TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson

Tamanho: px
Começar a partir da página:

Download "TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson"

Transcrição

1 TP6-Métodos Numérios pr Engenri de Produção Integrção Numéri Regr de Simpson Pro. Volmir Wilelm Curiti,

2 Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri são: m Polinômio liner qudrátio ui o Fórmul Trpezoidl Simpson/ Simpson/8 Erro O( O( O( ) ) ) Pro. Volmir - UFPR - TP6

3 Integrção Numéri Regr dos Trpézios Revisão Um mneir de ver o método trpezoidl pr integrção é que urv que está sendo usd pr estimr integrl é um lin poligonl (um grupo de segmentos de lins onetds) e então lul-se áre io de d segmento de ret. () () d () Pro. Volmir - UFPR - TP6

4 Integrção Numéri Regr de Simpson (/) Pro. Volmir - UFPR - TP6

5 Regr de Simpson Integrção Numéri () representção grái regr de Simpson /: Consiste em tomr áre so um práol que lig três pontos. () representção grái d regr de Simpson /8: Consiste em tomr áre so um equção úi que onet qutro pontos. Pro. Volmir - UFPR - TP6

6 Regr de Simpson Integrção Numéri Pro. Volmir - UFPR - TP6 6

7 Integrção Numéri Regr de Simpson O método de Simpson us um polinômio de segundo gru (ou sej, um unção qudráti) pr estimr urv pr qul voê está tentndo enontrr integrl. Est é um urv d orm p () = + + Os pontos são ssumidos uniormemente espçdos. Pr oter estimtiv pr integrl esreve-se o polinômio de gru usndo pontos onseutivos, em seguid integr-se. =- =+ =() =(+) =() =- =+ Pro. Volmir - UFPR - TP6 7

8 8 Pro. Volmir - UFPR - TP6 Integrção Numéri Regr de Simpson Dedução d Equção Sej o so espeil om =. Será integrdo o polinômio de º gru p (t) = t + t+. t t t dt t t - =(-) =() =() Sustituindo e 6

9 Integrção Numéri Regr de Simpson Dedução d Equção Um intervlo edo [,] suintervlos =- =+ =() =(+) =() () () d () pontos pr interpolr > suintervlos Pro. Volmir - UFPR - TP6 9

10 Integrção Numéri Regr de Simpson Dedução d Equção Um intervlo edo [,] suintervlos () ()d ()d ()d ( ) () suintervlos > /= práols () Pro. Volmir - UFPR - TP6

11 Integrção Numéri Regr de Simpson Dedução d Equção Usndo órmul de Lgrnge pr oter órmul de integrção resultnte d proimção de () por um polinômio interpoldor de gru. Sej p () que interpol () nos pontos: =, = + e = +=. p () () () () p () =- =+ p () () () Pro. Volmir - UFPR - TP6

12 Pro. Volmir - UFPR - TP6 Integrção Numéri p ) ( ) ( ) ( d d d d p d () () d ) ( ) ( ) ( d Regr de Simpson Dedução d Equção los suinterv

13 Integrção Numéri Regr de Simpson Equção Gerl Um intervlo edo [,] n suintervlos A órmul gerl d Regr de Simpson pr lulr integris é dd por: ()d n n/ k k n/ k k n ()d n/ n/ n () (k ) (k) () k k () d () n... () Pro. Volmir - UFPR - TP6

14 Integrção Numéri Regr de Simpson Equção Gerl () d () n... () Os pesos reltivos d integrl são representdos im dos vlores d unção. Note-se que o método só pode ser utilizdo se o número de segmentos/suintervlos é pr. Pro. Volmir - UFPR - TP6

15 Integrção Numéri Regr de Simpson Eemplo π π Estimr om prtições integrl sind em [ ]=[, ] ttp:// Pro. Volmir - UFPR - TP6 ontinu...

16 Integrção Numéri... ontinução Regr de Simpson Eemplo π π sind (vlor eto) π ()d π Δ ()d Δ Δ π n π π π π sind () π π π Δ π π () π () n/ k ( k π ) n/ k ( k ) () π π sin 6 π 6 π sinπ 9sin π 6 (π( π π 9 ( 8),8879 Pro. Volmir - UFPR - TP6 6

17 Integrção Numéri Regr de Simpson Eemplo Clule integrl deinid. π π sin sind π os Utilize Regr de Simpson e lule integrl proimdmente. Simpson Integrl Trpézio Integrl - - -,8879 -,9 -,8879 -,867 -, -,867 -, -,997 -, -, , -,99998 (Intervlos) (Intervlos) Pro. Volmir - UFPR - TP6 7

