DE INTEGRAÇÃO

OUTRAS TÉCNICAS DE INTEGRAÇÃO 8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Estratégias de Integração. Estratégias de Integração

Estratégias de Integração. Estratégias de Integração UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Estratégias de Integração

Leia mais

Cálculo de primitivas ou de antiderivadas

Cálculo de primitivas ou de antiderivadas Aula 0 Cálculo de primitivas ou de antiderivadas Objetivos Calcular primitivas de funções usando regras elementares de primitivação. Calcular primitivas de funções pelo método da substituição. Calcular

Leia mais

7.1 Mudança de Variável (método de substituição)

7.1 Mudança de Variável (método de substituição) 7. Mudança de Variável (método de substituição) 0. 0. 0. 05. 07. 08. 0... e 5 (res. e 5 =5 + C) sen a (res. a cos a + C; a 6= 0) sen () 7 (res. cotg + C) (res. jln 7j + C) tan (res. ln jcos j + C) cot

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais