5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS

Tamanho: px
Começar a partir da página:

Download "5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS"

Transcrição

1 57 5. EQUAÇÕES E INEQUAÇÕES EXPONENCIAIS E LOGARÍTMICAS 5.. EQUAÇÕES EXPONENCIAIS Equações que envolvem termos em que a incógnita aparece no epoente são chamadas de equações eponenciais. Por eemplo, = ; =, ; 4 = Apresentaremos a seguir alguns eemplos de equações com a respectiva solução. Na maioria dos casos a aplicação das propriedades de potências reduz as equações a uma igualdade de potências da mesma base = α a a o que, usando o fato que a função eponencial é injetora, nos permite concluir e portanto, resolver a equação. a α = a = * α, a R + { } Eemplos ) Resolver as seguintes equações eponenciais a) = 6 4 = 6 = =4 S = { 4 }.

2 58 b) (00) = 0,00 (00) = 0,00 (0) = (0) = = S = { } c) = = = ( 96 5 ) = = 5 5 = 5 4= = S = { }. + d) 9 + = 4 Fazendo y =,temos: = = 0 y + y 4 = 0 y = ou y = 4 Observemos que y = 4 não satisfaz porque y De y =, temos: = >0. 0 = = = 0 S = {0}.

3 59 e) 5.() = () = log5 = = = S = { log 5} ) Resolver em R + as equações: a) = Inicialmente vamos verificar se 0 ou são soluções da equação. Como não se define 0, = 0 não é solução da equação. Fazendo = na equação obtemos = o que é uma identidade e portanto, = é solução. Supondo > 0 e, podemos usar a injetividade da função eponencial = = 0 = S = {, }. 4 b) = Eaminemos inicialmente se 0 ou são soluções da equação 0 4 = 0 = 0 é solução = = é solução

4 60 Supondo > 0 e temos 4 = 4 = = S = {0,, } 5.. EQUAÇÕES LOGARÍTMICAS As equações envolvendo logaritmos são chamadas de equações logarítmicas e são resolvidas aplicando-se propriedades dos logaritmos e o fato da função logarítmica ser injetora. Assim, procuramos escrever todos os logaritmos envolvidos numa mesma base e usamos a condição log = log α = α a a Além disto, devemos inicialmente analisar as condições de eistência dos logaritmos, levando-se em conta os domínios de definição do logaritmo e da base. Eemplos Resolva as seguintes equações: ) log + = + log / Condições de eistência: Temos + > 0 e > 0 >0 ( I )

5 6 log + = + log log + = log log log + = log / + = + = 0 = ou = ( II ) De ( I ) e ( II ) temos que a solução da equação é: S = { } ) log + = log 9 Condições de eistência: > 0 e > 0 e ( I ) Temos log log + = log + log9 = log + = log log 9 log 9 log log + = log9 log + log = log9 log = log9 = 9 = 9 = 8 = 7 = ( II ) De ( I ) e ( II ) temos que a solução da equação é S = { }. log ) = 4 Condição de eistência: > 0 ( I ) log log = 4 log = log 4 log log = log + log Fazendo log = y, obtemos: 4

6 6 y y = 0 y = ou y = log = ou log = = 4 ou =. De ( I ) e ( II ) temos que a solução da equação é: S = {, 4 }. 4) log (+ ) = 7 Condições de eistência: > 0, e > > 0 e ( I ) Temos log (+ ) = 7 + = 7 = 4 ( II ) De ( I ) e ( II ) temos que a solução da equação é: S = { 4 }. 5) log ( 9 + 7) = + log ( + ) Condições de eistência: como > 0 e + > 0 R, concluímos que a equação está definida para todo número real. Vejamos: ( ) ( ) ( ) 4 ( ) log ( 9 + 7) = log 4 ( + ) 9 + 7= log = + log + log = log + log =

7 6 Fazendo = y obtemos a equação y 6y+ 4= 0, que tem como solução y = 9 ou y = 7. Portanto, = 9 = = 7 = Assim, a solução da equação é: S = {, }. 5.. INEQUAÇÕES EXPONENCIAIS Inequações que envolvem termos em que a incógnita aparece no epoente são inequações eponenciais. Por eemplos - 5 0; 8 ; 4 6. > < + 8 < 0. Assim como no caso das equações eponenciais, em geral, as inequações podem ser reduzidas a uma desigualdade de potências de mesma base, através da aplicação das propriedades de potências. Usamos então a Proposição 4.: i) Se a > e a < a então < ii) Se 0 < a < e a < a então > Em outros casos a inequação é resolvida com a aplicação dos logaritmos. Eemplos ) Resolver as seguintes inequações eponenciais:

8 64 a) > 8 4 > 8 > 4 Como a base é menor que, temos que < 4. S =] -,4[. b) < < < 0 Fazendo, = y, temos Como a base é maior que, então < < y 6y+ 8< 0 < y< 4 < < S = ],[ c) < 5 Aplicando logaritmo na base nos dois lados da desigualdade e conservando o sinal da desigualdade uma vez que a base do logaritmo é maior que temos < 5 log < log 5 < log 5 S = ],log 5 [

9 65 4 ) Resolver em R + a inequação < Devemos considerar três casos: Como 0 i) Vamos verificar se 0 ou são soluções da inequação. não está definido, = 0 não é solução da inequação. Se =, temos < o que não se verifica, logo = não é solução. A solução neste caso é S =. ii) > ( I ) < < 4 < 0 < ( II ) 4 A solução neste caso deve satisfazer simultaneamente ( I ) e ( II ), portanto a solução S =. iii) 0 < < ( III ) < < 4 > 0 > ( I V ) 4 A solução neste caso deve satisfazer simultaneamente ( III ) e ( IV ), portanto S =], [ 4. A solução da inequação é S= S S S =], [ INEQUAÇÕES LOGARÍTMICAS Para resolvermos inequações envolvendo logaritmos, procuramos colocar os logaritmos numa mesma base, usando as propriedades, analisamos as condições de eistência e usamos as implicações

10 66 i) Para a >, loga < loga < ii) Para 0 < a <, loga > loga > Eemplos Resolva as seguintes inequações logaritmicas: ) / log /4 > log 5 Condição de eistência: Temos, / 4 > 0 ], / [ ] /, + [ ( I ) / log /4 > log 5 log /4 > log 4 log 5 log /4 < log 5/4 /4< 5/4 < 0 ],[ ( II ) De ( I ) e ( II ) concluímos que a solução da inequação é S = ], [ ],[. ) log ( ) 5 + >log5 log 5 ( ) Condições de eistência: > 0 e > 0 e > e 4 ( I )

11 67 Consideremos log5( ) + > log5 log5( ) + log 5( ) > log5 log 5 ( ) log ( )( ) > log ( )( ) > > De ( I ) e ( II ) concluímos que a solução da inequação é ], [ ]4,+ [ ( II ) S = ]4,+ [. ) + log Condição de eistência: Vejamos: > 0 ( I ) + log + log ou + log log ou log 5 5 log log ou log log De ( I ) e ( II ) concluímos que a solução da inequação é ou -5 ( II ) 5 S = ]0, [ [,+ [. 4) log 9 Condição de eistência: > 0 ( I )

12 68 Temos ( log ) ( log ) 9 log log( 9) ( log)( log) log + 9 log Fazendo log = y, obtemos y y 0 y log log log 9 9 (II) De ( I ) e ( II ) concluímos que a solução da inequação é S = [,9]. log 5) + > 00 Condição de eistência: > 0 ( I ) Assim log + log log log > 00. > 00 > 00 log > log00 log > log > ou log < > 0 ou < 0 ( II ) De ( I ) e ( II ) concluímos que a solução da inequação é: S = ]0,0 [ ]0, + [. 4) log ( ) log( ) Condições de eistência: > 0 e > e ( I )

