Fernando Nogueira Programação Linear 1

Tamanho: px
Começar a partir da página:

Download "Fernando Nogueira Programação Linear 1"

Transcrição

1 Progrmção Liner Fernndo Nogeir Progrmção Liner

2 Eemplo Típico Um indstri prodz prodtos I e II sendo qe cd prodto consome m certo número de hors em máqins A B e C pr ser prodzido conforme tel: Prodto Tempo Máqin A Tempo Máqin B Tempo Máqin C I II O tempo de fncionmento máimo disponível ds máqins é: Máqin Máimo tempo disponível A 6 B C O lcro otido por cd prodto I é $ e por cd prodto II é $5. Qnto fricr de cd prodto de modo qe sej oedecid cpcidde opertiv ds máqins com o mior lcro possível? Fernndo Nogeir Progrmção Liner

3 Modelgem Mtemátic qntidde do prodto I ser fricd qntidde do prodto II ser fricd Fnção Ojetivo ( ) Z.5 M lcro Restrições 6 Máqin A Máqin B Máqin C Prod. não negtiv Em notção mtricil Fnção Ojetivo Z c Restrições A Z [.5 ].. 6 Fernndo Nogeir Progrmção Liner

4 Interpretção Geométric A região fechd formd pels restrições é sempre conve e contém tods s solções possíveis o viáveis: região ds restrições. Teorem Fndmentl d Progrmção Liner Um vez qe tods s eqções e/o ineqções envolvids são lineres o vlor ótimo d fnção-ojetivo Z só pode ocorrer em m dos vértices d região ds restrições. Fernndo Nogeir Progrmção Liner

5 O Método Simple (Dntzig 9) Considerções Iniciis O Método Simple é m lgoritmo qe sistemtiz solção de prolems de P.L. de mneir eficiente comptcionlmente (não é forç-rt). Sej m o número de eqções e/o ineqções de restrição e n o número de vriáveis (incógnits) tem-se: cn n Z m An n m prolems ocorrem n resolção de )A eistênci de desiglddes < o > implic qe solção é gerlmente m conjnto e não únic. )A não necessrimente possi invers gerlmente A não é qdrd.os: o fto m de na ser qdrd não grnte eistênci de invers. ( ) m A n n ( ) m Fernndo Nogeir Progrmção Liner 5

6 Solção do Prolem Trnsformr s desiglddes em iglddes trvés d introdção de vriáveis de folg (slck vriles). Eemplo: 6 6 com Solção do Prolem Tem-se então m sistem com m eqções e (n m) incógnits: A ( n m ) ( n m ) m Anlr n vriáveis. Um vez qe (n m) é sempre mior qe m sempre tem-se mis incógnits de qe eqções ssim o sistem é sdetermindo infinits solções. No entnto nlndo n vriáveis o sistem fic: m A m m m Qis n vriáveis deve-se nlr pr oter solção ótim??? Fernndo Nogeir Progrmção Liner 6 m

7 O Método Reescrevendo fnção-ojetivo e s ineqções como eqções: Z.5 6 Deve-se chr m solção inicil viável qlqer. A mneir mis simples pr isto é zerr s vriáveis de controle ( ). Com isso s vriáveis de folg ssmem vlores máimos ( 6 e ). Est é m solção viável (nenhm restrição foi viold) porém é pior possível pois Z. Pode-se clssificr s vriáveis do prolem como: Vriáveis Básics: vriáveis qe compõem solção em cd iterção. Vriáveis Não-Básics: vriáveis qe form nlds. Fernndo Nogeir Progrmção Liner 7

8 Prtindo de m solção inicil qlqer o Método Simple verific se eiste m otr solção qe sej melhor qe solção tl. Isto se dá trvés d nálise d fnção-ojetivo:.5 Z Fzendo Z.5 s derivds prciis de Z em relção s vriáveis (de controle e de folg) fornecem t de crescimento de Z ns direções dests vriáveis. Z Z Z Z Z.5 O fto cim permite dedzir qe enqnto hover vriáveis não-ásics com coeficientes negtivos em Z.5 solção poderá ser melhord. Um vez qe o ojetivo é mimizr Z deve-se escolher dentre s vriáveis não-ásics qel qe possir mior t de vrição (coeficiente mis negtivo) pr compor s vriáveis ásics no cso. Pr isso lgm vriável ásic terá qe deir se pr compor s vriáveis não-ásics. Ql vriável deve deir se o sej mdr do grpo ds vriáveis ásics pr o grpo ds vriáveis não-ásics? Fernndo Nogeir Progrmção Liner

9 A medid qe ( vriável qe er não-ásic e gor é vriável ásic) ment deve-se diminir cd vriável ásic corrente correspondente m linh n ql tenh coeficiente positivo. Assim qnto pode crescer ntes qe m ds vriáveis ásics corrente tinj se limite inferior (não viole nenhm restrição)? Z os: pois.5 é vriável nãoásic Pr Com isso concli-se qe qndo 6 e portnto poderá ir pr o grpo ds vriáveis não-ásics. Antes 6 Pr Pr Agor Vriáveis ásics 6 Vriáveis não-ásics Fernndo Nogeir Progrmção Liner 9

10 Um vez qe entro n se e sí d se fz-se necessário então lterr os vlores dos coeficientes do sistem de eqções de mneir eqivlente. Este processo é otido trvés do Método de Gss-Jordn. Retomndo o prolem o ponto inicil pode-se montr seginte tel (Tel Simple):. 5 Se o vetor [.5] t (correspondente coln de ) trnsformr-se no vetor [ ] t (correspondente coln de ) estrá pertencendo se e sirá d se. Pr relizr o Método de Gss-Jordn é necessário escolher o elemento pivô o ql é otido pel interseção d coln pivô com linh pivô. 6 Fernndo Nogeir Progrmção Liner Restrições fnção-ojetivo

11 A coln pivô é coln correspondente à vriável qe vi entrr n se ( no cso) e linh pivô é linh n ql interseção com coln correspondente à vriável qe vi sir d se é igl (no cso interseção d linh com coln correspondente ). Relizndo o Método de Gss-Jordn Tel Simple fic: Est tel refere-se o seginte sistem: Z Fernndo Nogeir Progrmção Liner Restrições fnção-ojetivo fnção-ojetivo Restrições

12 A Tel Simple nterior fornece seginte solção: 6 6 e Z 9. Um vez qe é m vriável não-ásic e possi coeficiente negtivo est deverá entrr se e conseqüentemente deverá sir d se. Com est lterção Tel Simple pós o Método de Gss-Jordn fic: qe corresponde o seginte sistem: Z Fernndo Nogeir Progrmção Liner Restrições fnção-ojetivo fnção-ojetivo Restrições

13 A Tel Simple nterior fornece seginte solção: e Z. Um vez qe não eiste vriáveis não-ásics com coeficiente negtivo solção não poderá mis ser melhord portnto está solção é ótim. Conclsão Em P.L. eiste mneirs de cominr n vriáveis igis zero. No eemplo n e m qe reslt em solções possíveis o qe implic qe seri necessário resolver sistems de eqções (forçrt). No entnto o Método Simple resolve pens sistems de eqções (neste cso) e lcnço solção ótim. os: y y!! ( n m) m ( y )! cominção Fernndo Nogeir Progrmção Liner

14 Solção de m Modelo Gerl de P.L. pelo Método Simple Até o momento Fnção-Ojetivo deve ser mimizd Vriáveis de controle não negtiv Apresentm m solção ásic inicil Qndo m o mis desss crcterístics não são stisfeits fz-se necessário determinr m form eqivlente mdr o modelo e não o lgoritmo..minimizção Se fnção-ojetivo é de minimizção deve-se mltiplic-lá por. Min Z M Z os: restrições não são lterds. Simple eige esss crcterístics Fernndo Nogeir Progrmção Liner

15 .Vriável Livre o Negtiv Sstitir vriável livre pel diferenç de otrs não-negtivs. Sstitir vriável negtiv por m otr positiv com coeficiente -. M Z livre Fzendo 6 negtiv 5 M Z Solção Básic Inicil Se restrição é do tipo fz-se necessário crescentr m vriável de folg negtiv. com Se restrição é do tipo já tem-se m eqção e portnto não é preciso crescentr vriável de folg. No entnto qndo estes csos ocorrem não é formd m smtriz identidde tomticmente e portnto não origin m solção ásic inicil. Eemplo: Fernndo Nogeir Progrmção Liner 5

16 Fernndo Nogeir Progrmção Liner 6 6 Z M 6 Z 6 Restrições fnção-ojetivo A Tel Simple fic: Not-se n Tel Simple qe não eiste m s-mtriz identidde. Neste cso crescent-se Vriáveis Artificiis (Ailires) ns linhs cjs s restrições são do tipo o. O sistem fic:

17 Fernndo Nogeir Progrmção Liner 7 com 6 Z A Tel Simple fic: 6 Restrições fnção-ojetivo Agor tem-se m s-mtriz identidde porém e 6. O retorno o modelo originl deve ser feito com eliminção ds Vriáveis Artificiis. Isto é relizdo trvés do Método do M Grnde o do Método d Fnção-Ojetivo Ailir.

18 Método d Fnção-Ojetivo Ailir Este método consiste em tilizr m fnção-ojetivo ilir W(... r ) formd pel som ds r Vriáveis Artificiis W(... r )... r. Um vez qe s Vriáveis Artificiis podem ser escrits em fnção ds Vriáveis de Controle e de Folg pode-se sempre minimizr W(... r ) té W(... r ) o qe corresponde... r fzendo então s Vriáveis Artificiis pertencerem o grpo ds Vriáveis Não-Básics. Com isso otém-se m solção viável pr o prolem podendo-se então ndonr Fnção-Ojetivo Ailir e s Vriáveis Artificiis. Eemplo: M Z Z 6 Fnção-Ojetivo Ailir W( ) com Fernndo Nogeir Progrmção Liner Dá o restrição Dá o restrição 6 6

19 Fernndo Nogeir Progrmção Liner 9 Sstitindo e em W( ) fic: Min W( ) M W( ) 5 qe n form de eqção é W( ) 5 A Tel Simple fic: 5 6 Restrições fnção-ojetivo fnção-ojetivo ilir Após iterções (neste eemplo) do Método Simple Tel Simple fic: 6 6 Restrições fnção-ojetivo fnção-ojetivo ilir

20 Fernndo Nogeir Progrmção Liner A Tel Simple gor present m solção cj s Vriáveis Artificiis são Vriáveis Não-Básics (portnto igis zero) e podem então ser desprezds e o Método Simple pode continr sendo tilizdo fim de encontrr solção ótim. Considerções Finis.Prolem de Degenerção A síd de m V.B. com vlor nlo provoc o precimento de m otr V.B. nl n próim solção sem lterção do vlor d Fnção-Ojetivo. Neste cso solção é denomind degenerd indicndo qe eiste no mínimo m restrição redndnte. Se os coeficientes d Fnção-Ojetivo retornm não negtivos em lgm iterção o cso não present dificldde. O prolem srge qndo s iterções levm circitos sem crcterizr solção ótim. Neste cso fz-se necessário tilizr regrs mis comples s qis não serão ordds neste crso. Tl prolem é stnte rro em plicções prátics. Eemplo em qe degenerção não crreto em circito: 9 Z M 9 9 iterção iterção

21 Fernndo Nogeir Progrmção Liner Eemplo em qe degenerção ocorre temporrimente:.solção Ilimitd Ocorre qndo vriável qe entr n se não possi em s coln nenhm coeficiente positivo não sendo portnto possível determinr linh pivô. Eemplo: Z M Z M iterção iterção iterção

22 .Solções Múltipls Se n solção ótim o coeficiente de m V.N.B. é zero est vriável poderá entrr n se sem lterr o vlor d fnção ojetivo gerndo otr solção ótim. Neste cso qlqer cominção liner desss solções tmém será ótim. Eemplo: M Z 5.Solções Inviável Se o prolem de P.L. não possir nenhm solção viável então o Método d Fnção- Ojetivo Ailir (o do M Grnde) irá fornecer n solção finl no mínimo m vriável rtificil com vlor diferente de zero cso contrário tods vriáveis rtificiis serão nls. Eemplo: M Z Fernndo Nogeir Progrmção Liner

23 Fernndo Nogeir Progrmção Liner 5.Ldo Direito ds Restrições Negtivs Solção Inicil: - e - Inviável pois e são negtivos. Sempre qe hover restrições cjo ldo direito são negtivos deve-se mltiplicr mos os ldos dests restrições por. Solção Inicil: Viável

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma indstria prodz prodtos I e II sendo qe cada prodto consome m certo número de horas em máqinas A B e C para ser prodzido conforme a

Leia mais

Fernando Nogueira Programação Linear 1

Fernando Nogueira Programação Linear 1 rogramação Linear Fernando Nogeira rogramação Linear Eemplo Típico Uma padaria prodz olos I e II sendo qe cada olo consome m certa qantidade de açúcar farinha e ovo para ser prodzido conforme a taela:

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálclo Nmérico Resolção Nméric de Sistems Lineres Prte I Prof. Alirio Sntos de Sá lirios@fb.br Mteril dptd dos slides d disciplin de Cálclo nmérico dos professores Brno Qeiroz, José Qeiroz e Mrcelo Brros

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálclo Nérico Resolção Néric de Sistes ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@nivsf.ed.br ATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUÉRICO DA UFCG - www.dsc.fcg.ed.br/~cn/ Sistes ineres itos

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial

ELECTROMAGNETISMO. Cálculo vectorial - 1. o Noção de campo escalar e de campo vectorial Cálclo vectoril - ELECTROMGNETISMO o Noção de cmpo esclr e de cmpo vectoril Os vlores de lgms grndes físics vrim com posição no espço, podendo esss grndes ser epresss por m fnção contín ds coordends espciis.

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa nº 3 do plano de trabalho nº 5 Escol Secndári com 3º ciclo D. Dinis º Ano de Mtemátic A Tem II Introdção o Cálclo Diferencil II ( e ) = e Tref nº 3 do plno de trblo nº 5 e e = ( ln ) = ( ln ) = ( log ) Not: é m fnção de e é m constnte

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Disciplina: Introdução à Álgebra Linear Prof. Dra. Shirley Maria Santos e Souza Curso de Licenciatura em Matemática UFPBVIRTUAL

Disciplina: Introdução à Álgebra Linear Prof. Dra. Shirley Maria Santos e Souza Curso de Licenciatura em Matemática UFPBVIRTUAL Disciplin: Introdção à Álgebr Liner Prof Dr Shirle Mri Sntos e Soz Crso de Licencitr em Mtemátic UFPBVIRTUAL shirle@mtfpbbr Ambiente Virtl de Aprendizgem: Moodle wwwedfpbbr Site d UFPBVIRTUAL wwwirtlfpbbr

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

ENGENHARIA ASSISTIDA POR COMPUTADOR

ENGENHARIA ASSISTIDA POR COMPUTADOR ENGENHARIA ASSISTIDA POR COMPUTADOR Prof. Isc N. L. Silv Prof. Crlos Crespo Izqierdo Professor do Deprtmento de Engenhri Mecânic e Mectrônic PUCRS ORMULAÇÃO DO ME NO CÁLCULO ESTRUTURAL Em resmo o ME consiste

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita Método ds rcterístics n Solção de Problems de Propogção de Onds de mplitde Finit Estner lro Romão, Liz Felipe Mendes de Mor Fcldde de Engenri Mecânic, Depto de Térmic e Flidos, UNIMP 383-97, mpins, SP

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a Pros. Soorro Rngel UESP-SJRP, Soni Poltreniere UESP-uru Reerenis: Liner Progrmg - : Introdution, Dntzig. G.b. e Tpp,M.. -, Springer, ; Liner Progrmg - V. Chvátl, 8; Pesquis Operionl - Arenles e outros,.

Leia mais

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios

MAT Cálculo I - POLI Resolução de Algumas Questões da 2 a Lista de Exercícios MAT 45 - Cálclo I - POLI - 0 Resolção de Algms Qestões d List de Exercícios -) O ojetio dest qestão é demonstrr como lei d reflexão pln e lei d refrção de Snellis, d Óptic Geométric, podem ser otids como

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escol Secundári/, d Sé-Lmego Fich de Trlho de Mtemátic A Ano Lectivo 0/ Distriuição de proiliddes.º Ano Nome: N.º: Turm:. Num turm do.º no, distriuição dos lunos por idde e sexo é seguinte: Pr formr um

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

Do programa... 2 Descobre o teu livro... 4

Do programa... 2 Descobre o teu livro... 4 Índice Do progrm........................................... Descobre o teu livro....................................... 4 Atividde zero: Record.................................. 6 1. T de vrição e otimizção...........................

Leia mais

CCI-22 CCI-22. 3) Sistemas Lineares. Matemática Computacional. Sistemas Lineares Triangulares. Exercícios. Sistemas Lineares Triangulares

CCI-22 CCI-22. 3) Sistemas Lineares. Matemática Computacional. Sistemas Lineares Triangulares. Exercícios. Sistemas Lineares Triangulares CCI- temátic Comptcio Cros Heriqe Q. Forster CCI- ) Sistems Lieres Nots compemetres Sistems Lieres Trigres Sistems Lieres Trigres Trigr sperior: Trigr iferior: O O O O Eercícios Resover Eercício goritmo

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência Instituto Politécnico de Brgnç Escol Superior de Tecnologi e Gestão Análise Mtemátic I Frequênci Durção d prov: h min Dt: // Tolerânci: 5 min Cursos: EQ, IG, GEI Resolução Grupo I g π. ) Considere função

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Formas Lineares, Bilineares e Quadráticas

Formas Lineares, Bilineares e Quadráticas Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

Modelos Teóricos para Análise de Transformadores Baseados em Modelos Simplificados de Impedância e de Elementos Concentrados

Modelos Teóricos para Análise de Transformadores Baseados em Modelos Simplificados de Impedância e de Elementos Concentrados 4. Modelos Teóricos pr Análise de Trnsformdores Bsedos em Modelos implificdos de Impedânci e de Elementos Concentrdos 4. Introdução Um vez que o trlho propõe o projeto e crcterizção de trnsformdores em

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1 Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

Estatística e Matrizes

Estatística e Matrizes Esttístic e Mtrizes Introdução à Análise Multivrid Análise multivrid: De um modo gerl, refere-se todos os métodos esttísticos que simultnemente nlism múltipls medids sobre cd indivíduo ou objeto sob investigção.

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos 1 9 Modelgem Mtemátic de Sistems Eletromecânicos 1 INTRODUÇÃO Veremos, seguir, modelgem mtemátic de sistems eletromecânicos, ou sej, sistems que trtm d conversão de energi eletromgnétic em energi mecânic

Leia mais

Análise de Convergência de Redes Neurais para a Resolução de Problemas de Programação Linear

Análise de Convergência de Redes Neurais para a Resolução de Problemas de Programação Linear Análise de Convergênci de Redes Neuris pr Resolução de Problems de Progrmção Liner Leonrdo V Ferreir, E Kszkurewicz, A Bhy lvlente,eugenius @coepufrjbr, mit@ncdufrjbr Progrm de Engenhri Elétric COPPE UFRJ

Leia mais

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel

CCI-22. Eliminação de Gauss, Gauss-Jordan, Decomposição LU, Gauss-Jacobi, Gauss-Seidel CCI- ) Rízes de Sistems Lineres Eliminção de Guss, Guss-Jordn, Decomposição LU, Guss-Jcobi, Guss-Seidel CCI- Introdução Métodos diretos Regr de Crmer Eliminção de Guss Guss-Jordn Resíduos e Condicionmento

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},

8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c}, 8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções

Leia mais