Confiabilidade Estrutural

Tamanho: px
Começar a partir da página:

Download "Confiabilidade Estrutural"

Transcrição

1 Profeor Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Confibilie Etruturl Jorge Luiz A. erreir

2 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b iicente poeo crcterizr o prâetro b coo u ei itânci entre éi itribuição e e zero ei e tero o evio prão. b M lh M > eguro b Probbilie e ( M(R) = R < )

3 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b e per e generlie poeo tbé nlir o coportento função rge e egurnç preent eguir 𝑀𝑆 = 𝑆𝑦 𝐹 N conição e eto liite e função rge e egurnç to for 𝑆𝑦 𝐹 = O gráfico que ecreve conição e eto liite egue o coportento preento o lo. M( )

4 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Co be n figur o lo o ínice e confibilie b poe er entenio coo o ftento o centro itribuição rge e egurnç M( ) ( ) e relção função e eto liite M( ) = e unie e evio prão. b

5 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Etuo nteriorente que o ínice e confibilie poeri er etio utilizno-e e proxiçõe e érie e Tlor e prieir ore tl que: M( ) 𝑀 𝑿 𝛽 σ𝑘 𝑀 𝑿 𝑥𝑘 b 𝑉𝑎𝑟 𝑥𝑘 E lgu ituçõe erivçõe nlític função rge e egurnç poe er ubtituí e neir uito eficz por proxiçõe e iferenç finit.

6 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Diferenç init O étoo iferenç finit é u étoo e reolução e equçõe iferencii que e bei n proxição e eriv por iferenç finit. A fórul e proxição é obti érie e Tlor função eriv. Progreiv x ) f x f ( i i f ( xi ) O( h) x h Regreiv f ( xi ) f xi f ( xi ) O( h) x h Centr f ( xi ) f xi f ( xi ) O( h ) x h

7 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Diferenç init Ai efinino u gri e peento função M pr c nó poe-e ontr u eque confore otro bixo no qul u ponto genérico i o oínio e eu qutro ponto vizinho i i i 3 e i 4 encontr-e repreento. i i i i 3 i 4 ponto genérico i

8 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Diferenç init eno M i = M( ) o vlor e M no i-éio ponto proxiçõe fic igui : M i = f( k ) M i = f( + h) M i3 = f( + k ) M i4 = f( - h) M i M i k M i4 h f i h k M i3

9 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Diferenç init A proxiçõe pr eriv prcii função rge e egurnç to e torno e M i = M( ) uirão eguinte for: M( M( ) ) M M M M

10 Ínice e Confibilie Outro Etiore Univerie e Bríli Progr e Pó grução e Integrie Etruturl Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Diferenç init De for vriânci e M poerá er proxi coo: ) ( ) ( ) ( M M M Vr ) ( M M M M M Vr ) ( M M M M M Vr E o ínice e confibilie erá proxio por: ) ( M M M M M b

11 Ínice e Confibilie Outro Etiore Univerie e Bríli Progr e Pó grução e Integrie Etruturl Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Etitiv e b uno Diferenç init É u etoologi fácil e er plic Pr u proble co N vriávei letóri ipleentção ee proceiento ipleentção exige o cálculo e N + otr. ) ( M M M M M b

12 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Etitiv e b uno Diferenç init Exeplo : Deterine confibilie e u brr utilizno o étoo e proxição érie e Tlor por iferenç finit (TD) conierno que brr tenh reitênci o ecoento (MP) N(33 33 ) Diâetro eção trnverl contnte co áre igul 3 e uport u forç (N) N(684 ). M b M = 4 π M M M M( )

13 Ínice e Confibilie Outro Etiore Univerie e Bríli Progr e Pó grução e Integrie Etruturl Mrge e egurnç Ínice e Confibilie b Aproxiçõe por Etitiv e b uno Diferenç init Exeplo : Deterine confibilie e u brr utilizno o étoo e proxição érie e Tlor por iferenç finit (TD) conierno que brr tenh reitênci o ecoento (MP) N(33 33 ) Diâetro eção trnverl () N(.5 ) e uport u forç (N) N(684 ). M = 4 π ) ( M M M M M M M b

14 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Proble no Uo e Aproxiçõe e ª ore Qul enor itânci entre u ponto e u ret?

15 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b M( ) = E entre u ponto e u função qulquer? M( )

16 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Inice e Confibilie e Hofer n Lin O inice e Confibilie e Hofer-Lin é efinio coo coo enor itânci entre orige e uperfície e flh no epço norlizo g(x) = xi i i i g x x x x g g T i = Vriável Aletóri x x T xi = Vriável Aletóri Proniz

17 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Inice e Confibilie e Hofer n Lin - Clculo f(x) = P(x ) A itânci entre u ponto e u ret é clcul unino o próprio ponto à ret trvé e u egento que everá forr co ret u ângulo reto (9º). Etbeleceno equção gerl ret coo f(x) = x + b + c = e cooren o ponto P(x ) itânci entre o ponto e ret é clculo pel expreão: x b b c

18 Ínice e Confibilie Outro Etiore Univerie e Bríli Progr e Pó grução e Integrie Etruturl Mrge e egurnç Ínice e Confibilie b Inice e Confibilie e Hofer n Lin x x g x g(x) = Ai repreentno função e eto liite g(x) = n for função f(x) = x + b + c = cheg-e eguinte expreão: x b c b P(x )

19 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Inice e Confibilie e Hofer n Lin g(x) = Conierno que cooren o ponto P(x ) é ( ) itânci entre orige o ite cooreno pronizo e função g(x) = é clcul pel expreão : P( ) b Avnce irt-orer econ-moent (MVORM) etho

20 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Coo clculrío enor itânci entre orige o ite cooreno e função g(x)? - Poerío elecionr u ponto qulquer curv g(x) = exeplo o ponto g(x x ) - Clculr itânci o ponto (x x ) orige o ite cooreno. x x x T g(x) = (x x ) x T x x x ( )

21 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b Logicente chnce o ponto ecolhio er o ponto e interee é uito bix. Poerío r outro chute io não eri uito inteligente poi não te étoo! Vo fzer o eguinte então: - Clculr o griente função no ponto (x x ). v g x xx g(x) = Hiper plno tngente g(x) v (x x ) v i g x x i xx ( )

22 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b - Norlizr o griente função no ponto (x x ) e tl for que v ej u vetor unitário g(x) = v u g g x x xx xx g x xx i x g x i xx Hiper plno tngente g(x) (x x ) v ui g x x i xx i g x x i xx ( ) v u

23 Univerie e Bríli Progr e Pó grução e Integrie Etruturl Ínice e Confibilie Outro Etiore Mrge e egurnç Ínice e Confibilie b - Clcul o novo ponto e verificção * uno equção: * i x i i Execut ee proceiento té encontrr o vlor ínio e. Algorito i eficiente erá preento eguir!!!! x i g(x) = x x (x x ) v u Hiper plno tngente g(x) ( )

LFEB notas de apoio às aulas teóricas

LFEB notas de apoio às aulas teóricas LFEB notas de apoio às aulas teóricas 1. Resolução de equações diferenciais lineares do segundo grau Este tipo de equações aparece frequenteente e sisteas oscilatórios, coo o oscilador harónico (livre

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do elemento de viga de Euler-Bernoulli. CAPÍUO VIGA DE EUER-EROUI Deign-e por Euler-ernoulli formulção o elemento finito e vig em que e conier que ecçõe e mntêm pln e normi o eio brr pó eformção. Dete moo não é conier eformção evi o corte..

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x.

1 x 5 (d) f = 1 + x 2 2 (f) f = tg 2 x x p 1 + x 2 (g) f = p x + sec 2 x (h) f = x 3p x. (c) f = 2 sen x. sen x p 1 + cos x. p x. 6. Primitivs cd. 6. Em cd cso determine primitiv F (x) d função f (x), stisfzendo condição especi- () f (x) = 4p x; F () = f (x) = x + =x ; F () = (c) f (x) = (x + ) ; F () = 6. Determine função f que

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Sistemas Reticulados

Sistemas Reticulados EP-USP PEF63 PEF6 Estruturs n Arquitetur III - Estruturs n Arquitetur I I - Sistes Reticulos Sistes Reticulos e Linres FAU-USP Cislhento n Flexão Sistes Reticulos (Frgentos 6/3/17) Professores Ru Mrcelo

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

f(x) dx for um número real. (1) x = x 0 Figura A

f(x) dx for um número real. (1) x = x 0 Figura A FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico

Leia mais

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física) ecânic e Ond O Curo LEC º TESTE 0/0 º Seetre -04-0 8h0 Durção: h0 ep: Prof João Crlo ernnde (Dep íic) TAGUS PAK Nº: Noe: POBLEA (4 vlore) U etudnte de O potou co u igo que conegui delocr u loco de kg pen

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Aula Teste de Controle de Sistemas e Servomecanismos

Aula Teste de Controle de Sistemas e Servomecanismos Aul Tete de Controle de Sitem e Servomecnimo Crlo Edurdo de Brito Nove crlonov@gmil.com 3 de mio de 202 Expnão em frçõe prcii A expnão em frçõe prcii é um procedimento pr otenção de um frção lgéric de

Leia mais

Sistemas Robotizados

Sistemas Robotizados ONTIFÍCIA UNIVERSIAE CATÓLICA O RIO GRANE O SUL FACULAE E ENGENHARIA ENGENHARIA E CONTROLE E AUTOMAÇÃO 44646-04 Sitea Rootizao Aula 13 Controle Inepenente a Junta rof. Felipe Kühne Controle Inepenente

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JUNHO 05. Grupo I Os dois rapazes devem estar sentados nas etremidades do banco. Há maneiras de isso acontecer.

Leia mais

Cálculo IV EP15 Aluno

Cálculo IV EP15 Aluno Fundção entro de iêncis e Educção uperior istânci do Estdo do Rio de Jneiro entro de Educção uperior istânci do Estdo do Rio de Jneiro álculo IV EP5 Aluno Objetivo Aul 25 Teorem de tokes Estudr um teorem

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtento de Engenhri Elétric Conversão de Energi Aul 5.5 Máquins de Corrente Contínu Prof. Clodoiro Unsihuy-Vil Bibliogrfi FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: co ntrodução

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras.

UT 01 Vetores 07/03/2012. Observe a situação a seguir: Exemplos: área, massa, tempo, energia, densidade, temperatura, dentre outras. UT 01 Vetore Oerve itução eguir: A prtícul vermelh etá e movendo num di quente, onde o termômetro indic tempertur de 41 gru Celiu! GRANDEZA ESCALAR É um grndez fíic completmente crcterizd omente com o

Leia mais

Cálculo de Limites. Sumário

Cálculo de Limites. Sumário 6 Cálculo de Limites Sumário 6. Limites de Sequêncis................. 3 6.2 Exercícios Recomenddos............... 5 6.3 Limites de Funções.................. 7 6.4 Exercícios Recomenddos...............

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO 1. RESULTADOS QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO 1.1- QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO: AMOSTRA REFERENTE AS

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-6 Lisboa Tel.: +5 76 6 90 / 7 0 77 Fa: +5 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Fig. 1. Problema 1. m = T g +a = 5kg.

Fig. 1. Problema 1. m = T g +a = 5kg. ÍSICA - LISA - 09/. U bloco está suspenso e u elevdor que sobe co celerção de /s (figur ). Nests condições tensão n cord (peso prente) é de 60 N. Clcule ss do bloco e seu peso rel (5 kg; 50 N). ig.. roble.

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

Fases Condensadas Exercícios

Fases Condensadas Exercícios Fses odesds Eercícios 1. Etr-ul: A 600º pressão de vpor do zico puro é 10 Hg e de cádio puro é 100 Hg. () Aditido que lig Z-d preset coporteto idel, clculr coposição e pressão totl do vpor e equilíbrio

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

10. Análise da estabilidade no plano complexo (s)

10. Análise da estabilidade no plano complexo (s) . Análie d etilidde no plno omplexo ( A nálie d etilidde de um item liner em mlh fehd pode er feit prtir d lolizção do pólo em mlh fehd no plno. Se qulquer do pólo e lolizr no emiplno direito, então qundo

Leia mais

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e :

Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : INSCRIÇÕES ABERTAS ATÉ 13 DE JULH DE 2015! Ac esse o sit e w w w. d e ca c lu b.c om.br / es t u dos 2 0 1 5 e f a ç a s u a insc riçã o cl ica nd o e m Pa r t i c i p e : Caso vo cê nunca t e nh a pa

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes:

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes: Fich e Trblho Moieno e forçs. COECÇÃO Escol Básic e Secunári Gonçles Zrco Ciêncis Físico-Quíics, 9º no Ano lecio / 7 Noe: n.º luno: Tur: 1. Cople s frses A, B, C e D uilizno s plrs-che seguines: ecoril

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B

Integrais de Linha. Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão. Cálculo Diferencial e Integral 3B Integris de Linh âmpus Frncisco Beltrão Disciplin: álculo Diferencil e Integrl 3 Prof. Dr. Jons Jocir Rdtke Integris de Linh O conceito de um integrl de linh é um generlizção simples e nturl de um integrl

Leia mais

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f.

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. CÁLCULO I Prof. André Almeida Prof. Marcos Diniz Lista Semanal 2 - Gabarito Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. (a) Utilizando um recurso computacional, plote

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Sistemas Robotizados

Sistemas Robotizados 18/05/015 ONTIFÍCIA UNIVERSIAE CATÓLICA O RIO GRANE O SUL FACULAE E ENGENHARIA ENGENHARIA E CONTROLE E AUTOMAÇÃO 44646-04 Sitea Rootizao Aula 10 Controle Inepenente a Junta rof. Felipe ühne Controle Inepenente

Leia mais

Notas de Aula de Física

Notas de Aula de Física Veão peliin 4 e noveo e Not e Aul e íic 4. AVIAÇÃO... O UNIVEO E A OÇA AVIACIONA... AVIAÇÃO E O PINCÍPIO DA UPEPOIÇÃO... AVIAÇÃO PÓXIO À UPEÍCIE DA EA... 4 OÇA ENE UA HAE E UA AA PONUA CAO... 5 OÇA ENE

Leia mais

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1).

Questão 1 No plano cartesiano, considere uma haste metálica rígida, de espessura desprezível, com extremidades nos pontos A (3,3) e B (5,1). UJ OURSO VSTIULR 0- RITO PROV ISURSIV TÁTI Questão o plno crtesino, considere u hste etálic rígid, de espessur desprezível, co extreiddes nos pontos (,) e (5,) ) eterine equção d circunferênci de centro

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-09b UNICAMP IFGW F128 2o Semestre de 2012 F-8 Físic Gerl I Aul exlortóri-09b UNICAMP IFGW userne@ifi.unic.br F8 o Seestre e 0 Forçs e interção O resulto líquio forç e interção é fzer rir o oento liner s rtículs. Pel t f t f lei e Newton: f Ft

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824 Introução à Meia e Fíica 430015 4 a Aula Neitala Ae neitala@fn.if.up.br Préio novo o Linac, ala 04, r. 684 Objetivo Experiência II eniae e Sólio Meia inireta Meia a eniae e ólio Noçõe e Etatítica Propagação

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

f(x) dx. Note que A é a área sob o gráfico

f(x) dx. Note que A é a área sob o gráfico FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

RESISTÊNCIA DE MATERIAIS

RESISTÊNCIA DE MATERIAIS EPRTMENTO E ENENHRI CIVIL LICENCITUR EM ENENHRI CIVIL REITÊNCI E MTERII TENÕE NORMI E TENÕE TNENCII EM FLEXÃO PLN ETO PLNO E TENÃO 50 kn/ ECÇÃO TRNVERL VI T 90kN 0 0 0 5,5 0 5 V 65kN - V.5 45 M-5,5kN V

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 3 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: JA Minimizção de Custos. Conts com Co-Dougls. Considere um firm que produz o produto

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

/ / SÉRIE ENSINO ITA / IME TEIXEIRA JR. PROFESSOR(A) SEDE Nº FÍSICA TURMA DATA TURNO

/ / SÉRIE ENSINO ITA / IME TEIXEIRA JR. PROFESSOR(A) SEDE Nº FÍSICA TURMA DATA TURNO SÉIE IA / IME ENSINO PÉ-UNIVESIÁIO POFESSO(A) ALUNO(A) EIXEIA J. SEDE Nº C UMA UNO DAA / / FÍSICA. ) Mostre que A cos( t + ) poe ser escrito coo A s sen( t) + A c cos( t), e eterine A s e A c e teros e

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

COLÉGIO TERESIANO CAP/PUC 2ª SÉRIE / ENSINO MÉDIO / /2012. Aluno (a): N Turma: (A) (B) (C)

COLÉGIO TERESIANO CAP/PUC 2ª SÉRIE / ENSINO MÉDIO / /2012. Aluno (a): N Turma: (A) (B) (C) COLÉGIO TERESIANO CAP/PUC ESTUDO DIRIGIDO º BIMESTRE ª SÉRIE / ENSINO MÉDIO / /0 Professor (a): ANNA RITA Disciplina: MATEMÁTICA Aluno (a): N Turma: (A) (B) (C) ª PARTE: CONCEITOS BÁSICOS Faça um resumo

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

Exercícios 3. P 1 3 cm O Q

Exercícios 3. P 1 3 cm O Q Eercícios 3 1) um ponto e um cmpo elétrico, o vetor cmpo elétrico tem ireção horizontl, sentio ireit pr esquer e intensie 10 5 /C. Coloc-se, nesse ponto, um crg puntiforme e -2C. Determine intensie, ireção

Leia mais

Mudança de variável na integral dupla

Mudança de variável na integral dupla UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 6 Assunto: Mudnç de Vriável n Integrl Dupl Plvrs-chves: mudnç de vriável, integris dupls, jcobino Mudnç de vriável n integrl dupl Vmos ntes

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

# D - D - D - - -

# D - D - D - - - 1 [ \ 2 3 4 5 Tl Como um Fcho 6 7 8 # Willim W Phlps (Ltr) nónimo / Erik Sti (Músic) rrnj por J shly Hll, 2007 9 10 11 12 [ \ [ \ # (Sopr) # (lto) # # Q Q [ \ # # # # # # # # # # # # 13 14 15 16# 17 18

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 2 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 2 - Soluções Universidde Federl de Pelots Disciplin de Microeconoi Professor Rodrigo Nore Fernndez List - Soluções Derive s gregções de Engel e Cournot pr o cso de n ens. Reescrev esss gregções e teros de elsticiddes.interprete

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

LISTA DE EXERCÍCIOS 2º ANO

LISTA DE EXERCÍCIOS 2º ANO Cálculo d entlpi-pdrão, em kj mol, de vporizção do HC : 0 HC (g) : H = 9,5kJ mol 0 HC ( ) : H = 108,7kJ mol vporizção 1 HC ( ) 1HC (g) 08,7 kj 9,5 kj ÄHvporizção = 9,5 ( 08,7) ÄHvporizção =+ 16, kj / mol

Leia mais