Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos.

Tamanho: px
Começar a partir da página:

Download "Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos."

Transcrição

1 CAPÍUO 4 EEMEOS FIIOS UIDIMESIOAIS Ante e epor o métoo o elemento finito (MEF) e m moo pliável meio ontíno biimenioni e triimenioni, preent-e om lgm etlhe o o niimenionl. Qno pen e onier m imenão, o métoo reltnte não tem grne interee prátio, m erve omo introção à téni qe mi inte erão epot pr o o mi genério. O métoo o elemento finito, qe inte erá epoto, bei-e no métoo o elomento e n iretizção e m etrtr em b-etrtr. C m e b-etrtr eign-e por elemento finito e tem omportmento onheio, eno o omportmento o too oniero omo om prte. C elemento finito tem n nó, eno pen oniero epliitmente o elomento generlizo nee nó. O elomento no retnte ponto o elemento finito obtêm-e por interpolção o elomento o nó Simbologi Apreent-e em primeiro lgr m remo imbologi opt n formlção o métoo o elemento finito. bel 4. - Simbologi reltiv o métoo o elemento finito. n úmero e nó o elemento finito Comprimento brr primáti Cooren rtein Cmpo e elomento Delomento nol Fnção interpolor o fnção e form 49

2 Elemento Finito Uniimenioni - Álvro F. M. Azeveo ε B V σ p F A E Deformção Mtriz e eformção Operor iferenil ( / ) Volme brr primáti enão norml Ação eterior itribí por nie e omprimento Forç noi eqivlente à ção eterior, no gr e libere o elemento finito, no referenil lol Áre eção trnverl brr primáti Mólo e eltiie o mólo e Yong D Mtriz e eltiie ( σ D ε ) K E A J Mtriz e rigiez o elemento finito no referenil lol Coefiiente e m termo e m polinómio Cooren rtein e m nó e m elemento finito Cooren lol Mólo e eltiie nm nó o elemento finito Áre eção trnverl nm nó o elemento finito Jobino trnformção (J / ) 4. - Fnçõe interpolor o fnçõe e form Figr 4. enontr-e repreento m elemento finito niimenionl om oi nó e om omprimento. 5

3 Elemento Finito Uniimenioni - Álvro F. M. Azeveo () ( -) Fig Elemento finito niimenionl e oi nó. O únio eio ooreno qe é oniero é o eio, oorreno too o elomento prlelmente. A fnção orrepone o mpo e elomento, verifino-e o eginte ( ) () eno portnto e o elomento o nó. Coniere-e gor, omo proimção, qe lei e vrição o elomento entre o nó e é liner. et irntâni, eginte fnção elomento porqe é liner em e repeit () repreent o mpo e () O vlore nmério o prâmetro e prão er onheio epoi e nli etrtr. Colono e em eviêni em (), heg-e à eginte epreão () Em () tem-e m om e proto e fnçõe linere e pelo elomento noi e. 5

4 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 5 A eqção () poe er erit em form mtriil (4) o [ ] (5) eno (6) e (7) om [ ] [ ] (8) e (9) O gráfio fnçõe linere e ini em (6) enontr-e repreento n Figr 4..

5 Elemento Finito Uniimenioni - Álvro F. M. Azeveo () () - - Fig Gráfio fnçõe () e (). A prinipl rteríti o gráfio fnçõe () e () é lient n bel 4. e onite no fto e fnção () mir o vlor nitário no nó e nlo no retnte nó. A fnção () me o vlor nitário no nó e nlo no retnte nó. Et rteríti erá lrifi inte qno e preentrem eemplo e elemento finito om mi o qe oi nó. bel 4. - Crteríti fnçõe () e (). - () () Apreentm-e em egi fnçõe e form () e () pr o o brr e oi nó e omprimento (verfigr4.). () ( - /) ( /) Fig Elemento finito niimenionl e oi nó om omprimento. 5

6 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 54 De m moo emelhnte o qe foi erito pr o elemento e omprimento, tem-e eivmente () () () () 4. - Cmpo e eformçõe O mpo e eformçõe n brr é efinio o eginte moo ε (4) Ateneno (5) tem-e [ ] ε (5) Um vez qe o elomento noi e não epenem e, erivção relt ε (6) qe em notção mtriil fi ε (7)

7 Elemento Finito Uniimenioni - Álvro F. M. Azeveo Deignno por B mtriz B (8) e teneno (9), tem-e ε B (9) Deignno por o eginte operor iferenil () eqção (4) ereve-e ε () Ateneno (7) tem-e ε () Comprno () om (9), onli-e qe B () De oro om (8) e om (6), pr o o brr e omprimento, o elemento mtriz B ão o eginte (4) B (5) o o brr e omprimento, e (8) e () heg-e 55

8 Elemento Finito Uniimenioni - Álvro F. M. Azeveo B (6) (7) De (9), (9) e (7) onli-e qe, no o brr e omprimento,etem ε B (8) ete eemplo imple, epreão o mpo e eformçõe orrepone o qe e onier hbitlmente pr m brr jeit m eforço il. Um vez qe ε não epene ooren, ete elemento finito preent eformção ontnte Prinípio o trblho virti Coniere-e m orpo jeito m onjnto e forç e volme e e perfíie qe lhe provom m eformção. Com be no e eto e eqilíbrio etátio, onfigrção o orpo é moifi por m onjnto e elomento mito peqeno e omptívei om oniçõe fronteir, qe e eignm elomento virti. O prinípio o trblho virti o prinípio o elomento virti etbelee qe o trblho relizo pel tenõe intern n eformção virtl o orpo é igl o trblho relizo pel forç eteriore no elomento virti o e ponto e plição [4.] [4.]. De m moo mi implit é omm firmr qe o trblho interno e eformção é igl o trblho eterno forç pli. rblho Interno rblho Eterno (9) Apreent-e em egi m verão implifi o prinípio o trblho virti (PV) pt o o brr jeit elomento e forç pen ii. epreõe qe e egem, o prefio δ ini qe o elomento o eformçõe ão virti. 56

9 Elemento Finito Uniimenioni - Álvro F. M. Azeveo ε σ V δ V δ p () et epreão o vetor δε pen tem omponente orreponente à etenão egno o eio brr, o vetor σ pen ontem tenão norml n eção trnverl brr, o mpo e elomento ( δ ) e ção eterior itribí ( p ) pen referem omponente egno o eio brr (ver Figr 4.4). () p F F ( - /) ( /) Fig Elemento finito niimenionl jeito m ção il niformemente itribí. ete o epreão o PV () p er eginte ε σ V δ V δ p () Mtriz e rigiez e vetor oliitção Com be no prinípio o trblho virti preento n eção nterior, vi-e em egi proeer à eção epreõe mtriz e rigiez e o vetor oliitção qe ão tilizo no métoo o elomento. Deignno por A áre eção trnverl brr, tem-e V A () Um vez qe o eio brr oinie om o eio,tem-e () 57

10 Elemento Finito Uniimenioni - Álvro F. M. Azeveo A eqção (9) referi à eformção virtl é eginte δ ε B δ (4) qe é eqivlente δ ε δ B (5) A relção ontittiv o relção tenão-eformção é nete o σ D ε (6) preentno mtriz e eltiie D pen m elemento qe onite no mólo e Yong (E). Sbtitino (9) em (6) tem-e σ D B (7) A eqção (7) referi à eformção virtl é eginte δ δ (8) qe é eqivlente δ δ (9) Sbtitino to et eqçõe em () p ter-e o PV epreo por δ B D B A δ p (4) Um vez qe o elomento noi não epenem e poem pr pr for o integrl δ B D B A δ p (4) 58

11 Elemento Finito Uniimenioni - Álvro F. M. Azeveo De oro om o PV, eqção (4) é vereir pr qlqer onjnto e elomento virti, onlino-e im qe B D B A p (4) Comprno et eqção om relção e rigiez qe é tiliz no métoo o elomento K F (4) tem-e no o brr niimenionl K B D B A (44) F p (45) A epreõe (4)-(45) ão pliávei qno eginte grnez ão vriávei o longo brr: mólo e Yong (E), áre eção trnverl (A) e rg itribí (p). Apreent-e em egi o eenvolvimento epreõe (44) e (45) pr o o e E, A e p erem ontnte. K E A B B (46) Ateneno (7) K E A [ ] (47) E A E A K (48) E A E A 59

12 Elemento Finito Uniimenioni - Álvro F. M. Azeveo ete o imple o elemento mtriz e rigiez oiniem om o qe e obtêm iretmente pelo métoo o elomento. Prtino e (45), tem-e nete o em qe p é ontnte F p (49) Ateneno (8) e () tem-e F p (5) p F p (5) Et epreão tmbém oinie om qe e obtém por proeo mi imple Elemento finito niimenionl om trê nó Coniere-e o elemento finito niimenionl om trê nó repreento n Figr 4.5, jo omprimento é. () ( -) Fig Elemento finito niimenionl e trê nó. 6

