Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli.

Tamanho: px
Começar a partir da página:

Download "Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli."

Transcrição

1 CAPÍUO VIGA DE EUER-EROUI Deign-e por Euler-ernoulli formulção o elemento finito e vig em que e conier que ecçõe e mntêm pln e normi o eio brr pó eformção. Dete moo não é conier eformção evi o corte.. - Simbologi Apreent-e em primeiro lugr um reumo imbologi opt n formulção o elemento e vig e Euler-ernoulli. bel. - Simbologi reltiv o elemento e vig e Euler-ernoulli. u ε σ E p Comprimento brr primátic Cooren crtein Cmpo e elocmento Delocmento generlizo nol Delocmento nol Rotção nol Cooren crtein e um nó e um elemento finito Função interpolor ou função e form Deformção Mtriz e eformção enão norml Móulo e elticie ou móulo e Young Acção eterior itribuí por unie e comprimento 0

2 Vig e Euler-ernoulli - Álvro F. M. Azeveo F V S I K M Forç noi equivlente à cção eterior, no gru e libere o elemento finito, no referencil locl Volume Superfície Momento e inérci ecção trnverl brr primátic Mtriz e rigiez o elemento finito no referencil locl Momento flector Cooren locl Cooren locl e um nó e um elemento finito cobino trnformção ( / ). - Vig e oi nó em ubtituição e vriável Figur. encontr-e repreento um elemento e vig com oi nó e com comprimento (ver o Cpítulo 7 e ). u ( ) ( ) / / ( ) Fig.. - Elemento e vig com oi nó. O elocmento generlizo o nó o elemento finito repreento n Figur. ão o eguinte 0

3 Vig e Euler-ernoulli - Álvro F. M. Azeveo 05 () De coro com o que foi epoto no Cpítulo, o elocmento lterl é u ( ). A cooren crtein ij correpone o nó i e refere-e o eio j. A interpolção o cmpo e elocmento é efectu com eguinte epreão (ver o Cpítulo 7) ( ) ( ) ( ) ( ) ( ) u () que em notção mtricil e ecreve ( ) [ ] u () ou u () eno [ ] (5) A funçõe e form ão correponente à interpolção Hermitin e têm eguinte epreõe (ver o Cpítulo 7) ( ) () ( ) 8 (7)

4 Vig e Euler-ernoulli - Álvro F. M. Azeveo 0 ( ) (8) ( ) 8 (9) Conierno pen o elocmento lteri u ( ), i.e., conierno contnte componente u O o cmpo e elocmento, tem-e, e coro com o que foi epoto no Cpítulo u ε (0) Deignno por ε eguinte componente epreão (0) u ε () pter-e ε ε () Subtituino () em () cheg-e ε () Definino mtriz eguinte form () p ecrever-e ε (5)

5 Vig e Euler-ernoulli - Álvro F. M. Azeveo Subtituino (5) em () obtém-e ε () Ateneno à funçõe e form () (9), ão o eguinte o componente mtriz (7) mbém e coro com o que foi epoto no Cpítulo, tem-e σ E (8) ε e, teneno (), σ (9) E Coniere-e que n vig Figur. ctu crg uniformemente itribuí repreent n Figur. F F F F p / / Fig.. - Crg uniformemente itribuí e repectiv forç noi equivlente. A forç noi equivlente à cção eterior encontrm-e tmbém repreent n Figur. e preentm o memo entio poitivo que form coniero pr o elocmento generlizo i. O princípio o trblho virtui (PV), que foi preento no Cpítulo, correpone o eguinte 07

6 Vig e Euler-ernoulli - Álvro F. M. Azeveo ε σ V δ u V δ p (0) o co vig repreent n Figur. e. equção (0) p S δ ε σ S δ u p () et equção, S é uperfície correponente à ecção trnverl brr (ver o Cpítulo ) e S () A equção () referi à eformção virtul é eguinte δ ε δ () que é equivlente δ δ ε () A equção () referi à eformção virtul é eguinte δ u δ (5) que é equivlente δ u δ () Subtituino to et equçõe em () p ter-e o PV epreo por S δ E S δ p (7) Pno pr for e c integrl tuo o que não epene repectiv vriável cheg-e 08

7 Vig e Euler-ernoulli - Álvro F. M. Azeveo 09 S p S E δ δ (8) et epreão conier-e que o móulo e Young E é contnte entro ecção trnverl e vriável o longo o eio brr. O momento e inérci em relção o eio é efinio eguinte form, eno eigno por I S S I (9) De coro com o PV, equção (8) é vereir pr qulquer conjunto e elocmento virtui, concluino-e im que p E I (0) A mtriz e rigiez o elemento e vig é E I K () e o vector e olicitção é p F () Supono o móulo e Young e o momento e inérci contnte em to brr, epreão mtriz e rigiez p E I K () Subtituino em () epreão (7), tem-e

8 Vig e Euler-ernoulli - Álvro F. M. Azeveo 0 E I K () Depoi e efectur o cálculo o integri preente em () cheg-e E I K (5) Et mtriz coincie com que e obtém pelo métoo cláico teori etrutur reticul [.]. Subtituino (5) em () e conierno funçõe e form ()-(9), obtém-e 8 8 p F () Depoi e efectur o cálculo o integri preente em () cheg-e p F (7) que tmbém correpone o que e obtém por métoo cláico [.].

9 Vig e Euler-ernoulli - Álvro F. M. Azeveo o Cpítulo encontr-e euzi eguinte epreão pr o cálculo o momento flector n vig, quno o móulo e Young é contnte u M E I (8) Ateneno (), (5) e (8), conclui-e que o momento flector poe er obtio com M E I (9) Amtriz é vli no ponto em que e pretene clculr o momento flector. Deve-e notr que, em gerl, et epreão não fornece vlore pr o momento flectore coinciente com o teori cláic, porque quno o elocmento ão nulo o momento flector clculo com (9) é nulo em to brr, eno im ignor contribuição crg que ctum no eu interior (e.g., crg itribuí p). Et quetão obrig que ej efectu um icretizção e c brr e um pórtico em vário elemento finito (ver Figur.). Fig.. - Eemplo: icretizção brr e um pórtico em elemento finito. O proceimento qui preento pr o cálculo mtriz e rigiez e o vector olicitção preent vntgem e er mi fcilmente etenio outr ituçõe mi elbor (e.g., elemento finito com mi o que oi nó, brr e ecção vriável, brr não rectilíne).

10 Vig e Euler-ernoulli - Álvro F. M. Azeveo. - Vig e trê nó em ubtituição e vriável A formulção mtriz e rigiez e vector olicitção vig e trê nó é efectu e um moo emelhnte o que foi epoto n Secção.. A únic iferenç ão o umento imenão e too o vectore e mtrize envolvio e o recuro à epreõe interpolção Hermitin com trê nó (ver o Cpítulo 7).. - Vig e oi nó com ubtituição e vriável Quno é utiliz interpolção Hermitin e e fz um ubtituição e vriável, urgem lgum quetõe que ão preent com be no eemplo Figur.. u ( ) ( ) ( ) / / u () ( ) ( ) Fig.. - Subtituição e vriável num elemento e vig com oi nó. A trnformção entre cooren e cooren é, nete co imple, efectu com eguinte epreão

11 Vig e Euler-ernoulli - Álvro F. M. Azeveo (0) O vector o elocmento generlizo n vig rel é () eno u () Apó ubtituição e vriável e teneno à cooren locl,tem-e () eno u () A eriv em orem função u ( ()) é, pel regr cei u u (5) De coro com (0), tem-e nete co () Deignno por eguinte eriv

12 Vig e Euler-ernoulli - Álvro F. M. Azeveo (7) tem-e u u (8) e, teneno () e () (9) o nó, tem-e (50) Subtituino (50) em (), obtém-e (5) Ateneno (), cheg-e (5) A interpolção o cmpo e elocmento poe er efectu com be n cooren, eno utiliz eguinte epreão (ver Figur.) () () () () () u (5)

13 Vig e Euler-ernoulli - Álvro F. M. Azeveo 5 A funçõe e form i ão efini com eguinte epreõe, que correponem à interpolção Hermitin num vig com comprimento (ver o Cpítulo 7) () (5) () (55) () (5) () (57) Subtituino (5) em (5) cheg-e () () () () () u (58) Um vez que e pretene que interpolção e u ej efectu eguinte form () () () () () [ ] u (59) ou () u (0) conclui-e que [ ] [ ] () eno () () ()

