Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Tamanho: px
Começar a partir da página:

Download "Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade."

Transcrição

1 1 Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0 < < 2 é válido sen() tan(): Mais geralmente, temos que, jsen()j < jj para todo < <, assim, 2 2 Como ( ) = () = 0, temos que sen() : sen() = 0:

2 2 Por outro lado, sen 2 () + cos 2 () = 1 ) cos() = p 1 sen 2 (); Observe que se zermos! 0 então! 0 e +! 0; logo, 2 2 ; 2. Assim, cos() = p 1 sen 2 (); portanto, cos() = q 1 (sen 2 ()) = 1; De posse destes resultados podemos provar as seguinte a rmações. A rmação 1 - Se f() = sen() com 6= 0 2 R, então f() = 1. De fato, pelo que foi visto anteriormente temos sen() tan() ) 1 Como 1 = cos() = 1, temos que sen() 1 cos() ) 1 sen() sen() = 1: cos() A rmação 2 - Se f() = 1 De fato, pois cos() com 6= 0 2 R, então f() = 0. 1 cos() = 1 cos() (1 + cos()) (1 + cos()) = 1 cos2 () (1 + cos()) = sen 2 () (1 + cos()) : Assim, Portanto, f() = sen 2 () (1 + cos()) = sen() 1 cos() = 0: sen() (1 + cos()) = 0: Propriedades (sen ) 0 = cos ; 2. (cos ) 0 = sen ; 3. (tan ) 0 = sec 2 ; 4. (sec ) 0 = sec tan ; 5. (cot ) 0 = csc 2 ; 6. (csc ) 0 = csc cot : Prova. Vamos provar apenas 1, os demais são análogos com algumas adaptações.

3 3 (1) Fazendo f() = sen temos f 0 () = sen( + ) sen() =!0 = sen (cos 1) + cos sen!0 = (sen ) 0 + cos 1 = cos sen cos + cos sen sen!0 sen =!0 (cos 1) + cos sen Logarítmo Neperiano Dados dois números reais positivos a, b, com a 6= 1, sabemos que o logarítmo de b na base a, denotado por log b a é de nido como sendo um número real tal que a = b, ou seja, log b a = () a = b: O logarítmo natural (ou logarítmo neperiano) é o logarítmo na base e, onde e é um número pertencente ao intervalo (2; 7; 2; 8), ou seja, 2; 7 < e < 2; 8: e é um número irracional camado Número de Euler (em omenagem ao matemático suíço Leonard Euler, que primeiro sugeriu sua aplicação aos logaritmos). A aproimação de e com 15 casas decimais é dada por 2; :::: Observações É possível mostrar que e =!0 (1 + ) 1 : 2. Denotaremos o logarítmo nepereiano (logarítmo na base e) por ln, ou seja, log e = ln : Teorema 0.3 Sejam as funções f() = e e g() = ln. Então: 1. D e = e 2. D ln = 1 Prova. A demonstração deste teorema pode ser encontrada no livro Cálculo Vol. 1-6 a Ed. Stewart, James / Tomson Pioneira. Regra da Cadeia As técnicas de derivação obtidas nas Seções anteriores não podem ser aplicadas diretamente a epressões como sen(2) e 3p

4 4 Note que (sen(2)) 0 6= cos(2); pois sen(2) = 2 sen cos e pela Regra do Produto, obtemos (sen(2)) 0 = 2[cos cos + sen ( sen)] = 2[cos 2 sin 2 ] = 2 cos(2): Assim, se f() = sen e g() = 2, então a forma de determinar a derivada de (f g)() = sen(2) foi primeiro fazer a composição e manipulações para depois calcular a derivada. Para obter a derivada de sen(3) as manipulações já são mais trabalosas. Portanto, a cave para determinar a derivada de f g sem fazer a composição e manipulações é dada pelo seguinte teorema. Teorema 0.4 (Regra da Cadeia) Sejam X; Y R intervalos abertos, f : X! R e g : Y! R duas funções diferenciáveis em X e Y, respectivamente, com Im f Y. Então g f é diferenciável em X e (g f) 0 () = g 0 (f())f 0 (): Note que se y = g(u) e u = f(), então a fórmula acima torna-se d = d : Prova. A demonstração deste teorema pode ser encontrada no livro Cálculo Vol. 1-6 a Ed. Stewart, James / Tomson Pioneira. Eemplo 0.5 Calcular a derivada de y = 3p : Solução. Note que, y = u 1 3, onde u = Logo, pela Regra da Cadeia, obtemos d = d = 1 3 u (2 + 2) = u 2 3 Eemplo 0.6 Calcular a derivada de y = 2 4 : Solução. Como j 2 4j = q ( 2 4) 2 temos que q y = ( 2 4) 2 : Note que, y = u 1 2, onde u = ( 2 da Cadeia, obtemos d = d = 1 2 u 1 2 4( 2 = 2(2 4) 2 4 4) 2 : Assim, du = 1 2 u 1 2 4) = 1 2 = : 3( ) 2 3 e du d = 4(2 2 4 i ):Logo, pela Regra 4( 2 4) =

5 5 Eemplo 0.7 Calcular a derivada de y = tan(10 2 ). Solução. Pela Regra da Cadeia, obtemos y 0 = sec 2 (10 2 ) 20: Usando a regra da cadeia é possível mostrar o seguinte resultado. Proposição 0.8 Se u = g() e g é diferenciável, então: 1. D e u = e u D u 2. D ln u = 1 u D u, se g() > 0: Eemplos 0.9 Derive: 1. ln ( 2 6) 2. e 2 3. e 5 4. y = p ln Solução. (1) Fazendo u = 2 6, temos D u = 2, logo D ln ( 2 6) = 1 2 :2 = : (2) Fazendo u = 2, temos D u = 2, logo D e 2 = e 2 :2 = 2e 2 : (3) Fazendo u = 5, temos D u = 2, logo D e 5 = e 5 :5 = 5e 5 : (4) Fazendo u = ln, temos d d u = 1 e d du y = 1 2 u 1 2 logo d = du :du d = 1 2 (ln ) : = 1 2 p ln Eemplo 0.10 Calcular a derivada de y = r, onde r 2 Q e 6= 0 quando r 0. Solução. Seja r = m n, m; n 2 Z, n 6= 0 e u = m. Então, y = u 1 n obtemos e pela Regra da Cadeia, y 0 = d = 1 n u 1 n 1 m m 1 = m n u 1 n n m 1 = m n m 1 n n +(m 1) = r r 1 :

6 6 EXERCÍCIOS 1. Calcular a derivada de cada função e simpli car. (a) f() = tan (g) f() = csc 10 (b) f() = cot () f() = 3 sen cos (c) f() = sec (i) f() = cot 4p (d) f() = csc (j) f() = sen 7 + 3p cos (e) f() = tan 3 ( ) (k) f() = tan 2 sec 3 (f) cot 3 ( 3p ) 2. Calcular a derivada de cada função. (a) f() = ( ) 3 (e) y = e cos (b) y = ( 3 1) 100 (f) y = e p (c) f() = 1 ( ) 4 (g) f() = e 2 (d) f() = 3p () y = e e (e) f() = ( ) 7 (i) y = ln 5p (f) y = ln ( ) (i) f() = 5p ln (g) () y = ln y = ln sen 2 (desa o!) 2 q a H(z) = ln 2 z 2 (desa o!) (i) f() = 2 ln p (desa o!) a 2 +z 2

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções trigonométricas, eponenciais e logarítmicas Aula 0 Projeto GAMA

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

Aula 12 Introdução ao Cálculo Integral

Aula 12 Introdução ao Cálculo Integral Aula 12 Introdução ao Cálculo Integral Objetivos da Aula Contextualizar o cálculo integral, dando ênfase em sua definição como sendo a operação inversa da diferenciação e estudar algumas propriedades fundamentais.

Leia mais

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regra de l Hôpital

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente.

13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente. 1 LIVRO Regra da Cadeia e Derivação Implícita 13 AULA META Derivar funções compostas e funções definidas implicitamente. OBJETIVOS Estender os conceitos da regra da cadeia e da derivação implícita de funções

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer

Leia mais

A derivada da função inversa

A derivada da função inversa A derivada da função inversa Sumário. Derivada da função inversa............... Funções trigonométricas inversas........... 0.3 Exercícios........................ 7.4 Textos Complementares................

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013

Derivadas. Slides de apoio sobre Derivadas. Prof. Ronaldo Carlotto Batista. 21 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Derivadas Prof. Ronaldo Carlotto Batista 21 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas LCE0176 - Cálculo e Matemática Aplicados às Ciências Biológicas Professora: Clarice G. B. Demétrio

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

Aula 26 A regra de L Hôpital.

Aula 26 A regra de L Hôpital. MÓDULO - AULA 6 Aula 6 A regra de L Hôpital Objetivo Usar a derivada para determinar certos ites onde as propriedades básicas de ites, vistas nas aulas 3, 4, e 5, não se aplicam Referência: Aulas 3, 4,

Leia mais

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3].

Apresente todos os cálculos e justificações relevantes. a) Escreva A e B como intervalos ou união de intervalos e mostre que C = { 1} [1, 3]. Instituto Superior Técnico Departamento de Matemática 1. o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A LEAN, LEMat, MEQ 1. o Sem. 2016/17 12/11/2016 Duração: 1h0m Apresente todos os cálculos e

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê?

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 9 a FICHA DE EXERCÍCIOS. 1) Quais dos seguintes integrais são impróprios? Porquê? Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC o Sem. 9/ 9 a FICHA DE EXERCÍCIOS I. Integrais Impróprios. ) Quais dos seguintes

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte IV

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte IV Cálculo Diferencial e Integral II Página 1 Universidade de Mogi das Cruzes UMC Campos Villa Lobos Cálculo Diferencial e Integral II Parte IV Engenharia Civil Engenharia Mecânica marilia@umc.br º semestre

Leia mais

ERRATAS Matemática Em Nível IME/ITA Vol. 1 ERRATA

ERRATAS Matemática Em Nível IME/ITA Vol. 1 ERRATA ERRATAS Matemática Em Nível IME/ITA Vol. 1 ERRATA Data da atualização: 0/07/2010 Nota do Autor: O livro Matemática em Nível IME/ITA Vol 1 é o resultado da minha primeira tentativa em escrever livros didáticos.

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

Capítulo 6 - Integral Inde nida

Capítulo 6 - Integral Inde nida Caítulo - Integral Inde nida. Calcule as integrais inde nidas abaio usando integração imediata ou o método da substituição. e d (j) e d d e ( ) (k) d d arctan (l) ( ) d d sec tg (m) d ln d e (n) ( e )

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I 2003/04 Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 00/0 Ficha Prática nº Parte III Função Eponencial Função Logaritmo Funções trigonométricas directas e inversas

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br Generalidades Aplicação: integrais cujos integrandos são compostos de: produtos; funções trigonométricas;

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. 1 Regra de l'hôspital. Objetivos da Aula. Aula n o 14: Regra de L'Hospital. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof Marcos Diniz Prof Edilson Neri Júnior Prof André Almeida Aula n o 4: Regra de L'Hospital Objetivos da Aula Apresentar e aplicar a Regra de L'Hospital Regra de l'hôspital A regra de l'hôspital,

Leia mais

Seno e cosseno de arcos em todos os. quadrantes

Seno e cosseno de arcos em todos os. quadrantes Trigonometria Seno e cosseno de arcos em todos os quadrantes Seno e cosseno de arcos em todos os quadrantes Exemplo: Vamos determinar X, com 0 x < 2π tal que sen x = - 1 2. Seno e cosseno de arcos em todos

Leia mais

Substituição Simples.

Substituição Simples. MÓDULO - AULA 17 Aula 17 Técnicas de Integração Substituição Simples. Objetivo Mostrar como usar a técnica de integração chamada substituição simples. Motivação - O Teorema Fundamental, mais uma vez...

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2.

Exercício 7. Usar as rectas tangentes às curvas nos pontos x 1 indicados, para obter estimativas dos valores das funções nos pontos x 2. Capítulo. Cálculo Integral Cálculo I - EC, EEC, EM 28/9 [Complementos de derivadas] Optimização. Aproimação linear. Derivação implícita. Derivada da função inversa. Regra de l'hôpital. Derivadas de ordem

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Capítulo 4 - Derivadas

Capítulo 4 - Derivadas Capítulo 4 - Derivadas 1. Problemas Relacionados com Derivadas Problema I: Coeficiente Angular de Reta tangente. Problema II: Taxas de variação. Problema I) Coeficiente Angular de Reta tangente I.1) Inclinação

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries de Potências Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries de Potências Definição A série do tipo a n (x c) n é denominado de série de potências. Dado uma série de potências,

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Exercícios Complementares 3.4

Exercícios Complementares 3.4 Eercícios Complementares 3.4 3.4A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

Capítulo Regra da cadeia

Capítulo Regra da cadeia Cálculo 2 - Capítulo 28 - Regra da cadeia 1 Capítulo 28 - Regra da cadeia 281 - Introdução 283 - Generalização 282 - Regra da cadeia Este capítulo trata da chamada regra da cadeia para funções de duas

Leia mais

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017

Instituto de Matemática e Estatística da USP MAT Cálculo Diferencial e Integral III para Engenharia 2a. Prova - 1o. Semestre /05/2017 Instituto de Matemática e Estatística da USP MAT55 - Cálculo iferencial e Integral III para Engenharia a. Prova - 1o. Semestre 17-3/5/17 Turma A Questão 1: Calcule xy ds, onde é dada pela interseção das

Leia mais

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto

Capítulo 1. Limites nitos. 1.1 Limite nito num ponto Capítulo 1 Limites nitos 1.1 Limite nito num ponto Denição 1. Seja uma função f : D f R R, x y = f(x, e p R tal que p D f ou p é um ponto da extremidade de D f. Dizemos que a função f possui ite nito no

Leia mais

O CÁLCULO DIFERENCIAL E INTEGRAL NAS RESOLUÇÕES DE PROBLEMAS DO COTIDIANO

O CÁLCULO DIFERENCIAL E INTEGRAL NAS RESOLUÇÕES DE PROBLEMAS DO COTIDIANO O CÁLCULO DIFERENCIAL E INTEGRAL NAS RESOLUÇÕES DE PROBLEMAS DO COTIDIANO Mateus Rocha de Sousa Graduando do curso de Licenciatura da Universidade Federal de Campina Grande (UFCG) campus Cajazeiras, mtrochasousa@gmail.com

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

, ou seja, o ponto x 1

, ou seja, o ponto x 1 4 DERIVADAS, DIFERENCIAIS E SUAS APLICAÇÕES 4.1 Retas Tangentes e Taxas de Variação Muitos problemas de Cálculo envolvem a determinação da taxa de variação de uma função em determinado momento. Tais problemas

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Capítulo 3 Derivada e Diferencial

Capítulo 3 Derivada e Diferencial Capítulo 3 Derivada e Diferencial Objetivos Determinar a equação de retas tangentes a uma curva em um determinado ponto Resolver problemas que envolvam retas paralelas e normais à reta tangente de uma

Leia mais