13 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 6 De m moo emelhnte o qe foi preento n Seção 4., onier-e qe fnção é proim pelo eginte polinómio e egno gr (5) Pretene-e qe fnção (5) repeite no nó o vlore o repetivo elomento, eno (5) Ateneno (5) tem-e (54) qe é eqivlente (55) Epliitno, e tem-e (56) Sbtitino epreõe e, e em (5), heg-e (57) qe é eqivlente (58)

14 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 6 Em notção mtriil tem-e [ ] (59) Conierno [ ] (6) tem-e (6) ete o [ ] [ ] (6) (6) (64) Figr 4.6 etão repreento o gráfio fnçõe (), () e () ini em (6)

15 Elemento Finito Uniimenioni - Álvro F. M. Azeveo () - () - () - Fig Gráfio fnçõe (), () e (). bel 4. enontrm-e lgm rteríti fnçõe e form repreent n Figr 4.6 (omprr om bel 4.). bel 4. - Crteríti fnçõe (), () e (). - () () () 6

16 Elemento Finito Uniimenioni - Álvro F. M. Azeveo Generlizno epreão (8) pr o ooelementoetrênó,relt B (65) Ateneno (6), o elemento mtriz B ão nete o o eginte B (66) O állo mtriz e rigiez K e o vetor oliitção F poe er efeto por m proeo emelhnte o inio n Seção 4.5, não eno qi eenvolvio Elemento finito niimenionl om btitição e vriável Figr 4.7 enontr-e repreento m elemento finito niimenionl om trê nó e geometri qlqer. () ( ) ( ) Fig Elemento finito niimenionl e trê nó om geometri rbitrári. A ooren o nó ão, e. l omo no o erito nteriormente, E repreent o mólo e Yong, A é áre eção trnverl e p é ção il itribí. o et grnez poem eventlmente epener e. É poível llr mtriz e rigiez K e o vetor oliitção F om (44) e (45), tilizno omo vriável ooren. Conto, e teno em vit generlizção ete eto o o biimenioni e triimenioni, vi er efet m btitição e vriável o tipo 64

17 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 65 () (67) A fnção (), nete o eleion, orrepone m interpolção oiniente om qe foi efet n Seção 4.6 pr fnção elomento, em qe foi tiliz interpolção (6), onjntmente om fnçõe e form (6). () () () () [ ] (68) () () () () (69) () () () (7) De m moo emelhnte o qe e verifio em (5), tem-e (7) A btitição e vriável (67) enontr-e eqemtiz n Figr 4.8.

18 Elemento Finito Uniimenioni - Álvro F. M. Azeveo ( ) ( ) ( -) Fig Sbtitição vriável. Apó btitição vriável, o integrl (44) p er K B D B A (7) om D, B, A e / epenente nov vriável. Se não forem ontnte, D (qe oinie om E) ea ão interpolo om mem fnçõe e form qe form tiliz pr interpolr ooren o nó, i.e., interpolção é efet tl omo em (69). () () E () E () E E (7) () () A () A () A A (74) et fnçõe, trnverl. Ei e Ai ão o vlore no nó i o mólo e Yong e áre eção A epreão e /, qe e p eignr por J, obtém-e por erivção e (69), reltno J (75) Por erivção e (7) em orem, obtém-e 66

19 Elemento Finito Uniimenioni - Álvro F. M. Azeveo (76) fino J ( ) (77) Pr vlir o integrl (7) é in neeário efinir mtriz B em fnção e. Ateneno à ptção e (8) o elemento e trê nó, qe foi tmbém tiliz em (65), eite neeie e llr eriv fnçõe e form em orem, m epre em fnção e. Com ete objetivo, e m vez qe fnçõe e form i (6) epenem e, qe por vez epene e (69), tem-e, reorreno à regr ei ( () ) i i (78) i i i (79) Mltiplino mbo o membro e (79) pel inver e / relt i i (8) Um vez qe / é m elr, poe erever-e i i (8) 67

20 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 68 eno, e oro om (76) e (77) (8) (8) (84) Amtriz B preent o eginte omponente J B (85) Depoi e efinio too o omponente fnção integrn e (7), é poível efetr eginte implifiçõe B B E A J K (86) eno B B (87)

21 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 69 B B (88) Ateneno (8) e o fto e er J /,tem-e J B B (89) A epreão genéri o elemento K ij mtriz K é J E A K j i ij (9) Como eemplo, preent-e em egi epreão o elemento K mtriz e rigiez o elemento finito, e oro om (9) e (76) J E A K (9) Coniere-e gor m o prtilr e m brr e omprimento totl e nó entro (ver Figr 4.7), om (9) ete o prtilr, epreão e J ll om (77) não epene e, eno

22 Elemento Finito Uniimenioni - Álvro F. M. Azeveo J (9) Se lém e J er ontnte, E e A tmbém forem ontnte, é imple llr o integrl (9), reltno E A K (94) Apreent-e em egi m eemplo nmério em qe o nó não e enontr entro no elemento finito e trê nó (ver Figr 4.7).. 5. (95) ete o onreto, epreão e J ll om (77) é J (96) Spono E e A ontnte, tem-e, e oro om (9) K E A 4 (97) práti é onveniente reolver o integri (9) e (97) reorreno m téni e integrção nméri, qe erá erit no Cpítlo Conierçõe fini A formlção pelo MEF qi efet no âmbito e m problem mito imple erve omo introção à téni qe e plim em meio ontíno om o trê imenõe, e qe ão eemplo o eto plno e tenão, e o ólio. Mit epreõe mtriii qe qi form preent oiniem om qe 7

23 Elemento Finito Uniimenioni - Álvro F. M. Azeveo rgem no o mi genério, eno pen neeário reefinir imenõe e o elemento o vetore e mtrize. BIBIOGRAFIA [4.] - Cook, R. D.; Mlk, D. S.; Pleh, M. E.; Witt, R. J. - Conept n Applition of Finite Element Anlyi, Forth Eition, John Wiley & Son, In.,. [4.] - Zienkiewiz, O. C.; ylor, R.. - he Finite Element Metho, Forth Eition, MGrw-Hill,

24 Elemento Finito Uniimenioni - Álvro F. M. Azeveo 7

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli. CAPÍUO VIGA DE EUER-EROUI Deign-e por Euler-ernoulli formulção o elemento finito e vig em que e conier que ecçõe e mntêm pln e normi o eio brr pó eformção. Dete moo não é conier eformção evi o corte..

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no âmbito da determinação de funções interpoladoras.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no âmbito da determinação de funções interpoladoras. CAPÍTUO 7 FUÇÕES ITERPOADORAS ete pítulo ão derito divero modo de obtenção de funçõe interpoldor, tmbém deignd funçõe de form. São preentdo eemplo reltivo meio unidimenioni, bidimenioni e tridimenioni.

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Timoshenko.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Timoshenko. CAPÍUO VIGA DE IMOSHEKO formulção o elemento e vg e mohenko [.] é conero que ecçõe pln e mntêm pln. Contuo, upõe-e que um ecção norml o eo vg não mntém e crcterítc pó eformção. Dete moo é poível conerr

Leia mais

O emprego de tabelas facilita muito o cálculo de flexão simples em seção retangular.

O emprego de tabelas facilita muito o cálculo de flexão simples em seção retangular. FLEXÃO SIPLES N RUÍN: TBELS CPÍTULO 8 Libânio. Pinheiro, Caiane D. uzaro, Sanro P. Santo 7 maio 003 FLEXÃO SIPLES N RUÍN: TBELS O emprego e tabela failita muito o álulo e fleão imple em eção retangular.

Leia mais

Lista de Exercícios 3 - Cinemática Inversa

Lista de Exercícios 3 - Cinemática Inversa PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA ENGENHAIA DE CONTOLE E AUTOMAÇÃO - SISTEMAS OBOTIZADOS Prof. Felie Kühne Lita e Exeríio - Cinemátia Invera. Determine o entro o

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

SÓLIDOS, ESTADO PLANO DE DEFORMAÇÃO E AXISSIMETRIA. Apresenta-se em primeiro lugar um resumo da simbologia adoptada neste capítulo.

SÓLIDOS, ESTADO PLANO DE DEFORMAÇÃO E AXISSIMETRIA. Apresenta-se em primeiro lugar um resumo da simbologia adoptada neste capítulo. APÍTUO SÓIDOS ESTADO PAO DE DEFORAÇÃO E AXISSIETRIA ete cpítlo ão decrit lg prticlridde do eleento ólido tridienioni do etdo plno de deforção e do etdo iiétrico. Prepõe-e e já é conhecid co detlhe forlção

Leia mais

Transformações Geométricas 2D

Transformações Geométricas 2D rnformçõe Geométric D Sitem Gráfico/ Computção Gráfic e Interfce FACULDADE DE ENGENHAIA DA UNIVESIDADE DO POO COMPUAÇÃO GÁFICA E INEFACES/ SISEMAS GÁFICOS JGB/AAS 4 rnformçõe Geométric D A trnformçõe geométric