18 Integrção Numéri Regr de Simpson Eemplo Método prátio. Use suintervlos pr lulr ln d Pro. Volmir - UFPR - TP6 ontinu... 8

19 ... ontinução ln() d Integrção Numéri Regr de Simpson Eemplo () ln() d 9 9 ln() ln(k ) ln(k) ln() k k () k k(),,,,,6,9,8,878,76,,788,8,6,9,9,,986,9,,8,76,8,,,,,87,6,6 6,,,69,69 i k, i, i, d,,7 ln Pro. Volmir - UFPR - TP6 9

20 Integrção Numéri Regr de Simpson Estimtiv do Erro De modo nálogo à Regr do Trpézio, n Regr de Simpson reliz-se um proimção e omete-se um erro. () d {... ( ) ( ) ( ) ( ) ( ) ( ) ( m ) ( m ) ( m ) } m/ i iv 9 i... I SR Erro I SR... Este erro é ddo por: n iv m i Erro 9 Erro m m iv m 8n [,] m Pro. Volmir - UFPR - TP6 ontinu...

21 ... ontinução Integrção Numéri Regr de Simpson Estimtiv do Erro O erro é ddo por: Erro iv m 8 [,] ou Erro iv m 8n [,] Pro. Volmir - UFPR - TP6

22 Integrção Numéri Regr de Simpson Erro Eemplo Integre e - d pel Regr de Simpson usndo dois suintervlos. Clule o erro. n Pro. Volmir - UFPR - TP6 ontinu...

23 ... ontinução Integrção Numéri Regr de Simpson Erro Eemplo e - d - e d Erro e e e, n iv iv, e m me Erro m, 8 [,] Erro 8 [,] iv iv [,],... e e e - - d,8666 d,8689 Erro,9 iv m [,] (vloreto) (simpson (errorel) intervlos ) Pro. Volmir - UFPR - TP6

24 Integrção Numéri Regr de Simpson Erro Eemplo Integre (), de = té =,8 pel Regr de Simpson usndo dois suintervlos. (), 67 9 n,,,,,,8 Pro. Volmir - UFPR - TP6 ontinu...

25 Integrção Numéri... ontinução m [,] Regr de Simpson Erro Eemplo Erro Erro (), iv iv m 68 [,.8],8 Erro 68,96 8(6) 67 9,8,8,,,,,,8,8 d,,8, iv m 8n [,],8 8 m [,] iv 6 8 iv d,6 (vloreto) d, (simpson suintervlos ) Erro,76666 (erroos erv do) Pro. Volmir - UFPR - TP6

26 Integrção Numéri Regr de Simpson Erro Eemplo Integre (), de = té =,8 pel Regr de Simpson usndo suintervlos. (), 67 9 n, {[,], [,,], [,,6], [,6,8]} (), 67 9,8 d,66666 Erro m [,],8 8 iv iv m 68 iv 6 8,8 Erro 8() [,.8] m [,] iv 68,966,8,8 Erro,76667 Pro. Volmir - UFPR - TP6 d,6 d,66666 (vloreto) (simpson (erroos erv do) suintervlos) 6

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numérios Integrção Numéri Regr de Simpson Proessor Volmir Eugênio Wilelm Proessor Mrin Klein Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri são:

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

Integração Numérica Grau de uma regra

Integração Numérica Grau de uma regra Integrção Numéric Gru de um regr Um regr diz-se de gru n se integrr sem erro todos os polinómios de gru n eexistir pelo menos um polinómio de gru n que não é integrdo exctmente. Exemplos: Regr do Trpézio

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos

Métodos Numéricos e Estatísticos Parte I-Métodos Numéricos Integrção Numéric Métodos Numéricos e Esttísticos Prte I-Métodos Numéricos Integrção numéric Luís Morgdo Lic. Eng. Biomédic e Bioengenhri-009/010 Luís Morgdo Integrção numéric Integrção Numéric Recorrendo

Leia mais

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2

Introdução ao Cálculo Numérico S(M, B) = (y i Mx i B) 2 Introdução o Cálculo Numérico 25 List de Exercícios 2 Observção importnte: Resolv o proplem pr o di d prov com função f(x) = cos(πx/2) e não com f(x) = sin(πx)! Problem 1. Sejm {x i, y i } n i= números

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Homero Ghioti da Silva. 9 de Junho de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 9 de Junho de / 16

Homero Ghioti da Silva. 9 de Junho de 2016 FACIP/UFU. Homero Ghioti da Silva (FACIP/UFU) 9 de Junho de / 16 Homero Ghioti d Silv FACIP/UFU 9 de Junho de 216 Homero Ghioti d Silv (FACIP/UFU) 9 de Junho de 216 1 / 16 Integrção Numéric Motivção Estudr métodos numéricos pr se resolver integris denids do tipo I =

Leia mais

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004

Prof. Doherty Andrade- DMA/UEM DMA-UEM-2004 Integrção Numéric Prof. Doherty Andrde- DMA/UEM DMA-UEM-4 Preliminres Nests nots o nosso interesse é clculr numericmente integris f(x)dx. A idéi d integrção numéric reside n proximção d função integrnd

Leia mais

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo.

(B) (A) e o valor desta integral é 9. gabarito: Propriedades da integral Represente geometricamente as integrais para acompanhar o cálculo. Cálculo Univrido List numero integrl trcisio@sorlmtemtic.org T. Prcino-Pereir Sorl Mtemátic lun@: 7 de setemro de 7 Cálculo Produzido com L A TEX sis. op. Dein/GNU/Linux www.clculo.sorlmtemtic.org/ Os

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

Lista de Exercícios Integração Numérica

Lista de Exercícios Integração Numérica List de Exercícios Integrção Numéric ) Nos exercícios ixo, proxime integrl utilizndo () Regr do Trpézio e () Regr de Simpson. (Arredonde respost pr três lgrismos significtivos.) ) x dx n = 8 Regr do Trpézio:

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhrifcil.weely.com Resumo com eercícios resolvidos do ssunto: (I) (II) Teorem Fundmentl do Cálculo Integris Indefinids (I) Teorem Fundmentl do Cálculo Ness postil vmos ordr o Teorem Fundmentl do

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Propost de teste de vlição Mtemátic A. O ANO DE ESOLARIDADE Durção: 90 minutos Dt: derno (é permitido o uso de clculdor) N respost o item de escolh múltipl, selecione opção corret. Escrev, n olh de resposts,

Leia mais

EQE-358 Métodos Numéricos em Engenharia Química

EQE-358 Métodos Numéricos em Engenharia Química UIVERSIDADE FEDERAL DO RIO DE JAEIRO ESCOLA DE QUÍMICA EQE-358 Métodos uméricos em Engenri Químic EXERCÍCIOS COMPUTACIOAIS Implementr em um lingugem computcionl (C, C++, C#, FORTRA, PYTHO, JAVA, BASIC,

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Teoremas Fundamentais do Cálculo MAT46 - Cálculo I - Teorems Fundmentis do Cálculo Alexndre Mirnd Alves Anderson Tigo d Silv Edson José Teixeir Os Teorems Fundmentis do Cálculo Os próximos teorems fzem conexão entre os conceitos de ntiderivd

Leia mais

Integração Numérica. Leonardo F. Guidi. Cálculo Numérico DMPA IME UFRGS

Integração Numérica. Leonardo F. Guidi. Cálculo Numérico DMPA IME UFRGS Qudrtur por interpolção DMPA IME UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 4 Qudrtur por interpolção Qudrtur por interpolção

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP

INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA. Equipe de Cálculo Numérico do MAP/IME/USP INTERPOLAÇÃO POLINOMIAL E INTEGRAÇÃO NUMÉRICA Equipe de Cálculo Numérico do MAP/IME/USP Nests nots desenvolveremos teori d prte finl do curso, escolendo lguns cminos lterntivos à referênci principl, que

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

Cálculo integral. 4.1 Preliminares

Cálculo integral. 4.1 Preliminares Cpítulo 4 Cálculo integrl 4. Preinres Considere um decomposição do intervlo [, ] R em su-intervlos d orm [x, x ], [x, x ],..., [x n, x n ], onde = x < x < < x n < x n = e n N. Por um questão de simplicidde,

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

CÁLCULO A UMA VARIÁVEL

CÁLCULO A UMA VARIÁVEL Profª Cristine Guedes 1 CÁLCULO A UMA VARIÁVEL cristineguedes.pro.r/cefet Ement do Curso 2 Funções Reis Limites Continuidde Derivd Ts Relcionds - Funções Crescentes e Decrescentes Máimos e Mínimos Construção

Leia mais

Eletromagnetismo I. Aula 8

Eletromagnetismo I. Aula 8 Eletromgnetismo I Prof. Dr. R.M.O Glvão - Semestre 14 Prepro: Diego Oliveir Aul 8 Revisão Série de Fourier f Suponhmos que tenhmos um função f( periódic, de período, como mostrdo n gur. O objetivo d série

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R

x n dx = xn+1 n k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = tan(x) + k, k R Algums primitivs Simples... c dt = cx + k, k R x n dx = xn+ n + + k, k R sin(x) dx = cos(x) + k, cos(x) dx = sin(x) + k, k R Sh(x) dx = Ch(x) + k, Ch(x) dx = Sh(x) + k, k R dx = rctn(x) + k, dx = SetSh(x)

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral Eercícios de Integrl Eercícios de Fição Cálculo I (5/) IM UFRJ List 5: Integrl Prof Milton Lopes e Prof Mrco Cbrl Versão 55 Fi : Determine se é Verddeiro (provndo rmtiv) ou Flso (dndo contreemplo): b ()

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

4.2. ME TODO DE LAGRANGE

4.2. ME TODO DE LAGRANGE Cpítulo 4 Interpolção 4. Introdução Ddos n + pontos do plno P 0 = (x 0, y 0 ), P = (x, y ),, P n = (x n, y n ), tis que x i x j se i j, nosso principl objetivo neste cpítulo é encontrr um função f (x)

Leia mais

Métodos Numéricos. (Integração numérica) Miguel Moreira DMAT

Métodos Numéricos. (Integração numérica) Miguel Moreira DMAT Métodos Numéricos (Integrção numéric) Miguel Moreir DMAT 1 Introdução Em muits situções, colocds à engenhri, é necessário conhecer o integrl definido I = f (x) dx sem que o mesmo poss ser cálculdo nliticmente:

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometri Anlíti e Álger Liner Cônis Professor: Luiz Fernndo Nunes Dr 8/Sem_ Geometri Anlíti e Álger Liner ii Índie 9 Curvs Cônis 9 Elipse 9 Hipérole 9 Práol 8 9 Eeríios propostos: Referênis

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Capítulo Breve referência histórica Aproximação da primeira derivada

Capítulo Breve referência histórica Aproximação da primeira derivada Cpítulo 5 Derivção e integrção numéric 5.1 Breve referênci istóric As técnics de derivção e integrção numéric, d form como s iremos estudr neste cpítulo, têm mesm origem d interpolção. No entnto, temos

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 3 quadrimestre 2012 EN607 Trnsformds em Sinis e Sistems Lineres List de Exercícios Suplementres 3 qudrimestre 0. (0N) (LATHI, 007, p. 593) Pr o sinl mostrdo n figur seguir, obtenh os coeficientes d série de Fourier e esboce

Leia mais

Intervalo Encapsulador para Probabilidades Reais de Variáveis Aleatórias Contínuas Unidimensionais

Intervalo Encapsulador para Probabilidades Reais de Variáveis Aleatórias Contínuas Unidimensionais Intervlo Enpsulor pr Proilies Reis e Vriáveis Aletóris Contínus Uniimensionis Mri s Grçs os Sntos Doutoro em Mtemáti Computionl UFPE Ru Proº Luiz Freire s/n Cie Universitári 50740-540 Reie Pe E-mil: tgl60@yhooomr

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wgner Mtos Lir Monitores: Ricrdo Albuquerque Fernndes Flvio Bomfim ERROS. Introdução.. Modelgem e Resolução A utilizção de simuldores numéricos pr determinção

Leia mais

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sej um vriável letóri com conjunto de vlores (S). Se o conjunto de vlores for infinito não enumerável então vriável é dit contínu. É função

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec

Cálculo Diferencial e Integral I 2 o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec Cálculo Diferencil e Integrl I o Teste - LEAN, MEAer, MEAmb, MEBiol, MEMec de Junho de, h Durção: hm Apresente todos os cálculos e justificções relevntes..5 vl.) Clcule, se eistirem em R, os limites i)

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

7. t x y x t s y s. F x y 11. Dica: y p. G x y Calcule a integral. 19. x 3 2x dx t 3t 2 dt 22. y 1.

7. t x y x t s y s. F x y 11. Dica: y p. G x y Calcule a integral. 19. x 3 2x dx t 3t 2 dt 22. y 1. INTEGRAIS 7. Eercícios. Eplique etmente o signiicdo d irmção derivção e integrção são processos inversos.. Sej t t dt, em que é unção cujo gráico é mostrdo. () Clcule t pr,,,,, e 6. (b) Estime t 7. (c)

Leia mais

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam

Objetivo A = 2. A razão desse sucesso consiste em usar somas de Riemann, que determinam Aplicções de integris Volumes Aul 28 Aplicções de integris Volumes Objetivo Conhecer s plicções de integris no cálculo de diversos tipos de volumes de sólidos, especificmente os chmdos método ds seções

Leia mais

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos Teste Intermédio Mtemátic A Resolução (Versão ) Durção do Teste: 90 minutos.0.0.º Ano de Escolridde RESOLUÇÃO GRUPO I. Respost (C) O vlor máimo d unção objetivo de um problem de progrmção liner é tingido

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais