COMBUSTÍVEIS E COMBUSTÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "COMBUSTÍVEIS E COMBUSTÃO"

Transcrição

1 COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS

2 CHAMAS DIFUSIVAS 2

3 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há números exemplos de utlzação de combustíves gasosos, entre eles os dversos processos envolvendo a produção de aço, cobre, vdro e produtos químcos. 3

4 INTRODUÇÃO Sempre que possível, o uso de um combustível gasoso é preferível sobre o de combustíves líqudos ou sóldos, em vrtude do menor excesso de ar necessáro e da quantdade reduzda de poluentes atmosfércos formados durante a combustão 4

5 INTRODUÇÃO A combustão de um jato de combustível sando de um tubo é um processo controlado por dfusão. Em todos os pontos nos quas o combustível e o oxdante encontram-se em proporções estequométrcas, a combustão ocorre muto rapdamente. 5

6 INTRODUÇÃO Em uma chama deal, a zona de reação é tão estreta que ela pode ser consderada como uma superfíce de espessura nula que é mpermeável ao combustível de um lado e ao oxdante do outro lado. Em teora, portanto, combustível é encontrado apenas de um lado da chama e oxdante do outro. 6

7 INTRODUÇÃO Conhecer a forma de chama, comprmento e perfs de concentração e temperatura é fundamental para o engenhero, pos permtrá o cálculo das taxas de transferênca de calor e a determnação dos requstos de materas da câmara de combustão. 7

8 INTRODUÇÃO Os parâmetros da chama são funções das propredades químcas e termodnâmcas do combustível e do oxdante, bem como do regme de escoamento na saída do quemador (se lamnar ou turbulento). 8

9 JATOS FRIOS Quando um fludo é ejetado de um tubo, ele forma um jato ao nteragr com o fludo externo. O jato pode ser dvddo em quatro regões, conforme mostrado na fgura: núcleo potencal, regão de mstura, regão de transção e regão completamente desenvolvda 9

10 JATOS FRIOS 10

11 JATOS FRIOS Estmatvas dos comprmentos dessas regões são ndcadas na fgura; eles podem varar dependendo das condções ncas do fludo na saída do tubo, tas como: níves de turbulênca e propredades termodnâmcas. 11

12 JATOS FRIOS No núcleo potencal, o fludo retém a velocdade e composção que ele tnha dentro do tubo. 12

13 JATOS FRIOS A mstura com o fludo externo começa na regão de mstura e contnua ao longo da regão de transção 13

14 JATOS FRIOS Jatos turbulentos formados pelos mesmos fludos nterno e externo apresentam regões completamente desenvolvdas smlares. Isto sgnfca que jatos formados, por exemplo, por metano descarregando em ar, apresentam equações smlares para perfs de velocdade e concentração, ndependente do dâmetro do tubo e da velocdade ncal do jato. 14

15 PERFIS DE VELOCIDADE Para um jato crcular descarregando em ar parado, a varação da concentração com o rao, r, e com a dstânca axal, x, é dada por (Beer e Chger, 1972): C C = 0,22 ar x d exp - K -1,5 C e C são as concentrações médas temporas em pontos (r,x) e na saída do tubo, respectvamente, r é a massa específca do combustível na saída do tubo, r ar é a massa específca do ar externo e d é o dâmetro do tubo. O valor de K 1 vara entre 54 e r d x d 2 15

16 PERFIS DE VELOCIDADE O campo de velocdades tem uma equação smlar àquela da concentração: ar d x d r K - exp -1,5 d x 0,16 1 = u u 2 1

17 PERFIS DE VELOCIDADE O campo de velocdades tem uma equação smlar àquela da concentração: onde u e u são as velocdades médas temporas nos pontos (r,x) e na saída do tubo, respectvamente, e K 2 vara entre 82 a ar d x d r K - exp -1,5 d x 0,16 1 = u u 2 1

18 PERFIS E VELOCIDADE Consderemos um jato de metano em ar parado para o qual desejamos desenhar a frontera do jato e o perfl de velocdades em uma dstânca axal, dgamos x/d = 50. A frontera do jato pode ser defnda como o local dos pontos onde a velocdade do escoamento é 1 % da velocdade no exo na mesma dstânca axal a partr da seção de saída do tubo. 18

19 PERFIS DE VELOCIDADE Consderemos um jato de metano em ar parado para o qual desejamos desenhar a frontera do jato e o perfl de velocdades em uma dstânca axal, dgamos x/d = 50. A frontera do jato pode ser defnda como o local dos pontos onde a velocdade do escoamento é 1 % da velocdade no exo na mesma dstânca axal a partr da seção de saída do tubo. 19

20 PERFIS DE VELOCIDADE com r/d = 0 temos u u a = 0,16 ar x d -1,5 onde ua é a velocdade do escoamento no exo, na posção x. 20

21 PERFIS DE VELOCIDADE Dvdndo a equação (8.2) pela resultado acma, consderando K = 92, obtemos, para a frontera do jato, determnada pelos pontos (x f,r f ): u u a rf d = exp - 92 x f d 2 = 0,01 rf d ln (0,01) = - 92 x f d 2 rf d x = 0,224 d f Vemos, então,. que a frontera do jato é uma superfíce cônca cuja posção não depende do tpo do gás ejetado pelo tubo nem do fludo externo. O ângulo entre a frontera do jato e o exo x é a = atan(0,224) = 12,6 21

22 PERFIS DE CONCENTRAÇÃO Dvdndo a equação (8.2) pela resultado acma, consderando K = 92, obtemos, para a frontera do jato, determnada pelos pontos (x f,r f ): u u a rf d = exp - 92 x f d 2 = 0,01 rf d ln (0,01) = - 92 x f d 2 rf d x = 0,224 d f Vemos, então,. que a frontera do jato é uma superfíce cônca cuja posção não depende do tpo do gás ejetado pelo tubo nem do fludo externo. O ângulo entre a frontera do jato e o exo x é a = atan(0,224) = 12,6 22

23 VELA Um exemplo clássco de chama dfusva é a chama de uma vela. O calor provenente da chama funde a parafna, que flu através do pavo e vaporza. O ar ambente flu para regão de chama devdo à convecção natural. A zona de reação é estabelecda entre o ar e o combustível. 23

24 VELA 24

25 CHAMAS LAMINARES E TURBULENTAS Quando a velocdade do jato aumenta, as característcas da chama mudam, conforme o esquema da Fgura

26 CHAMAS LAMINARES E TURBULENTAS Para os jatos de baxa velocdade a taxa de mstura com ar estagnado é baxa e a chama é longa e suave (lamnar). O comprmento da chama lamnar aumenta quase que lnearmente com a velocdade do jato até um ponto onde a chama começa a se tornar turbulenta. Deste ponto, o comprmento da chama dmnu devdo ao rápdo processo de mstura turbulenta. 26

27 CHAMAS LAMINARES E TURBULENTAS Na regão de completo desenvolvmento turbulento, o aumento do número de Reynolds pratcamente não afeta mas o comprmento da chama, sendo que a justfcatva para esse fato é que nessa regão o aumento da taxa de mstura entre combustível é aproxmadamente proporconal ao número dereynolds (Turns, 1996). A chama turbulenta emte som mas ntenso do que a chama lamnar e a lumnosdade amarela devdo à presença de fulgem também reduz com a turbulênca. 27

28 CHAMAS LAMINARES E TURBULENTAS A transção para uma chama completamente turbulenta é caracterzada por um número de Reynolds, que é dferente para cada tpo de combustível, ndcando que além da mecânca dos fludos, a cnétca químca também tem um mportante papel no comportamento da chama. Número de Reynolds de transção para chama de jato de combustível em ar estagnado. 28

29 CHAMAS LAMINARES E TURBULENTAS O ntenso aumento da velocdade do jato pode atngr um ponto onde a chama dstanca-se da saída do orfíco de njeção ( Lfted flame na língua nglesa), exbndo uma zona sem reação químca 29

30 CHAMAS LAMINARES E TURBULENTAS Um aumento anda maor da velocdade do jato pode levar ao blowoff, ou seja, a chama é levada pelo jato e se extngue. A ocorrênca de uma chama dfusva estável, lfted, ou blowoff, dependerá do número de Reynolds do jato dfusvo e do dâmetro do orfíco que emerge o jato. 30

31 CHAMAS LAMINARES E TURBULENTAS A explcação para ocorrênca do lft e do blowoff anda é assunto de dscussão entre pesqusadores. Contudo, a teora orgnalmente dscutda por Wohl et al. (1949) anda é bastante aceta e assume que para escoamentos com alta velocdade a regão próxma à saída do jato comporta-se como uma chama pré-msturada turbulenta. 31

32 CHAMAS LAMINARES E TURBULENTAS A njeção do combustível em uma atmosfera estagnada de oxdante gera uma stuação onde não há controle sobre o processo de mstura entre os reagentes. No entanto, sso pode ser feto utlzando dos tubos concêntrcos, onde o combustível flu no tubo nterno e o oxdante no externo. 32

33 CHAMAS LAMINARES E TURBULENTAS Se os fluxos forem ajustados com velocdade gual, uma chama lamnar será estabelecda; Por outro lado, dferentes velocdades produzrão um csalhamento na nterface dos fluxos, nduzndo a turbulênca. 33

34 CHAMAS LAMINARES E TURBULENTAS O combustível move-se da regão central do jato em dreção à frente de chama, em função do gradente de concentração, enquanto que o oxdante faz justamente o contráro. Ambos são consumdos na zona de chama e os produtos e nertes dfundem para ambos os lados 34

35 LUMINOSIDADE A lumnosdade de uma chama dfusva é outra característca nteressante de ser analsada. Normalmente, a lumnosdade da base da chama é bastante fraca e de coloração azulada, stuação característca da não presença de fulgem. Nesta regão, em razão da velocdade do jato anda ser relatvamente alta, exste a possbldade que o ar carreado para frente de chama msture-se adequadamente com o combustível, evtando zonas de combustão com temperatura elevada e defcênca local de oxdante, o que favorece a formação de fulgem. 35

36 LUMINOSIDADE Nos comprmentos mas elevados da chama, consderável quantdade de fulgem pode exstr, e a chama apresenta uma coloração amarelada; 36

37 LUMINOSIDADE Para combustíves com menos propensão à formação de fulgem, como é o caso do metano, a presença de regão de chama azulada é mas pronuncada do que a regão amarelada da fulgem. A menor formação de fulgem em chamas de metano e gás natural pode ser atrbuída à ntensa dfusão de moléculas no envelope da chama, pratcamente elmnando as condções para a prólse das moléculas de CH4 e, conseqüentemente, a formação de mcropartículas de carbono (Gtman, 1986). 37

38 LUMINOSIDADE A presença de fulgem ou não na regão de chama rá nfluencar consderavelmente o total de calor transferdo da chama por radação. Para combustíves com alta taxa de formação de fulgem, o calor perddo por radação em razão da presença da fulgem representa uma grande parcela do total de calor transferdo por radação. 38

39 REFERÊNCIAS Andrade Jr.. J. A. Carvalho, McQuay, M. Q. Prncípos de Combustão Aplcada UFSC 2007 Lacava, P.T., AC-265 Elementos de Combustão Insttuto Tecnológco de Aeronáutca,

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

COMBUSTÃO. A termodinâmica permite um estudo elementar de combustão através da termoquímica.

COMBUSTÃO. A termodinâmica permite um estudo elementar de combustão através da termoquímica. COMBUSTÃO A termodnâmca permte um estudo elementar de combustão através da termoquímca. Aplcação de balanço de massa e energa (1º le) e de defenção de condções de equlíbro e sentdo de evoluções termodnâmcas

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Apontamentos de Transferência de Massa. João Luís Toste de Azevedo Prof. Auxiliar do DEM/IST

Apontamentos de Transferência de Massa. João Luís Toste de Azevedo Prof. Auxiliar do DEM/IST Apontamentos de Transferênca de Massa João Luís Toste de Azevedo Prof. Auxlar do DEM/IST Feverero 000 Indce Transferênca de Massa...1 M1 Equações fundamentas para transferênca de massa...1 Le de Fck...1

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada 1.5 Expansão Térmca de Sóldos e íqudos Nossa dscussão sobre o termómetro de líqudo emprega uma das mudanças mas bem conhecdas que ocorrem na maora das substâncas: quando a temperatura aumenta, o volume

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude AMPLIAÇÃO E ESCALA Admensonas: Reynolds Re ρ N /μ Número de Potênca dq dq dqs o dqv Número de Froude Fr N / g AMPLIAÇÃO E ESCALA COMO CORRELACIONAR k L a com potênca de agtação? Os japoneses propões aquecer

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

3. Equações de base da mecânica dos fluidos (perfeitos)

3. Equações de base da mecânica dos fluidos (perfeitos) UC Mecânca de Fludos / 2º cclo de ng mbente UC Mecânca de Fludos / 2º cclo de ng mbente MCÂNIC D FLUIDO 3. da mecânca dos fludos (perfetos) 4ª aula 3.1 Fundamentos de cnemátca de fludos; Campos de escoamento;

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

8. Estudo da não-idealidade da fase líquida

8. Estudo da não-idealidade da fase líquida PQI 58 Fundamentos de Processos em Engenhara Químca II 009 8. Estudo da não-dealdade da fase líquda Assuntos. A le de Raoult. Defnção de atvdade 3. Convenções assmétrcas e a le de Henry 4. Exercícos 8..

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 CHAMAS PRÉ MISTURADAS 2 DEFINIÇÃO Uma chama é pré misturada quando o oxidante e o combustível já estão misturados antes

Leia mais

Na figura, são dados os vetores a, b e c.

Na figura, são dados os vetores a, b e c. 46 b FÍSICA a fgura, são dados os vetores a, b e c. u a b c Sendo u a undade de medda do módulo desses vetores, pode-se afrmar que o vetor d = a b + c tem módulo a) 2u, e sua orentação é vertcal, para

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

CQ049 : FQ IV - Eletroquímica

CQ049 : FQ IV - Eletroquímica CQ049 FQ prof. Dr. Marco Vdott LEAP Laboratóro de Eletroquímca e Polímeros mvdott@ufpr.br Imagens de Rorschach A Eletroquímca pode ser dvdda em duas áreas: Iônca: Está relaconada com os íons em solução

Leia mais

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO A. M. M. BESSA 1 ; F. M. R. MESQUITA 1 ; F. R. DO CARMO 1 ; H.B.DE SANT ANA 1 E R.S.DE SANTIAGO-AGUIAR 1 1 Unversdade Federal do

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus Dana Marques de Olvera ; Ellezer Almeda Mello ; Carolne Stephany Inocênco ; Adrano Rbero Mendonça Bolssta PBIC/UEG, graduandos do Curso

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

Dependência Espacial de espécies nativas em fragmentos. florestais

Dependência Espacial de espécies nativas em fragmentos. florestais Dependênca Espacal de espéces natvas em fragmentos 1 Introdução florestas 1 Mestranda em Engenhara Florestal LEMAF/DCF UFLA. e-mal: cunhadase@yahoo.com.br 2 Mestrando em Engenhara Florestal LEMAF/DCF UFLA.

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I

Transistores Bipolares de Junção Parte I Transistores Bipolares de Junção (TBJs) Parte I Transstores Bpolares de Junção (TBJs) Parte I apítulo 4 de (SEDRA e SMITH, 1996). SUMÁRIO Introdução 4.1. Estrutura Físca e Modos de Operação 4.2. Operação do Transstor npn no Modo Atvo 4.3. O Transstor

Leia mais

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA PARA A VALIDADE DO QD, AS RESPOSTAS DEVEM SER APRESENTADAS EM FOLHA PRÓPRIA, FORNECIDA PELO COLÉGIO, COM DESENVOLVIMENTO E SEMPRE A TINTA. TODAS AS QUESTÕES DE MÚLTIPLA ESCOLHA DEVEM SER JUSTIFICADAS.

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

ESCOLA DE ENGENHARIA DE LORENA USP TRANSFERÊNCIA DE MASSA

ESCOLA DE ENGENHARIA DE LORENA USP TRANSFERÊNCIA DE MASSA 1 ESCOL DE ENGENHRI DE LOREN USP PROF. GERONIMO V. TGLIFERRO TRNSFERÊNCI DE MSS Ementa: Introdução à transferênca de massa de massa; concentrações, velocdades e fluxos; equações da contnudade em transferênca

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

REFERÊNCIA BIBLIOGRÁFICA

REFERÊNCIA BIBLIOGRÁFICA Dados Internaconas de Catalogação-na-Publcação (CIP) Dvsão de Informação e Documentação Fscher, Cleges Análse Térmca de Jato Turbulento Incdente sobre Camada Porosa / Cleges Fscher. São José dos Campos,

Leia mais

Capítulo 8 Fundamentos da Cinética dos Processos de Refino

Capítulo 8 Fundamentos da Cinética dos Processos de Refino Capítulo 8 undamentos da Cnétca dos Processos de Refno 1. ntrodução Durante um longo período da hstóra recente da urga, os processos de refno dos aços evoluíram a frente do conhecmento técnco sobre os

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N )

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N ) Capítulo 3 COCETRAÇÕES, VELOCDADES E FLUXOS Antes de apresentarmos as equações fundamentas da dfusão de calor e massa, objetvo central dos Capítulos 4 e 5, é convenente ntroduzrmos concetos assocados ao

Leia mais

Processo de Deposição de Filmes Finos. Processo de Deposição. Processo de Deposição de Filmes Finos. Formação de Filmes. átomo/molécula superfície

Processo de Deposição de Filmes Finos. Processo de Deposição. Processo de Deposição de Filmes Finos. Formação de Filmes. átomo/molécula superfície Processo de Deposção de Flmes Fnos CTFF2011 Posmat 1 2 Prof. José Humberto Das da Slva Formação de Flmes Processo de Deposção Formação de flmes Geral: vale para dferentes tpos de crescmento (MBE, CVD,

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA SIMULAÇÃO NUMÉRICA DE UM MODELO SIMPLIFICADO DE UM MOTOR À COMBUSTÃO INTERNA A GÁS NATURAL Dssertação submetda à

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

3. TURBULÊNCIA E DISPERSÃO DE CONTAMINANTES NA CAMADA LIMITE PLANETÁRIA

3. TURBULÊNCIA E DISPERSÃO DE CONTAMINANTES NA CAMADA LIMITE PLANETÁRIA . TURBUÊNCIA E DISPERSÃO DE CONTAMINANTES NA CAMADA IMITE PANETÁRIA IV Escola de Prmavera de Transção e Turbulênca Unversdade Federal do Ro Grande do Sul Pontfíca Unversdade Católca do Ro Grande do Sul

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca 3 Undade apítulo 15 Indução eletromagnétca esoluções dos testes propostos 1 T.372 esposta: d ob ação da força magnétca, elétrons se deslocam para a extremdade nferor da barra metálca. essa extremdade,

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

PME5325-Fundamentos da Turbulência 2016

PME5325-Fundamentos da Turbulência 2016 35 CAPÍTULO ALGUMAS CONSIDERAÇÕES SOBRE A CINEMÁTICA E A DINÂMICA DOS FLUIDOS.. Teora do Movmento Elementar da Partícula Fluda.... Movmento de uma Partícula Fluda O movmento elementar de uma partícula,

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

OBJETIVO DAS NORMAS. LIMITES DE DOSES OCUPACIONAIS Norma CNEN-NE.3.01 de julho de Limites Primários

OBJETIVO DAS NORMAS. LIMITES DE DOSES OCUPACIONAIS Norma CNEN-NE.3.01 de julho de Limites Primários OBJETVO DAS NORMAS Proteção Radológca: normas Profª. Dra. Regna Btell Mederos Coordenadora do Núcleo de Proteção Radológca Responsável pela Coordenadora de Físca e Hgene das Radações - DD emal: rbtell.dd@epm.br

Leia mais

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS 2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS Característcas da Formação e Desprendmento de Vórtces em Grupos de Clndros Surmas, R. 1, dos Santos, L. O. E. 1, Phlpp, P. C. 1 1 Unversdade Federal de

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

AULA 1. Estabilidade de Sistemas de Potência 1) INTRODUÇÃO. Definição:

AULA 1. Estabilidade de Sistemas de Potência 1) INTRODUÇÃO. Definição: AULA ) INTODUÇÃO Defnção: Um sstema elétrco de potênca é dto ESTÁVEL quando todas as máqunas síncronas lgadas ao sstema em uma determnada condção ncal, voltam ao sncronsmo após uma dada perturbação. A

Leia mais

VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS

VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS Prof. Harley P. Martns Flho Movmentos nucleares Possbldades de movmentação nuclear na molécula de H 2 O: z O x O O y O z H1 z H2 H 1 y H1 H 2 y H2 x H1 x H2 Para descrção

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2012 1 a QUESTÃO Valor: 1,00 Sentdo de rotaçãoo do corpo y orça 30 º x orça solo Um corpo de 4 kg está preso a um o e descreve

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Coeficiente de Partição

Coeficiente de Partição Físco-Químca Expermental Coefcente de Partção 1. Introdução Suponha dos solventes A e B, parcalmente mscíves à temperatura T, formando as fases α (uma solução dluída de B na fase A) e β (uma solução dluída

Leia mais