14 Vig e Euler-ernoulli - Álvro F. M. Azeveo () () () () () () () () (5) Ateneno à equçõe (0)-(), eite neceie e clculr eguinte mtriz () Pr clculr eriv e i em orem, quno pen e conhecem funçõe i () ()-(5), eve-e recorrer à regr cei i i (7) Ateneno (7), fic i i (8) Derivno outr vez em orem e conierno e novo regr cei tem-e i i (9) Conierno (7) e (8) cheg-e i i (70) Um vez que é contnte, tem-e

15 Vig e Euler-ernoulli - Álvro F. M. Azeveo 7 i i (7) que é equivlente i i (7) Derivno u veze funçõe e form ()-(5) em orem,tem-e (7) (7) (75) (7) Et epreõe ão ubtituí em (7), obteno-e im egun eriv e i em orem (77) (78) (79) (80) Ateneno (7), tem-e

16 Vig e Euler-ernoulli - Álvro F. M. Azeveo 8 (8) (8) (8) (8) De coro com (), ão o eguinte o elemento mtriz em função vriável (85) De coro com (), i.e., upono o móulo e Young e ecção contnte, tem-e eguinte epreão pr mtriz e rigiez o elemento finito e vig no referencil locl E I K (8) Apó ubtituição vriável pel vriável, (8) p E I K (87) Ateneno (7) e (85) tem-e E I K (88)

17 Vig e Euler-ernoulli - Álvro F. M. Azeveo 9 ote-e que too o elemento mtriz que contitui função integrn ão funçõe e. O comprimento brr () é um prâmetro fio. Apó o cálculo o integri obtém-e eguinte mtriz E I K (89) Conierno crg uniformemente itribuí repreent n Figur., tem-e o eguinte vector olicitção, que é clculo com epreão (). p F (90) Apó ubtituição vriável pel vriável, (90) p p F (9) Ateneno (7) e à funçõe e form ()-(5), tem-e p F (9) Do cálculo ete integri reult

18 Vig e Euler-ernoulli - Álvro F. M. Azeveo F p (9) A epreõe (89) e (9) coinciem com que e obtêm recorreno à teori cláic fleão e vig [.]. A formulção qui preent poui contuo vntgem e er etenível co mi genérico, ti como vig curv e vig e ecção vriável, em que poe er vntjo utilizção e funçõe e interpolção e gru mi elevo e, conequentemente, o recuro elemento finito com mi o que oi nó. O cálculo o momento flector num ponto efinio pel cooren é efectuo com epreão (9), eno mtriz clcul com (85). coniçõe o elemento trá ecrito, é poível emontrr que o vlore mi correcto o cmpo e momento flectore e encontrm no ponto cuj cooren é ± (9) Se e pretener conhecer o vlore o cmpo e momento noutro ponto, é em gerl mi vntjoo efectur um etrpolção ou interpolção imple prtir o ponto (9). O cmpo e eforço trnvero poe er obtio por erivção o cmpo e momento em orem..5 - Conierçõe fini A formulção vig e Euler-ernoulli, qui preent, não é mi eenvolvi porque, n prátic, é preferível utilizr um formulção que entre em linh e cont com eformção por eforço trnvero. Et formulção é preent no Cpítulo. 0

19 Vig e Euler-ernoulli - Álvro F. M. Azeveo IIOGRAFIA [.] - Correi e Arújo, F. - Cálculo Mtricil Etrutur Contínu pelo Métoo o Delocmento, Revit "Engenhri", Publicção o Aluno FEUP, Ano XIX, úmero, ovembro/dezembro, 95/. [.] - Hinton, E.; Owen, D. R.. - An Introuction to Finite Element Computtion, Pinerige Pre, Swne, U.K., 979. [.] - Hughe,.. R. - he Finite Element Metho - iner Sttic n Dynmic Finite Element Anlyi, Prentice-Hll, Inc., 987.

20 Vig e Euler-ernoulli - Álvro F. M. Azeveo

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Timoshenko.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Timoshenko. CAPÍUO VIGA DE IMOSHEKO formulção o elemento e vg e mohenko [.] é conero que ecçõe pln e mntêm pln. Contuo, upõe-e que um ecção norml o eo vg não mntém e crcterítc pó eformção. Dete moo é poível conerr

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos. CAPÍUO 4 EEMEOS FIIOS UIDIMESIOAIS Ante e epor o métoo o elemento finito (MEF) e m moo pliável meio ontíno biimenioni e triimenioni, preent-e om lgm etlhe o o niimenionl. Qno pen e onier m imenão, o métoo

Leia mais

Transformações Geométricas 2D

Transformações Geométricas 2D rnformçõe Geométric D Sitem Gráfico/ Computção Gráfic e Interfce FACULDADE DE ENGENHAIA DA UNIVESIDADE DO POO COMPUAÇÃO GÁFICA E INEFACES/ SISEMAS GÁFICOS JGB/AAS 4 rnformçõe Geométric D A trnformçõe geométric

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trnformd de Lplce Mtemátic Aplicd Artur Miguel Cruz Ecol Superior de Tecnologi Intituto Politécnico de Setúbl 4/5 verão de Dezembro de 4 Trnformd de Lplce Nete cpítulo ver-e-á como trnformd de Lplce permitem

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Profeor Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Confibilie Etruturl Jorge Luiz A. erreir Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie

Leia mais

O emprego de tabelas facilita muito o cálculo de flexão simples em seção retangular.

O emprego de tabelas facilita muito o cálculo de flexão simples em seção retangular. FLEXÃO SIPLES N RUÍN: TBELS CPÍTULO 8 Libânio. Pinheiro, Caiane D. uzaro, Sanro P. Santo 7 maio 003 FLEXÃO SIPLES N RUÍN: TBELS O emprego e tabela failita muito o álulo e fleão imple em eção retangular.

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. MEEC Metrdo em Engenhri Electrotécnic e de Computdore MCSDI Modelção e Controlo de Sitem Dinâmico Eercício de Plno de Fe Conjunto de eercício elbordo pelo docente Joé Tenreiro Mchdo (JTM, Mnuel Snto Silv

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo das forças nodais equivalentes a acções exteriores.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo das forças nodais equivalentes a acções exteriores. AÍULO 9 ORÇAS ODAIS EUIALEES undo um elemento finito e encontr ujeito cçõe eteriore genéric é neceário roceder o cálculo d forç nodi euivlente à olicitção eterior. Eemlo det olicitçõe ão crg concentrd

Leia mais

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos.

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos. PÍTULO 8 SSEMLGEM DE ELEMENTOS INITOS No pítulo, foi presentdo com detlhe o cso d ssemblgem de brrs em problems unidimensionis. Neste cpítulo present-se de um modo sucinto dptção d técnic já descrit o

Leia mais

10. Análise da estabilidade no plano complexo (s)

10. Análise da estabilidade no plano complexo (s) . Análie d etilidde no plno omplexo ( A nálie d etilidde de um item liner em mlh fehd pode er feit prtir d lolizção do pólo em mlh fehd no plno. Se qulquer do pólo e lolizr no emiplno direito, então qundo

Leia mais

Aula Teste de Controle de Sistemas e Servomecanismos

Aula Teste de Controle de Sistemas e Servomecanismos Aul Tete de Controle de Sitem e Servomecnimo Crlo Edurdo de Brito Nove crlonov@gmil.com 3 de mio de 202 Expnão em frçõe prcii A expnão em frçõe prcii é um procedimento pr otenção de um frção lgéric de

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no âmbito da determinação de funções interpoladoras.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no âmbito da determinação de funções interpoladoras. CAPÍTUO 7 FUÇÕES ITERPOADORAS ete pítulo ão derito divero modo de obtenção de funçõe interpoldor, tmbém deignd funçõe de form. São preentdo eemplo reltivo meio unidimenioni, bidimenioni e tridimenioni.

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroeconomia I º Semetre e 27 Profeore: Gilberto Taeu Lima e Pero Garcia Duarte Lita e Exercício

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Transformada de Laplace AM3D. Delta de Dirac

Transformada de Laplace AM3D. Delta de Dirac 211 12 Trnformd de Lplce AM3D Delt de Dirc A função lto u c (t) = H(t c) preent um decontinuidde no ponto c, pelo que não erá certmente diferenciável nee ponto. N verdde, nenhum grndez d Fíic cláic é decontínu.

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos. CAPÍUO 6 ESADO PAO DE ESÃO ete cítulo é decrit co orenor forulção de eleento finito detindo à dicretizção de roble de nálie de etrutur que e enqudr no co rticulr deigndo "Etdo Plno de enão" [6.]. Areent-e

Leia mais

Capítulo 4. Formulação dos problemas. V cos( ) W V cos( ) V sin( ) W V sin( ) Modelo 6-dof de um UAV Modelo unicycle

Capítulo 4. Formulação dos problemas. V cos( ) W V cos( ) V sin( ) W V sin( ) Modelo 6-dof de um UAV Modelo unicycle Capítulo 4 Formulação o problema Apó uma análie o tema ete trabalho foram ientificao vário problema para etuo e reolução. Nete capítulo ão formulao o problema e introuzia efiniçõe. 4.1 - Moelo 6-of e um

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Módulo de elasticidade ou módulo de Young

Módulo de elasticidade ou módulo de Young CAPÍTULO FLEXÃO DE VIGA Antecedendo a apresentação da formulação de diversos tipos de elementos de viga, efectua-se em seguida uma revisão dos fundamentos da flexão de vigas. Apenas são consideradas as

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semetre e 2017 Profeor Fernano Rugitky Lita e Exercício 5 [1] Coniere

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014

MÉTODO DOS DESLOCAMENTOS EXAME DE ÉPOCA NORMAL /2014 DEPARTAMENTO DE ENGENHARA CV CENCATURA EM ENGENHARA CV TEORA DE ESTRUTURAS MÉTODO DOS DESOCAMENTOS EXAME DE ÉPOCA NORMA - / mm V c H Q d b e P knm kn SABE AVM TEES TEORA DE ESTRUTURAS DEPARTAMENTO DE ENGENHARA

Leia mais

SÓLIDOS, ESTADO PLANO DE DEFORMAÇÃO E AXISSIMETRIA. Apresenta-se em primeiro lugar um resumo da simbologia adoptada neste capítulo.

SÓLIDOS, ESTADO PLANO DE DEFORMAÇÃO E AXISSIMETRIA. Apresenta-se em primeiro lugar um resumo da simbologia adoptada neste capítulo. APÍTUO SÓIDOS ESTADO PAO DE DEFORAÇÃO E AXISSIETRIA ete cpítlo ão decrit lg prticlridde do eleento ólido tridienioni do etdo plno de deforção e do etdo iiétrico. Prepõe-e e já é conhecid co detlhe forlção

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA

ESTRUTURAS DE BETÃO ARMADO I 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA 11 ESTADO LIMITE DE RESISTÊNCIA À FLEXÃO COMPOSTA E DESVIADA PROGRAMA 1.Introdução o etão rmdo 2.Bses de Projecto e Acções 3.Proprieddes dos mteriis: etão e ço 4.Durilidde 5.Estdos limite últimos de resistênci

Leia mais

FORÇA LONGITUDINAL DE CONTATO NA RODA

FORÇA LONGITUDINAL DE CONTATO NA RODA 1 ORÇA LONGITUDINAL DE CONTATO NA RODA A rod é o elemento de vínculo entre o veículo e vi de tráfego que permite o deslocmento longitudinl, suportndo crg verticl e limitndo o movimento lterl. Este elemento

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE

DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE Prof. Wahington Braga 1/7 DEDUÇÃO DA EQUAÇÃO DE TRANSPORTE CONSERVAÇÃO DA MASSA: Etuamo vário cao no quai a conervação a maa era feita e forma trivial, poi liávamo com itema. Entretanto, para ituaçõe como

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

SMA0501. CÁLCULO I. TEOREMAS E DEFINIÇÕES. 1. Quantificadores e símbolos lógicos

SMA0501. CÁLCULO I. TEOREMAS E DEFINIÇÕES. 1. Quantificadores e símbolos lógicos SMA050. CÁLCULO I. TEOREMAS E DEFINIÇÕES 2 o emetre de 205 Ecrevemo. Quntificdore e ímbolo lógico no lugr de pr todo() ou qulquer que ej... no lugr de exite(m) ou pr lgum (lgun)... A = B no lugr de A implic

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Unidade VI - Estabilidade de Sistemas de Controle com Retroação

Unidade VI - Estabilidade de Sistemas de Controle com Retroação Uidde VI - Etilidde de Sitem de Cotrole com Retroção Coceito de Etilidde; Critério de Etilidde de Routh-Hurwitz; A Etilidde Reltiv de Sitem de Cotrole com Retroção; A Etilidde de Sitem com Vriávei de Etdo;

Leia mais

LISTA DE EXERCÍCIOS 2º ANO

LISTA DE EXERCÍCIOS 2º ANO Cálculo d entlpi-pdrão, em kj mol, de vporizção do HC : 0 HC (g) : H = 9,5kJ mol 0 HC ( ) : H = 108,7kJ mol vporizção 1 HC ( ) 1HC (g) 08,7 kj 9,5 kj ÄHvporizção = 9,5 ( 08,7) ÄHvporizção =+ 16, kj / mol

Leia mais

EQE-358 Métodos Numéricos em Engenharia Química

EQE-358 Métodos Numéricos em Engenharia Química UIVERSIDADE FEDERAL DO RIO DE JAEIRO ESCOLA DE QUÍMICA EQE-358 Métodos uméricos em Engenri Químic EXERCÍCIOS COMPUTACIOAIS Implementr em um lingugem computcionl (C, C++, C#, FORTRA, PYTHO, JAVA, BASIC,

Leia mais

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO FENÔMENOS DE TRANSPORTE EMPUXO Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO É o esforço exercido por um líquido sobre um determind superfície (pln ou curv). E = γ. h C. A E : Empuxo ( N ou kgf ) : Peso

Leia mais

ENGENHARIA ASSISTIDA POR COMPUTADOR

ENGENHARIA ASSISTIDA POR COMPUTADOR ENGENHARIA ASSISTIDA POR COMPUTADOR Prof. Isc N. L. Silv Prof. Crlos Crespo Izqierdo Professor do Deprtmento de Engenhri Mecânic e Mectrônic PUCRS ORMULAÇÃO DO ME NO CÁLCULO ESTRUTURAL Em resmo o ME consiste

Leia mais

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade

Capítulo IV. Funções Contínuas. 4.1 Noção de Continuidade Cpítulo IV Funções Contínus 4 Noção de Continuidde Um idei muito básic de função contínu é de que o seu gráfico pode ser trçdo sem levntr o lápis do ppel; se houver necessidde de interromper o trço do

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires 4 O T E O R E M A F U N D A M E N TA L D O C Á L C U L O Prof. Benio Frzão Pires Conforme foi viso n Aul, se f : [, b] R for conínu, enão inegrl b f() eisirá e será igul à áre líqui (conbilizno o sinl)

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

TESTE FINAL. x =2. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m

TESTE FINAL. x =2. Análise Avançada de Estruturas Sem consulta (excepto formulário fornecido) Duração: 3h00m ESE FINAL Análise Avançada de Estruturas Sem consulta (ecepto formulário fornecido) DEARAMENO DE ENGENHARIA CIVIL Duração: h00m SECÇÃO DE ESRUURAS - (.5 val.) Considere o elemento finito unidimensional

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2016

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2016 Fíic III - 4323203 Ecol Politécnic - 2016 GABARITO DA PS 30 de junho de 2016 Quetão 1 Um brr fin, iolnte, de comprimento, com denidde liner de crg λ = Cx, onde C > 0 é contnte, etá dipot o longo do eixo

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

Objetivo: Conhecer as convenções e notações próprias da Álgebra. Realizar operações vetoriais

Objetivo: Conhecer as convenções e notações próprias da Álgebra. Realizar operações vetoriais oulo, Loreto, Winterle Ojetivo: onhecer convençõe e notçõe própri d Álger. Relizr operçõe vetorii Simologi Segmento Orientdo efinição Equivlênci ou Equipolênci Vetor (repreentção nlític e Geométric Módulo,

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra.

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra. I - CISALHAMENTO 1 - ESTADO DE TENSÃO 1.1 - GENERALIDADES No capítulo anteriore, analiou-e o comportamento e viga e concreto armao ubmetia a olicitaçõe normai. A tenõe interna reultante o efeito e flexão

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de Engenhri Elétric Conversão de Energi II Aul 6.4 Máquins íncrons rof. João Américo Vilel Máquin íncron Curv de Cpcidde r um tensão terminl e corrente de rmdur constnte (no vlor máximo permitido

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

DESENVOLVIMENTO DE UMA METODOLOGIA PARA PLANEJAMENTO DE TRAJETÓRIAS EM SOLDAGEM ROBOTIZADA

DESENVOLVIMENTO DE UMA METODOLOGIA PARA PLANEJAMENTO DE TRAJETÓRIAS EM SOLDAGEM ROBOTIZADA DESENVOLVIMENTO DE UMA METODOLOGIA PARA PLANEJAMENTO DE TRAJETÓRIAS EM SOLDAGEM ROBOTIZADA Rento Ventur Byn Henrique Livro Gráti http://www.livrogrti.com.br Milhre de livro gráti pr downlod. Rento Ventur

Leia mais

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt =

CDI-II. Integrais em Variedades. Comprimento. Área. 1 Integral de Linha de um Campo Escalar. Comprimento. 1 B A dt = Instituto Superior écnico Deprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CDI-II Integris em Vrieddes. Comprimento. Áre 1 Integrl de Linh de um Cmpo Esclr. Comprimento Sejm A e B dois

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte III Cálculo Diferencil e Integrl II Págin Universidde de Mogi ds Cruzes UMC Cmpos Vill Lobos Cálculo Diferencil e Integrl II Prte III Engenhri Civil Engenhri Mecânic mrili@umc.br º semestre de 05 Cálculo Diferencil

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

4 Aplicação ao Manipulador TA-40

4 Aplicação ao Manipulador TA-40 plição o Mnipulor T-.. Introução No pítulo nteriore form iuti iver téni e lgoritmo pr lirção e um mnipulor roótio e form genéri. Ete pítulo tem omo ojetivo plir e téni em um o rel. O mnipulor T- é um rço

Leia mais

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2

Profª Gabriela Rezende Fernandes Disciplina: Análise Estrutural 2 Profª Gbriel Rezende Fernndes Disciplin: Análise Estruturl 2 INCÓGNITAS = ESFORÇOS HIPERESTÁTICOS (reções de poio e/ou esforços em excesso que estrutur possui) N 0 TOTAL DE INCÓGNITAS = g =gru de hiperestticidde

Leia mais

Sistemas de Coordenadas

Sistemas de Coordenadas Sitem de Coordend INF 366 Computção Gráfic Intertiv Trnformçõe Alerto B. Rpoo rpoo@tecgrf.puc-rio.r http://.tecgrf.puc-rio.r/~rpoo/inf366 Ojeto em Computção Gráfic pouem decriçõe numéric (modelo) que crcterim

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Resistência de Materiais 2

Resistência de Materiais 2 Resistênci de Mteriis Ano ectivo 0/04 º Exme 8 de Jneiro de 04 Durção: hors Oservções: Não podem ser consultdos quisquer elementos de estudo pr lém do formulário fornecido. Resolver os prolems em grupos

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016

Física III Escola Politécnica Prova de Recuperação 21 de julho de 2016 Físic III - 4220 Escol Politécnic - 2016 Prov de Recuperção 21 de julho de 2016 Questão 1 A cmd esféric n figur bixo tem um distribuição volumétric de crg dd por b O P ρ(r) = 0 pr r < α/r 2 pr r b 0 pr

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO III- FLEXÃO SIMPLES - EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO A eormaçõe na lexão imple correponem ao omínio, 3 e 4. O valore e x que limitam ete omínio poem er obtio acilmente a equaçõe e compatibiliae

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física) ecânic e Ond O Curo LEC º TESTE 0/0 º Seetre -04-0 8h0 Durção: h0 ep: Prof João Crlo ernnde (Dep íic) TAGUS PAK Nº: Noe: POBLEA (4 vlore) U etudnte de O potou co u igo que conegui delocr u loco de kg pen

Leia mais