13 69 Assim, Fazendo log ( ) = y, obtemos log ( ) log log ( ) ( ) log ( ) y y y 0 0 y ou 0 < y y y y log ( ) ou 0 < log ( ) - log ( ) log ou log < log ( ) log ou < ou < ( II ) De ( I ) e ( II ) concluímos que a solução da inequação é: S = ], ] ],] 5.5. EXERCÍCIOS 5.. Resolva as seguintes equações eponenciais: a) 6 = 6 b) 8 = c) = d) + = e). f) = 4 = (em IR + ) + 4- g) = (em IR ) h) = (Sugestão: Multiplique por 4 )

14 Resolva os seguintes sistemas: a) +y 4 = 6y = y b) + = 4y y = y,y IR Resolva as seguintes inequações: a) > 8 b) 4 c) d) (0,) 9 8 ( 009, ) ( 0, ) * + e) > 0 f) ( Em IR g) a < a ( a > 0 e a ) h) > Resolva as seguintes equações: a) log = - b) log 4 = c) log ( -) = - 7loglog 5.5. Resolva as seguintes equações: log a) log 9( ) = log ( 0 4) log ( + ) b) = 000 log a c) (log ) = d) log a.log a = 4, a > 0, a e) = + + f). = 8 4 ) 5.6. Resolva os seguintes sistemas: y = 6 log log y = log a) b) log = + log y 9y = 90y 5.7. Resolva as seguintes inequações: a) log ( 4) < log ( 5) b) log ( ) / c) log( + ) + log( + ) > log d) log < log e) log ( ) + 0.log f) > ( ) ( 8 ) ( 8 ) log

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3

Equações Exponenciais e Logarítmicas. Equações Exponenciais e Logarítmicas. Exemplos: Exemplos: a x = b x= log a b. 1) Resolva as equações: ) 5 = 3 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Eponenciais e Logarítmicas.

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos:

Inequações Exponenciais e Logarítmicas. Inequações Exponenciais e Logarítmicas. Exemplos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Inequações Eponenciais e

Leia mais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais

Função Exponencial. 1.Definição 2.Propriedades 3.Imagem 4.Gráfico 5.Equações exponenciais 6.Inequações exponenciais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial Prof.:

Leia mais

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos:

( ) Função Exponencial. Função Exponencial. x = 0 f(0) = a 0 = 1. x 1 < x 2 f(x 1 ) > f(x 2 ) x a. 1 a ) Na função exponencial f(x) = a x, temos: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Eponencial. Propriedades

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 09 Licenciatura em Matemática Osasco -2010 . Logaritmos Definição: O logaritmo de um número real x na base n, denotado por log n x, é definido como o expoente ao qual devemos elevar o número n para obtermos como resultado o número x, ou seja log

Leia mais

Inequação Logarítmica

Inequação Logarítmica Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem

Leia mais

Logaritmos e a Calculadora

Logaritmos e a Calculadora Logaritmos e a Calculadora Denise Martinelli PIBID/Matemática Neumar Regiane Machado Albertoni PIBID/Matemática Violeta Maria Estephan professora do DAMAT CURITIBA, 015 19 a 1 de agosto de 015 Página 1

Leia mais

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8 Equação do 1º Grau Introdução Equação é uma sentença matemática aberta epressa por uma igualdade envolvendo epressões matemáticas. Uma equação é composta por incógnitas e coeficientes (esses são conhecidos).

Leia mais

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010 1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Prof AULA 0 - FUNÇÕES.

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Primeiro Grau Isabelle da Silva Araujo - Engenharia de Produção Definição Equação x Inequação Uma equação é uma igualdade entre dois

Leia mais

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS

EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita

MATEMÁTICA MÓDULO 7 FUNÇÃO EXPONENCIAL 1. DEFINIÇÃO 2. GRÁFICO. como sendo. Sendo a 0, a. a. Tal função é dita FUNÇÃO EXPONENCIAL. DEFINIÇÃO Sendo a 0, a, um número real, definimos a função função eponencial de base a. * f: f como sendo a. Tal função é dita. GRÁFICO (BASE > ) (BASE < ) 3. EQUAÇÕES EXPONENCIAIS

Leia mais

LOGARITMOS. Mottola. 4) (FUVEST) Se log 10 8 = a então log 10 5 vale (a) a 3 (b) 5a - 1 (c) 2a/3 (d) 1 + a/3 (e) 1 - a/3

LOGARITMOS. Mottola. 4) (FUVEST) Se log 10 8 = a então log 10 5 vale (a) a 3 (b) 5a - 1 (c) 2a/3 (d) 1 + a/3 (e) 1 - a/3 LOGARITMOS 1) (UFMG) Para a função f() = log a (1 + 2 ), com a > 1, assinale a alternativa incorreta. (a) A função é definida para todo R. (b) A função tem valor mínimo para = 0. (c) A função assume valores

Leia mais

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema.

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema. EXERÍIO OMPLEMENTRES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉDIO - ª ETP ============================================================================================== 01- ssunto: Função Logarítmica Determine

Leia mais

Inequação do Primeiro Grau

Inequação do Primeiro Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.1 Inequação do Primeiro Grau Bárbara Simionatto - Engenharia Civil Definição Equação x Inequação Uma equação é uma igualdade entre dois membros e por

Leia mais

MÓDULO DE UM NÚMERO REAL

MÓDULO DE UM NÚMERO REAL Hewlett-ackard MÓDUL DE UM NÚMER REAL Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho, aulo Luiz Ano: 2016 Sumário Módulo de um número real... 0 Módulo de um número real (definição formal)... 0... 0 ropriedades

Leia mais

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x

CÁLCULO I. 1 Funções Exponenciais Gerais. Objetivos da Aula. Aula n o 25: Funções Logarítmicas e Exponenciais Gerais. Denir f(x) = log x CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 25: Funções Logarítmicas e Eponenciais Gerais Objetivos a Aula Denir f() = log Denir f() = a Funções Eponenciais Gerais Denição. Se a > 0 e

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3 1. Inequações Uma inequação é uma expressão algébrica dada por uma desigualdade. Por exemplo: 3x 5 < 1 ou 2x+1 2 > 5x 7 3 ou x 1 2 + 2 > 3 Resolver a inequação significa encontrar os intervalos de números

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Quantos Dígitos...? 1

Quantos Dígitos...? 1 1 Introdução Quantos Dígitos? 1 Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar É muito comum encontrarmos, em textos de Matemática para o 1 e 2 graus, questões sobre contagem de dígitos

Leia mais

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas

CÁLCULO I. 1 Funções Exponenciais e Logarítmicas CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;

Leia mais

Matemática Caderno 5

Matemática Caderno 5 FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi

Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,

Leia mais

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular

Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Problemas Singulares e Métodos Assimptóticos Desenvolvimento da solução de uma EDO em série de potências na vizinhança de uma singularidade regular Consideremos uma EDO linear de segunda ordem com a forma

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09 Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA I Nome: MATEMÁTICA I Curso: TÉCNICO EM INFORMÁTICA

Leia mais

FUNÇÃO MODULAR. Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0

FUNÇÃO MODULAR. Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0 IFSP - EAD FUNÇÃO MODULAR DEFINIÇÃO : MÓDULO DE UM NÚMERO REAL : Para qualquer número real m, representamos módulo de m por m, e o definimos do seguinte modo: m, se m 0 m = -m, se m < 0 EXEMPLOS : De acordo

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 0 Aula 0 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Introdução Apesar