Leia mais

10. Análise da estabilidade no plano complexo (s)

10. Análise da estabilidade no plano complexo (s) . Análie d etilidde no plno omplexo ( A nálie d etilidde de um item liner em mlh fehd pode er feit prtir d lolizção do pólo em mlh fehd no plno. Se qulquer do pólo e lolizr no emiplno direito, então qundo

Leia mais

Representação em Espaço de Estados Introdução

Representação em Espaço de Estados Introdução Egehri Eleroéi 7ª Al e Corolo Ieligee Eço e eo Rereeção em Eço e Eo Iroção A rereeção em eço e eo é e o eevolvimeo e m iem e eqçõe ifereii e ª orem Ee io e rereeção ermie o rojeo e iem e orolo om iiêi

Leia mais

3 a Prova - CONTROLE DINÂMICO - 2 /2017

3 a Prova - CONTROLE DINÂMICO - 2 /2017 ª Prov- Sem. 7-9 ONTROLE DINÂMIO ENE/UnB Prov - ONTROLE DINÂMIO - /7 Prov Tipo 4 5 6 7 8 9 Prmetro: (Qetõe, e 4) Mon : Y () U() ΣP iδ i Δ P i i th L j j th lço cminho direto, Δ L L + L i L j + Δ i Δ (lço

Leia mais

ENGENHARIA ASSISTIDA POR COMPUTADOR

ENGENHARIA ASSISTIDA POR COMPUTADOR ENGENHARIA ASSISTIDA POR COMPUTADOR Prof. Isc N. L. Silv Prof. Crlos Crespo Izqierdo Professor do Deprtmento de Engenhri Mecânic e Mectrônic PUCRS ORMULAÇÃO DO ME NO CÁLCULO ESTRUTURAL Em resmo o ME consiste

Leia mais

4 Aplicação ao Manipulador TA-40

4 Aplicação ao Manipulador TA-40 plição o Mnipulor T-.. Introução No pítulo nteriore form iuti iver téni e lgoritmo pr lirção e um mnipulor roótio e form genéri. Ete pítulo tem omo ojetivo plir e téni em um o rel. O mnipulor T- é um rço

Leia mais

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis.

Leia mais

F ds = mv dv. U F θds. Dinâmica de um Ponto Material: Trabalho e Energia Cap. 14. = 2 s1

F ds = mv dv. U F θds. Dinâmica de um Ponto Material: Trabalho e Energia Cap. 14. = 2 s1 4. Trblho de um orç MECÂNICA - DINÂMICA Dinâmi de um Ponto Mteril: Trblho e Energi Cp. 4 Prof Dr. Cláudio Curotto Adptdo por: Prof Dr. Ronldo Medeiro-Junior TC07 - Meâni Gerl III - Dinâmi 4. Prinípio do

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

Transformada de Laplace AM3D. Delta de Dirac

Transformada de Laplace AM3D. Delta de Dirac 211 12 Trnformd de Lplce AM3D Delt de Dirc A função lto u c (t) = H(t c) preent um decontinuidde no ponto c, pelo que não erá certmente diferenciável nee ponto. N verdde, nenhum grndez d Fíic cláic é decontínu.

Leia mais

Reforço em Vigas CONCRETO ARMADO

Reforço em Vigas CONCRETO ARMADO 1 Reorço em Viga CONCRETO RDO 1 Determinação a apaiae reitente a eçõe: a) Seção Retangular: 3,5 h b B 3,85,8 R C t 1 σ Diagrama Tenão Deormação o ço a 1 ) Hipótee amitia: 1) ço eoao a tração omínio e 3

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

Resposta de Modelos Dinâmicos Variáveis de estado

Resposta de Modelos Dinâmicos Variáveis de estado epot de Modelo Dinâmio Vriávei de etdo Outro Proeo de Seprção Prof Ninok Bojorge Deprtmento de Engenri uími e de Petróleo UFF ontrole Feedbk... ontinução ontroldor G tudor G V POESSO G P G Senor Introdução

Leia mais

3 Análise de pórticos planos de concreto armado

3 Análise de pórticos planos de concreto armado 3 Análie de pórtio plano de onreto armado 3.. Introdção A itemátia onenional de projeto baeia-e em proeo de análie eia, enolendo m grande número de ariáei e m grande número de erifiaçõe. Com bae no reltado

Leia mais

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS

2 - ELEMENTOS FINITOS DE BARRA ARTICULADA. CONCEITOS BÁSICOS Método dos elementos finitos aplicado a estrtras reticladas Capítlo - EEMETOS FIITOS DE BARRA ARTICUADA. COCEITOS BÁSICOS. - Introdção este capítlo o método dos elementos finitos (MEF vai ser aplicado

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Profeor Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Confibilie Etruturl Jorge Luiz A. erreir Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. MEEC Metrdo em Engenhri Electrotécnic e de Computdore MCSDI Modelção e Controlo de Sitem Dinâmico Eercício de Plno de Fe Conjunto de eercício elbordo pelo docente Joé Tenreiro Mchdo (JTM, Mnuel Snto Silv

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trnformd de Lplce Mtemátic Aplicd Artur Miguel Cruz Ecol Superior de Tecnologi Intituto Politécnico de Setúbl 4/5 verão de Dezembro de 4 Trnformd de Lplce Nete cpítulo ver-e-á como trnformd de Lplce permitem

Leia mais

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar Cap. 4. Deformação. Delocamento. Gradiente de delocamento. ranlação, rotação e deformação da iinhança elementar. Significado fíico da rotação pra 3. enor de deformação de Lagrange 4. enor da peqena deformaçõe

Leia mais

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numérios Integrção Numéri Regr de Simpson Proessor Volmir Eugênio Wilelm Proessor Mrin Klein Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri são:

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

EQE-358 Métodos Numéricos em Engenharia Química

EQE-358 Métodos Numéricos em Engenharia Química UIVERSIDADE FEDERAL DO RIO DE JAEIRO ESCOLA DE QUÍMICA EQE-358 Métodos uméricos em Engenri Químic EXERCÍCIOS COMPUTACIOAIS Implementr em um lingugem computcionl (C, C++, C#, FORTRA, PYTHO, JAVA, BASIC,

Leia mais

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma

2. Deformação. Outra das repostas do sólido ao carregamento O MC depois da aplicação da carga muda a sua posição e a sua forma . Deformação Otra da repota do ólido ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma. Delocamento { } ( ) T ector qe liga a poição inicial com a poição final de cada ponto do

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO 4 DIAGAMAS TENSÃO DEFOMAÇÃO DE CÁLCULO - ELU 4.1 DIAGAMA TENSÃO DEFOMAÇÃO DO CONCETO Conforme vito na Figura 1.3b, o iagrama tenão eformação o onreto variam e aoro om ua reitênia. A ABNT NB 6118 ignora

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson TP6-Métodos Numérios pr Engenri de Produção Integrção Numéri Regr de Simpson Pro. Volmir Wilelm Curiti, Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC

2. Deformação. vector que liga a posição inicial com a posição final, de cada ponto do MC . Deformação Otra da repota do MC ao carregamento O MC depoi da aplicação da carga mda a a poição e a a forma e olme. Delocamento (,,) T ector qe liga a poição inicial com a poição final, de cada ponto

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas.

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas. Etabilidade Uma araterítia importte para o itema de ontrole é qe ele eja etável. Sem ela qalqer otra araterítia, omo a de m bom deempenho, não faz entido. Para itema lineare, a araterítia de etabilidade

Leia mais

CÁLCULO DE PARÂMETROS ELÉTRICOS DE LINHAS DE TRANSMISSÃO CONSIDERANDO OS EFEITOS DO SOLO NA PROPAGAÇÃO TRANSVERSAL DA ONDA

CÁLCULO DE PARÂMETROS ELÉTRICOS DE LINHAS DE TRANSMISSÃO CONSIDERANDO OS EFEITOS DO SOLO NA PROPAGAÇÃO TRANSVERSAL DA ONDA UNIVERIDADE FEDERAL DO RIO DE JANEIRO CÁLCULO DE PARÂMETRO ELÉTRICO DE LINHA DE TRANMIÃO CONIDERANDO O EFEITO DO OLO NA PROPAGAÇÃO TRANVERAL DA ONDA Diogo Pereir Mrqe Crz PROJETO UBMETIDO AO CORPO DOCENTE

Leia mais

Verificação das tensões em serviço de secções de betão armadosolução

Verificação das tensões em serviço de secções de betão armadosolução nontro aional BTÃO STRUTURAL - B0 FUP, 4-6 e outuro e 0 Veriiação a tenõe em erviço e eçõe e etão armaoolução analítia elena Barro Joaquim Figueira Carla Ferreira RSUMO O traalo apreentao ereve um métoo

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometri Anlíti e Álger Liner Cônis Professor: Luiz Fernndo Nunes Dr 8/Sem_ Geometri Anlíti e Álger Liner ii Índie 9 Curvs Cônis 9 Elipse 9 Hipérole 9 Práol 8 9 Eeríios propostos: Referênis

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Análise Estrutural. Soluções dos Problemas. RMN 3º conjunto

Análise Estrutural. Soluções dos Problemas. RMN 3º conjunto Análise Estruturl Soluções os Prolems RMN 3º onjunto 1. ) Aetto e vinilo: Toos os protões vinílios são upletos uplos. δ ( ) = 4.57 ppm; 3 J = 6.25 z; 2 J = 1.47 z. δ ( ) = 4.88 ppm; 3 J = 13.98 ou 14.34

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS: APLICADA A MODELOS LINEARES

ANÁLISE MATRICIAL DE ESTRUTURAS: APLICADA A MODELOS LINEARES AÁLISE MATRICIAL DE ESTRUTURAS: APLICADA A MODELOS LIEARES Liz Fernano Martha Pontifíia Uniersiae Catóia o Rio e Janeiro PUC-Rio Departamento e Engenharia Cii Ra Marqês e São Viente, - Gáea CEP -9 Rio

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C S PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA CUSO DE ENGENHAIA CIVIL CONCETO AADO II FLEXÃO SIPLES Prof. Almir Shäffer POTO ALEGE AÇO DE 006 1 FLEXÃO SIPLES 1- Generaliae

Leia mais

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P1 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P1 DE EETROMAGNETISMO 11.4.11 segund-feir Nome : Assintur: Mtrícul: Turm: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁCUOS EXPÍCITOS. Não é permitido destcr folhs d prov Questão Vlor

Leia mais

Solução: Por equilíbrio: F A + F B = 20 kn (1) Pela restrição de deslocamento total de A até C: (2)

Solução: Por equilíbrio: F A + F B = 20 kn (1) Pela restrição de deslocamento total de A até C: (2) eitêni do Mterii xeríio de rr ttimente Indetermind x. -5 rr de ço motrd n figur o ldo tem um diâmetro de 5. l é rigidmente fixd à prede e, nte de er rregd, há um folg de entre prede e extremidde d rr.

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

DISCIPLINA DE RESISTÊNCIA DE MATERIAIS I APONTAMENTOS DE FLEXÃO ELÁSTICA DE PEÇAS LINEARES SECÇÃO DE MECÂNICA ESTRUTURAL E ESTRUTURAS

DISCIPLINA DE RESISTÊNCIA DE MATERIAIS I APONTAMENTOS DE FLEXÃO ELÁSTICA DE PEÇAS LINEARES SECÇÃO DE MECÂNICA ESTRUTURAL E ESTRUTURAS SEÇÃO DE EÂN ESTUTU E ESTUTUS DSPN DE ESSTÊN DE TES PONTENTOS DE FEXÃO EÁST DE PEÇS NEES EDUDO BOGES PES DN OT PEDO BOGES DNS SBO, B DE Fleão Elástic de Peçs ineres FEXÃO EÁST DE PEÇS NEES NTODUÇÃO onforme

Leia mais

No dimensionamento à flexão simples, os efeitos do esforço cortante podem

No dimensionamento à flexão simples, os efeitos do esforço cortante podem FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES CAPÍTULO 7 Libânio M. Pinheiro, Caiane D. Muzardo, Sandro P. Santo. 12 maio 2003 FLEXÃO SIMPLES NA RUÍNA: EQUAÇÕES 7.1 HIPÓTESES No dimenionamento à flexão imple, o efeito

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 Progrmção Liner Fernndo Nogeir Progrmção Liner Eemplo Típico Um indstri prodz prodtos I e II sendo qe cd prodto consome m certo número de hors em máqins A B e C pr ser prodzido conforme tel: Prodto Tempo

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA CÁLCULO EM R I.Revisões Cálulo om frções Reore que, pr, Not:...3.4 R e, R \ {0}: + + pois

Leia mais

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita Método ds rcterístics n Solção de Problems de Propogção de Onds de mplitde Finit Estner lro Romão, Liz Felipe Mendes de Mor Fcldde de Engenri Mecânic, Depto de Térmic e Flidos, UNIMP 383-97, mpins, SP

Leia mais

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Solicitações normais Cálculo no estado limite último Univeridade Etadal de Campina Faldade de Engenaria Civil Departamento de Etrtra Soliitaçõe normai Cállo no etado limite último Nota de ala da diiplina AU414 - Etrtra IV Conreto armado Prof. M. Liz Carlo

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Cálculo III-A Módulo 6

Cálculo III-A Módulo 6 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

RESUMO 01: SEÇÃO RETANGULAR ARMADURA SIMPLES E DUPLA

RESUMO 01: SEÇÃO RETANGULAR ARMADURA SIMPLES E DUPLA 0851 CONSTRUÇÕES DE CONCRETO RDO II PROF. IBERÊ 1 / 8 0851 CONSTRUÇÕES DE CONCRETO RDO II RESUO 01: SEÇÃO RETNGULR RDUR SIPLES E DUPL TERIIS - ço y y 1,15 C 50 y 5000 g / m y 4348 g / m σ y tração Diagrama

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Dinâmica dos corpos rígidos

Dinâmica dos corpos rígidos Dinâmi dos orpos ríidos Moimento em D Métodos de resolução Num instnte prtiulr: Equções de moimento Moimento finito: Prinípio d onserção de eneri meâni (forçs onsertis) Disiplin DCR, Z. Dimitrooá, DEC/FCT/UNL,

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

ESCOAMENTOS INTERNOS

ESCOAMENTOS INTERNOS ESCOAMENOS INERNOS Qno eto eoento inteno, e gel eejo be: Ql é foç e tito o qe e eão longitinl n ieção o eoento Ql é o flo e lo o eitêni téi n ieção nol o eoento. CARACERÍSICAS GERAIS E ESCOAMENO EM OS

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER 5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER Em mios csos cção inâmic não é hrmónic. Veremos qe respos poe ser obi em ermos e m inegrl, qe nos csos em qe cção é simples, poe ser clclo nliicmene e qe

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

FADIGA. Ex.: Pontes, aeronaves e componentes de máquinas.

FADIGA. Ex.: Pontes, aeronaves e componentes de máquinas. FADIGA É um form e flh que ocorre em estruturs sujeits flutuções inâmics e tensão. Ex.: Pontes, eronves e componentes e máquins. Nests circunstâncis há possibilie flh ocorrer sob níveis e tensão consiervelmente

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações:

MATEMÁTICA. Questão 01. Considere os conjuntos S = {0, 2, 4, 6}, T = { 1, 3, 5} e U = {0, 1} e as afirmações: MATEMÁTICA Considere os conjuntos S = {0,,, 6}, T = {,, } e U = {0, } e s firmções: I. {0} S e S U. II. {} S \ U e S T U = {0,}. III. Eiste um função f : S T injetiv. IV. Nenhum função g: T S é sobrejetiv.

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

E(s) U(s) A evolução do ganho pode ser observada no Root-Locus ou LGR conforme os pólos da cadeia fechada se deslocam.

E(s) U(s) A evolução do ganho pode ser observada no Root-Locus ou LGR conforme os pólos da cadeia fechada se deslocam. . COMPENSAÇÃO R() E() G () U() G() Y() e(t) inl de erro u(t) inl de ontrolo G (t) função de trnferêni do ontroldor.. ACÇÃO PROPORCONAL A função de trnferêni do ontroldor é rzão entre trnformd de Lle d

Leia mais

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t)

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t) 1 CPÍTULO 1 CINEMÁTIC VETORIL D PRTÍCUL Feqüeemee eg lei e Newo é eci fom cláic qe elcio foç ele com celeção pícl. O eo ciemáic pícl em como objeio obe elçõe memáic ee ge poição, elocie e celeção, m eemio

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo das forças nodais equivalentes a acções exteriores.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo das forças nodais equivalentes a acções exteriores. AÍULO 9 ORÇAS ODAIS EUIALEES undo um elemento finito e encontr ujeito cçõe eteriore genéric é neceário roceder o cálculo d forç nodi euivlente à olicitção eterior. Eemlo det olicitçõe ão crg concentrd

Leia mais

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar:

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar: F6D - CONTROLE E SERVOMECAMISMOS II Prof. Crlo Rimdo Erig Lim SOLUÇÃO DAS EQUAÇÕES DE ESTADO. - Solção d eqção elr e d eqção mriil A eqção de edo A B ode er ed olção d eqção elr: Por Lle: A B X AX BU A

Leia mais

Nas vigas de concreto armado, os momentos fletores e as forças cortantes são responsáveis pela existência de dois tipos de armadura (Figura 5.

Nas vigas de concreto armado, os momentos fletores e as forças cortantes são responsáveis pela existência de dois tipos de armadura (Figura 5. 5 FLEXÃO SIPLES RDUR LONGITUDINL DE VIG 5.1 INTRODUÇÃO Uma viga reta, ee que não poua arregamento horizontai ou inlinao, erá oliitaa por momento letore e orça ortante, omo motrao na Figura 5.1. Figura

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais