ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

Tamanho: px
Começar a partir da página:

Download "ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018"

Transcrição

1 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno de um ponto (, y) e são satisfeitas as condições de Cauchy-Riemann nesse ponto, então f é diferenciável em z = + yi. Para o eemplo anterior: u(, y) = y Vimos que (0, 0) = 0. Consideremos o primeiro quadrante. Aí, u(, y) = y, e portanto = y y = y Logo, (a, a) = para a > 0, e então lim (a, a) = 0 = (0, 0) a 0 + Por isso, não é contínua em (0, 0). Ou seja, não há contradição com o teorema, já que f não é diferenciável em 0. Segue-se a demonstração do teorema anterior, que apresentava condições suficientes de diferenciabilidade. Demonstração. f(z) = u(, y) + iv(, y) é dada e, por hipótese, tanto u como v têm derivadas parciais contínuas em torno de um certo ponto z.

2 f(z + h) f(z) Queremos ver que eiste lim. h 0 h Consideremos h = h + i h. Então, f(z + h) f(z) h = u( + h, y + h ) + iv( + h, y + h ) u(, y) iv(, y) h () Consideremos primeiro a parte real do numerador. u(+h, y+h ) u(, y) = [u(+h, y+h ) u(+h, y)]+[u(+h, y) u(, y)] = Vamos precisar de usar aqui o seguinte teorema, conhecido para as funções g : R R: Teorema da Média Seja g : R R diferenciável em [a, b]. Então eiste c ]a, b[ tal que g g(b) g(a) (c) = b a Vamos primeiro aplicar o teorema a g(y) = u( + h, y) no intervalo [y, y + h ]. Note-se que estamos a considerar a primeira componente de u constante nesta função; ou seja, g é função só da segunda componente y de u e, mais ainda, a sua

3 derivada g (y) eiste e é a derivada parcial y ( + h, y). Tendo isto em atenção, o teorema garante, para a primeira parte de, que eiste c = y + δ ]y, y + h [ tal que 3 u( + h, y + h ) u( + h, y) = h y ( + h, y + δ ) Para a segunda parte de, aplicamos novamente o teorema, desta vez a g() = u(, y) (onde a segunda componente de u é constante e igual a y.) Garantimos assim a eistência de c = + δ ], + h [ tal que u( + h, y) u(, y) = h ( + δ, y) Fazemos uma dedução semelhante para a parte imaginária de (): garantimos assim que eistem δ 3 ]0, h [ e δ 4 ]0, h [ tais que v( + h, y + h ) v(, y) = [v( + h, y + h ) v( + h, y)] + [v( + h, y) v(, y)] = h y ( + h, y + δ 3 ) + h ( + δ 4, y) Se fizermos h 0 na razão incremental inicial (para determinar a derivada de f), temos que h e h também convergem para zero, logo (por causa dos intervalos em que são definidos) também os quatro valores de δ convergem para zero. Como as derivadas parciais de u e v são contínuas (por hipótese), o limite da razão incremental fica então [ h y (, y) + h ] (, y) [ + i h h + ih y (, y) + h ] (, y) Aplicando agora as condições de Cauchy-Riemann, fica [ h (, y) + h ] (, y) h + ih [ + i h (, y) + h ] (, y)

4 4 = ( h + ih ) (, y) + ( h + ih ) h + ih (, y) = ( (, y) + h + ih ) (, y) h + ih = (, y) + i (, y) Isto mostra que o limite da razão incremental eiste (logo, f é diferenciável no ponto) e dá uma fórmula para a derivada de f. Temos então que, se f = u + iv é diferenciável em z = + iy, f (z) = (, y) + i (, y) Eemplos de funções. Eponencial f(z) = e z = e +yi = e cos y + ie sen y Temos: u(, y) = e cos y v(, y) = e sen y e então: = e cos y = y y = e sen y = Verificam-se as condições de Cauchy-Riemann e, para além disso, as quatro derivadas parciais são contínuas (em todos os pontos). Isto prova que f é diferenciável em qualquer ponto, e temos f (z) = + i = e cos y + ie sen y = e z

5 5 Donde, (e z ) = e z para z compleo.. Funções Trigonométricas A partir das fórmulas de Euler, já definimos: cos z = eiz + e iz sen z = eiz e iz i Estas são funções inteiras, porque são construídas à custa da eponencial complea (que já vimos ser inteira.) Temos: (cos z) = ] [(e iz ) + (e iz ) = ] [ie iz ie iz = i eiz e iz = eiz e iz i (sen z) = ] [(e iz ) (e iz ) = ] [ie iz + ie iz = eiz + e iz = cos z i i = sen z Zeros do seno: sen z = 0 e iz = e iz Pondo z = a + bi, vem e b+ai = e b ai. Logo: { e b = e b e ai = e ai b = 0 a = a + kπ, para k Z. Ou seja, a = kπ, k Z, e o resultado é z = kπ, k Z. Zeros do coseno: cos z = 0 e iz = e iz Pondo z = a + bi, vem e b+ai = e b ai = e b+( a+π)i. Logo:

6 6 { e b = e b e ai = e ( a+π)i b = 0 a = a + π + kπ, para k Z. Ou seja, a = π + kπ, k Z, e o resultado é z = π + kπ, k Z. Portanto, não há zeros do seno ou do coseno que não sejam reais. 3. Funções Hiperbólicas Por analogia com as funções reais, definimos, para z compleo: cosh z = ez + e z senh z = ez e z Ambas as funções são inteiras (porque são definidas à custa da eponencial), e temos (senh z) = cosh z (cosh z) = senh z Zeros do seno hiperbólico: senh z = 0 e z = e z Pondo z = a + bi, vem e a+bi = e a bi. Logo: { e a = e a e bi = e bi a = 0 b = b + kπ, para k Z. Ou seja, b = kπ, k Z, e o resultado é z = kπi, k Z.

7 7 4. Logaritmo Compleo Para verificar se os ramos do logaritmo são funções diferenciáveis, vamos primeiro deduzir as condições de Cauchy-Riemann em coordenadas polares. Como { = r cos θ y = r sen θ Temos, pela regra da cadeia, r = r + y y r = cos θ + y sen θ e θ = θ + y y θ = ( r sen θ) + r cos θ = r sen θ + r cos θ. y y (onde, na última passagem, usámos as condições de Cauchy-Riemann na forma cartesiana.) Obtemos assim a primeira condição em coordenadas polares: θ = r r Temos também: θ = θ + y y θ = ( r sen θ) + y r cos θ e r = r + y y r = cos θ + sen θ = cos θ + sen θ. y y Assim, a segunda condição fica: θ = r r Podemos aplicar estas condições ao ramo principal do logaritmo compleo. log 0 z = log r + iθ

8 8 u(r, θ) = log r v(r, θ) = θ Portanto: θ = = r r = r r θ = 0 = r r Verificam-se as condições de Cauchy-Riemann e as quatro derivadas parciais eistem (para θ no aberto ]0, π[ e r no aberto ]0, + [) e são contínuas, logo a função é diferenciável. Para os outros ramos do logaritmo, as derivadas parciais são eactamente as mesmas que para o ramo principal e portanto todas essas funções são também diferenciáveis (nos conjuntos adequados.) Para determinar a derivada do ramo principal do logaritmo, usamos a epressão anteriormente encontrada: (log 0 z) = + i. Temos: u(, y) = log r = log + y r= +y v(, y) = θ e portanto θ=arctg y = + y = y ( y + = arctg y + y = + y = rcos θ r ) = y r sen θ = + y r Obtemos assim:

9 9 (log z) = r cos θ i r sen θ r = re iθ r = re iθ = z. Ou seja, generaliza-se pois a fórmula conhecida para o logaritmo real. (Para os outros ramos do logaritmo compleo, a derivada tem a mesma epressão.) Funções Harmónicas Seja u : R R uma função duas vezes diferenciável. Dizemos que u(, y) é uma função harmónica se o seu laplaciano for nulo; ou seja, se u = u + u y = 0 Se f = u + iv é holomorfa, temos = y e y = e portanto, se u e v forem duas vezes diferenciáveis, u + u y = v y v y = 0 (onde a última igualdade só acontece se v for de classe C, ou seja, se as suas segundas derivadas parciais forem contínuas.) Portanto, nestas condições, concluímos que u é harmónica.

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 5 28 DE FEVEREIRO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 5 28 DE FEVEREIRO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 5 8 DE FEVEREIRO DE 018 Para o logaritmo complexo, nem sempre são válidas as propriedades conecidas do logaritmo real. Por exemplo: log 0 ( i) = 3π

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + a Aula 69 AMIV ' * + Fórmula de De Moivre Dado z = ρe e Concluímos por indução que = ρ cos θ + i sen θ C temos z = ρe ρe = ρ e z = zz = ρe ρ e = ρ e z = ρ e para qualquer n N e como ρ e ρ e = ρ e pôr n

Leia mais

Funções Elementares do Cálculo Complexos 1

Funções Elementares do Cálculo Complexos 1 Funções Elementares do Cálculo Complexos 1 META: Definir algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir algumas funções elementares

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

1 a Lista de Exercícios de Cálculo VIII

1 a Lista de Exercícios de Cálculo VIII a Lista de Eercícios de Cálculo VIII. Simplifique: [ ] + i a + i i b 4 i c + i 6 i + i d i 4 e eπi f i e πi e +πi. Encontre todos os valores de C tais que: a i 0 b + i c + i d 6 + 64 0 e i 8 f 4/. Seja

Leia mais

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ

Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Aula 1 Análise Complexa e Equações Diferenciais 2 o Semestre 2018/19 Cursos: LEIC-A MEBiol MEAmbi MEEC MEQ Michael Paluch Instituto Superior Técnico Universidade de Lisboa 18 Fevereiro de 2019 Método de

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

1 a Lista de Exercícios de Métodos Matemáticos II

1 a Lista de Exercícios de Métodos Matemáticos II a Lista de Exercícios de Métodos Matemáticos II. Simplifique: [ ] + i a Re + i i b Im 4 i + i 6 i + i d i 4 e eπi i e πi f e +πi. Encontre todos os valores de C tais que: a i 0 b + i + i d 6 + 64 0 e i

Leia mais

OUTRAS TÉCNICAS DE INTEGRAÇÃO

OUTRAS TÉCNICAS DE INTEGRAÇÃO 8 OUTRAS TÉCNICAS DE INTEGRAÇÃO Gil da Costa Marques 8. Integração por partes 8. Integrais de funções trigonométricas 8.3 Uso de funções trigonométricas 8.4 Integração de Quociente de Polinômios 8.5 Alguns

Leia mais

2 Funções exponencial e logarítmica complexas

2 Funções exponencial e logarítmica complexas Equações reais, Soluções imaginárias. 1 Introdução Carlos A. Gomes UFRN Na última edição da RPM número 77) há um artigo Por que e iθ = cosθ + i.senθ?, do professor José Paulo Carneiro, onde é exibida uma

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Cursos: Análise Complexa e Equações Diferenciais 2 ō Semestre 23/24 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi) 5 de Abril de 24, h3m Duração: h 3m. Seja α C 2 R) e u : R 2 R uma função

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tarefa Intermédia nº 6 1. No referencial da figura está representada graficamente uma função h, de domínio IR, e as assímptotas do gráfico. Dê eemplo de uma sucessão ( u n ) tal que: 1.1. lim( h( un 1..

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan

GABARITO. 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan GABARITO 1 a PROVA - DISCIPLINA MTM 5186: CÁLCULO IV Professor: Matheus C. Bortolan (Valor 3.) Questão 1: Responda às seguintes questões, usando as equações de Cauchy-Riemann. (1.5) (a) Mostre que a função

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

3 Cálculo Diferencial

3 Cálculo Diferencial Aula 6 26/0/206 (cont.) 3 Cálculo Diferencial Entramos agora num dos tópicos principais desta cadeira: o Cálculo Diferencial. usar derivadas como ferramentas no estudo de funções, em particular, cálculo

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 1 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 1 ō Semestre 1/14 1 ō Teste Versão A (Cursos: LEIC-A, LEMat, MEAmbi, MEBiol, MEQ) de Novembro de 1, 11h 1. Seja v(x,y) = (x+1)α(y), em que α : R R é uma função

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná Ministério da Educação Universidade Tecnológica Federal do Paraná ampus ampo Mourão Números omplexos álculo Diferencial e Integral III WELLINGTON JOSÉ ORRÊA ampo Mourão, Paraná Brasil Sumário Wellington

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II INTRODUÇÃO AO CÁLCULO VETORIAL. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques INTRODUÇÃO AO CÁLCULO VETORIAL Gil da Costa Marques TÓPICO Fundamentos da Matemática II.1 Introdução. Funções vetoriais de uma variável. Domínio e conjunto imagem.4 Limites de funções vetoriais de uma

Leia mais

1 o Semestre 2018/2019 MEC

1 o Semestre 2018/2019 MEC ACED Análise Complea e Equações Diferenciais o Semestre 208/209 MEC Conteúdo I. Números compleos, funções compleas........... II. Transformações conformes e diferenciabilidade de funções compleas.............................

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEA, LEM, LEAN, MEAer, MEMec o Semestre de 006/007 6 a Aula Prática Soluções e algumas resoluções abreviadas. a) Como e é crescente, com contradomínio ]0, + [, o contradomínio

Leia mais

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019

ACED Análise Complexa e Equações Diferenciais. 17 a Aula Teorema de Cauchy. Michael Paluch 1 o Semestre 2018/2019 ACED Análise Complexa e Equações Diferenciais MEC Michael Paluch 1 o Semestre 2018/2019 17 a Aula 17.1 Teorema de Cauchy Recordamos que a imagem de um caminho seccionalmente de classe C 1 chamase uma curva

Leia mais

1.1 Função Exponencial

1.1 Função Exponencial VARIÁVEL COMPLEXA 3. AS FUNÇÕES ELEMENTARES 1.1 Função Exponencial 1. Escreva as funções abaixo sob a forma u (x; y) + iv (x; y) : (a) w = exp (2z) (b) w = exp z 2 (c) w = exp (iz) : 2. Em cada caso, determine

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê?

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê? Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC o Sem. 9/ 9 a FICHA DE EXERCÍCIOS I. Integrais Impróprios. ) Quais dos seguintes

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples:

matemática Antes de chegarmos a uma definição precisa deste conceito vamos observar alguns exemplos simples: Matemática I 1 Limites O conceito de limite é fundamental para o estudo de funções de variável real. Uma das situações em que ele aparece naturalmente é o do estudo do comportamento assintótico de uma

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas.

ANÁLISE MATEMÁTICA IV 1 o Teste (LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ) Justifique cuidadosamente todas as respostas. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA IV o Teste LEAM, LEBL, LEC, LEEC, LEM, LEGM, LEMAT, LEN, LEQ, LQ Justifique cuidadosamente todas as respostas.

Leia mais

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO 017/018 PLANIFICAÇÃO A MÉDIO/LONGO PRAZO DISCIPLINA: Matemática A ANO: 1º CURSO GERAL DE CIÊNCIAS E TECNOLOGIAS Total de aulas previstas: 16 Mês Domínios Conteúdos Descritores N.º Aulas Avaliação EST10

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi

ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi ATIVIDADES EM SALA DE AULA Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Limites, Assíntotas Horizontais e Assíntotas Verticais [0] (2006.2) Considere a função f() =

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

37 a Aula AMIV LEAN, LEC Apontamentos

37 a Aula AMIV LEAN, LEC Apontamentos 37 a Aula 4.1.15 AMIV EAN, EC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 37.1 Equação das ondas-modos de vibração Vimos na última aula que a solução do problema u Equação das ondas t = c u tem a solução

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em )

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. TPC nº 13 (entregar em ) Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Compleos TPC nº (entregar em 8-05-0). O Dinis dispõe de dez cartas todas diferentes: quatro do naipe de espadas,

Leia mais

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regra de l Hôpital

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

LOM3253 Física Matemática 2017 S2

LOM3253 Física Matemática 2017 S2 LOM3253 Física Matemática 2017 S2 Parte 2. Funções de variável complexa Prof. Dr. Viktor Pastoukhov EEL-USP Subconjuntos no plano complexo Geometria Analítica no plano complexo Geometria Analítica no plano

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Instituto Superior Técnico Departamento de Matemática Análise Complexa e Equações Diferenciais Cursos: MEMec,LEAN (25/6, Semestre ) Apontamentos das aulas teóricas. Introdução Este texto consiste numa

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

Revisão do Teorema de Green

Revisão do Teorema de Green Curso: MAT 0- CÁLCULO DIFERENCIAL E INTEGRAL IV - IFUSP Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 009 A Terceira Prova: - Não cobrirá questões sobre sequências numericas nem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Capítulo Diferenciabilidade de uma função

Capítulo Diferenciabilidade de uma função Cálculo - Capítulo.6 - Diferenciabilidade de uma função 1 Capítulo.6 - Diferenciabilidade de uma função.6.1 - Introdução.6.4 - Diferenciabilidade e continuidade.6. - Diferenciabilidade.6.5 - Generalização

Leia mais

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x). E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas

Análise Complexa e Equações Diferenciais. Apontamentos das aulas teóricas Análise Complexa e Equações Diferenciais Apontamentos das aulas teóricas 2 Índice Introdução 3. Revisões sobre números complexos 3 2. Representação trigonométrica dos números complexos 4 3. Noções topológicas

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011-1 a Fase Proposta de resolução GRUPO I 1. A igualdade da opção A é válida para acontecimentos contrários, a igualdade da opção B é válida para acontecimentos

Leia mais

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2 o Semestre de 009/00 Eercício- teste a) Provar que n (i ) = n i= Usamos indução em n para provar que a fórmula acima é correcta n= n = Claramente temos que (i ) = () = = Hipótese Indutiva j N, onde j n,

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores ō Eame - 2 de Janeiro de 2008-3h00m Solução Problema (0,5 val.) Seja f() = log(3 2 ) + 3. (a) Determine

Leia mais

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira Prova Substitutiva de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009-8/2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : GABARITO Q 2 3 4 5 6 7 8 9 0 2 Total N JUSTIFIQUE TODAS AS PASSAGENS

Leia mais

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f

CÁLCULO II - MAT Em cada um dos seguintes campos vetoriais, aplicar o resultado do exercício 3 para mostrar que f UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza 1. Dado um campo vetorial bidimensional ÁLULO

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Bases Matemáticas - Turma A3

Bases Matemáticas - Turma A3 Bases Matemáticas - Turma A3 a Avaliação - Resolvida Esta resolução é mais do que um mero gabarito. O objetivo é apresentar a solução de cada problema de modo detalhado, com o propósito de ajudar na compreensão

Leia mais