Leia mais

REVISÃO DE ALGUMAS MATÉRIAS

REVISÃO DE ALGUMAS MATÉRIAS Análise Matemática MIEC /4 REVISÃO DE ALGUMAS MATÉRIAS INEQUAÇÕES Uma das propriedades das inequações mais vezes ignorada é a que decorre da multiplicação de ambos os membros por um valor negativo. No

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

ANÁLISE DE ALGORITMOS: PARTE 4

ANÁLISE DE ALGORITMOS: PARTE 4 ANÁLISE DE ALGORITMOS: PARTE 4 Prof. André Backes 2 Função recursiva Função que chama a si mesma durante a sua execução Exemplo: fatorial de um número N. Para N = 4 temos 4! = 4 * 3! 3! = 3 * 2! 2! = 2

Leia mais

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Função Modular Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

MÓDULO XI. INEQUAÇÕES 2x 20

MÓDULO XI. INEQUAÇÕES 2x 20 MÓDULO XI. Inequação INEQUAÇÕES < Logo, o conjunto solução será S. Vamos supor que, na nossa escola, a média mínima para aprovação automática seja 6 e que essa média, em cada matéria, seja calculada pela

Leia mais

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009

Fun c ao Logaritmo Fun c ao Logaritmo ( ) F. Logaritmo Matem atica II 2008/2009 Função Logaritmo (27-02-09) Função Logaritmo Acabámos de estudar a função exponencial, cuja forma mais simples é a função f(x) = e x. Resolvemos vários problemas que consistiam em calcular f(x 0 ) para

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Inequações do 1º grau

Inequações do 1º grau A UUL AL A Inequações do 1º grau Analisando as condições de vida da população brasileira, certamente encontraremos um verdadeiro desequilíbrio, tanto na área social como na área econômica. Esse desequilíbrio

Leia mais

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47 ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados

Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões

Leia mais

Método de Gauss-Jordan e Sistemas Homogêneos

Método de Gauss-Jordan e Sistemas Homogêneos Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

Método da substituição

Método da substituição Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas.

Conceitos Básicos. Capítulo 1 EQUAÇÕES DIFERENCIAIS. Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Capítulo 1 Conceitos Básicos EQUAÇÕES DIFERENCIAIS Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. Exemplo 1.1 Algumas equações diferenciais envolvendo a função

Leia mais

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo:

23. Resolva as seguintes equações matriciais: a) X. b) X. 24. Determine a matriz X, tal que (X A) t B, sendo: Matrizes 9 Calcule: 5 7 9 6 5 8 5 7 5 6 6 8 7 5 7 Sejam A 9 5, B 8 6 e C 7 Determine as matrizes: A B C A B C A (B C) Sejam as matrizes A (a ij ), em que a ij i j, e B (b ij ), em que b ij i j Seja C A

Leia mais

1. Integração por partes. d dx. 1. Integração por partes

1. Integração por partes. d dx. 1. Integração por partes UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Integração por Partes

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}.

O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c). A imagem é o conjunto Im = {c}. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do 1 o Grau Prof.:

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA12 Matemática Discreta Avaliação - GABARITO AV 3 - MA 12 13 de julho de 2013 1. (2,0) Seja (a n ) uma progressão

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

NOÇÕES BÁSICAS SOBRE UTILIZAÇÃO DE CALCULADORA CIENTÍFICA

NOÇÕES BÁSICAS SOBRE UTILIZAÇÃO DE CALCULADORA CIENTÍFICA NOÇÕES BÁSICAS SOBRE UTILIZAÇÃO DE CALCULADORA CIENTÍFICA Professor: Jeferson de Arruda E-mail: profjeferson_df@hotmail.com UTILIZAÇÃO DA CALCULADORA CIENTÍFICA As informações aqui contidas são para utilização

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação

Leia mais

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a...

a n = a.a.a...a Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL a n+1 = (a.a.a...a).a a n+1 = a n.a (a.a.a.a...a).(a.a... Aula 01 _ Revisão de Potência FUNÇÃO EXPONENCIAL 1 1) Revisão de Potência Assim: a 1 = a e a n = a.a.a.....a a n+1 = (a.a.a.....a).a 2) Propriedades das Potências P1) a m.a n = a m+n Demonstração: a m.a

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO EXPONENCIAL

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO EXPONENCIAL PROPRIEDADES DAS POTÊNCIAS... 2 FUNÇÃO EXPONENCIAL... 5 EQUAÇÕES EXPONENCIAIS... 10 INEQUAÇÕES EXPONENCIAIS... 17 RESPOSTAS... 22 REFERÊNCIA BIBLIOGRÁFICA... 24 No final das séries de exercícios podem

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Sistemas Lineares. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Sistemas Lineares Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)

Leia mais

3 Limites. Exemplo 3.1

3 Limites. Exemplo 3.1 3 Ao expor o método dos incrementos fizemos uso da expressão limite. Muito mais que uma notação a noção de limite alcança um horizonte bem mais amplo dentro do contexto matemático, na realidade muito pouco

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer

Leia mais

INTEGRAÇÃO DE FUNÇÕES RACIONAIS

INTEGRAÇÃO DE FUNÇÕES RACIONAIS Cálculo Volume Dois - 40 INTEGRAÇÃO DE FUNÇÕES RACIONAIS Quando uma função racional da forma N()/D() for tal que o grau do polinômio do numerador for maior do que o do denominador, podemos obter sua integral

Leia mais

Funções e Limites - Aula 08

Funções e Limites - Aula 08 Funções e Limites - Aula 08 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Março de 2013 Primeiro Semestre de 2013 Turma 2013104 - Engenharia de Computação Definição

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a

Leia mais

MONÓMIOS E POLINÓMIOS

MONÓMIOS E POLINÓMIOS MONÓMIOS E POLINÓMIOS POLINÓMIOS 1 6 a 3 3 7 4 y 4y 3 Eemplos de várias epressões algébricas. Uma epressão algébrica é constituída por um ou mais termos. No polinómio, às parcelas,, e y 4y 3 chamam-se

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.

Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau. Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Teste de Avaliação Nº 2. 9ºA. Matemática. 9/12/2004 Duração do teste: 90 minutos

Teste de Avaliação Nº 2. 9ºA. Matemática. 9/12/2004 Duração do teste: 90 minutos Agrupamento Vertical de Souselo Escola E.B., de Souselo Teste de Avaliação Nº. 9ºA Matemática 9//004 Duração do teste: 90 minutos Em todas as questões apresenta o teu raciocínio de forma clara, indicando

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

Para discutir as equações exponenciais, vamos pensar sobre a seguinte situação:

Para discutir as equações exponenciais, vamos pensar sobre a seguinte situação: EQUAÇÕES EXPONENCIAIS CONTEÚDO Equações exponenciais AMPLIANDO SEUS CONHECIMENTOS Para discutir as equações exponenciais, vamos pensar sobre a seguinte situação: Imagine que você tenha em mãos uma folha

Leia mais

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que.

Se tanto o numerador como o denominador tendem para valores finitos quando x a, digamos α e β, e β 0, então pela álgebra dos limites sabemos que. FORMAS INDETERMINADAS E A REGRA DE L HÔPITAL RICARDO MAMEDE Consideremos o ite. Se tanto o numerador como o denominador tendem para valores initos quando a, digamos α e β, e β, então pela álgebra dos ites

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO

MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO MATRIZ DA PROVA DE EXAME A NÍVEL DE ESCOLA AO ABRIGO DO DECRETO-LEI Nº 357/2007, DE 29 DE OUTUBRO (Duração: 90 minutos + 30 minutos de tolerância) MATEMÁTICA A 10º+11º+12º ANO (Cursos Científico-Humanísticos

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais