Análise de influência

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise de influência"

Transcrição

1 Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...). Uma medda de nfluênca é uma quantdade capaz de expressar o quanto uma partcular observação afeta alguma propredade do modelo. As meddas de nfluênca estudadas para modelos lneares se estendem, medante devdas adaptações, para modelos lneares generalzados. Boa parte das meddas de nfluênca baseam-se na dferença de alguma característca do ajuste (estmatvas, erros, valores ajustados...) avalada para os modelos com e sem a observação ( = 1,,..., n). ésma A forma mas usual de representar os valores de meddas de nfluênca num gráfco é plotando o valor da medda versus o índce da observação. 1

2 Medda de nfluênca Medda de nfluênca Índce Índce Fgura 10 Representação de gráfcos de alguma medda de nfluênca vs índce. No gráfco à dreta, dos valores são destacados como potencas nfluentes.

3 O que fazer caso se detecte uma observação potencalmente nfluente? o Voltar à base de dados, dentfcar tas observações e compreender o motvo da nfluênca; o Eventualmente, pode-se verfcar que uma observação nfluente está errada (erro de coleta, tabulação...). Neste caso, sendo possível deve-se corrg-la; o Re-ajustar o modelo sem as observações detectadas. O objetvo é avalar a mudança no ajuste decorrente da exclusão; o Caso mas de uma observação mostre-se nfluente, pode-se ajustar modelos elmnando-as uma a uma, duas a duas... Nota O objetvo da exclusão não é abandonar o modelo orgnal e trocá-lo por um modelo ajustado sem observações nfluentes, mas sm fundamentar a dscussão sobre o mpacto de tas observações no ajuste. 3

4 Detecção de pontos de alavanca (leverage) No contexto de modelos lneares, a matrz 1 ( ) X H = X X X corresponde à matrz de projeção da solução de mínmos quadrados, sendo que os elementos de sua dagonal 1 ( x x ) x, = 1, n h = x,..., são meddas de alavancagem, que expressam quão extremas são as observações no espaço das covaráves. Observações mas afastadas devem ser avaladas com maor cautela. 4

5 Em modelos lneares generalzados, usamos a matrz de projeção da solução de mínmos quadrados de z contra X com pesos W: 1 1 ( ) X W 1 H = W X X WX, sendo H uma matrz dagonal com elementos: w 1 µ 1 = V ( µ ) η =. V ( µ )[ g ( µ )] Repare que, dferentemente do caso lnear, aqu a matrz H depende também da resposta, por meo da matrz W, o que torna sua nterpretação menos smples (uma observação extrema pode não ser dentfcada caso tenha um peso pequeno). Adconalmente, deve-se substtur W por Ŵ, a matrz de pesos estmada ao térmno das terações, para calcular H. 5

6 Nota Pode-se verfcar que p que h >. n n =1 h = p. Uma regra usual é olhar com atenção qualquer observação tal No R: nfluence.measures(ajuste). 6

7 Dstânca de Cook A dstânca de Cook expressa a alteração no vetor de estmatvas dos parâmetros de um MLG nduzda pela extração da ésma observação. Sejam βˆ e βˆ ( ) os vetores de estmatvas de um MLG ajustado com as n observações da base e com a exclusão da observação (baseado em n 1 observações), respectvamente. A dstânca de Cook correspondente à ésma observação fca defnda por: D ( βˆ ˆ ( ) ) ( ˆ )( ˆ ˆ β ' X WX β( ) β) =, 1,,..., n pφˆ =, Uma aproxmação da dstânca de Cook no contexto de MLGs é dada por: D = r p ˆ φ ( 1 h ) 7 P h.

8 Nota Outras meddas de nfluênca podem ser obtdas a partr da função nfluence.measures() do R, ndcando o grau de nfluênca das observações em partculares parâmetros, nos erros assocados às estmatvas,... o Recomendo, no entanto, que o uso e análse de meddas de nfluênca sejam fetos com moderação, uma vez que, na prátca, a grande maora das análses de regressão apresenta observações destacadas para ao menos uma das meddas. Dessa forma, se avalarmos a stuação com rgor, possvelmente fcaremos analsando nfluênca por tempo ndetermnado. 8

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x):

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x): POLINÔMIO INTERPOLAOR E NEWTON ) IFERENÇAS IVIIAS.) IFERENÇAS IVIIAS ORINÁRIAS () Sejam n pontos de uma função f():... n f( )... n - ferença dvdda de ordem zero: n n M - ferença dvdda de ordem um: M M

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Análise dos resíduos e Outlier, Alavancagem e Influência

Análise dos resíduos e Outlier, Alavancagem e Influência Análse dos resíduos e Outler, Alavancagem e Influênca Dagnóstco na análse de regressão Usadas para detectar problemas com o ajuste do modelo de regressão. Presença de observações mal ajustadas (pontos

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Dependência Espacial de espécies nativas em fragmentos. florestais

Dependência Espacial de espécies nativas em fragmentos. florestais Dependênca Espacal de espéces natvas em fragmentos 1 Introdução florestas 1 Mestranda em Engenhara Florestal LEMAF/DCF UFLA. e-mal: cunhadase@yahoo.com.br 2 Mestrando em Engenhara Florestal LEMAF/DCF UFLA.

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Plano de Aula Aprendzagem de Máquna Aprendzagem Baseada em Instâncas Alessandro L. Koerch Introdução Espaço Eucldano Aprendzagem Baseada em Instâncas (ou Modelos Baseados em Dstânca) Regra knn (k vznhos

Leia mais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus

EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus EFEITO DA IDADE E MATERIAL GENÉTICO NA FORMA DE ÁRVORES DE Eucalyptus Dana Marques de Olvera ; Ellezer Almeda Mello ; Carolne Stephany Inocênco ; Adrano Rbero Mendonça Bolssta PBIC/UEG, graduandos do Curso

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG)

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG) Modelos de equações estruturas: uma avalação dos métodos de máxma verossmlhança, mínmos quadrados ordnáros e mínmos quadrados parcas usados na estmação de parâmetros do modelo. Tâna Luca Hojo (UFMG) hojo@est.mest.ufmg.br

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS

MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS Getúlo José Amorm AMARAL 1 Gauss Moutnho CORDEIRO 2 RESUMO: Neste artgo

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

PMR2560 Visão Computacional Alinhamento de imagens. Prof. Eduardo L. L. Cabral

PMR2560 Visão Computacional Alinhamento de imagens. Prof. Eduardo L. L. Cabral PMR256 Vsão Computaconal Alnamento de magens Prof. Eduardo L. L. Cabral Objetvos Alnamento de magens Mosaco magem panorâmca Motvação Mosaco montagem de magens panorâmcas Reconecmento de objetos Desafos

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Problema Real (avião, carro,...) Validação

Problema Real (avião, carro,...) Validação Modelo Físco/ (EFD)? Problema Real? (avão, carro,...) Modelo Matemátco (CFD) Túnel de Vento Modelo Condções de Frontera Escala Approx. nas eqs., (ν t ) Equações (modelo de turbulênca) Instrumentos de Medda

Leia mais

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS 3 CICUITOS COM AMPOP S UTILIZADOS NOS SAPS 3. CICUITOS COM AMPOP S UTILIZADOS NOS SAPS - 3. - 3. Introdução Numa prmera fase, apresenta-se os crcutos somadores e subtractores utlzados nos blocos de entrada

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO GLM

MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO GLM UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Métodos de identificação de efeitos na dispersão em experimentos fatoriais não replicados

Métodos de identificação de efeitos na dispersão em experimentos fatoriais não replicados Métodos de dentfcação de efetos na dspersão em expermentos fatoras não replcados Resumo Antono Fernando de Castro Vera Eugeno Kahn Epprecht A dentfcação de fatores que afetam a méda e a dspersão de característcas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

Federal do Espírito Santo, Alegre, ES, Brasil. 2

Federal do Espírito Santo, Alegre, ES, Brasil.    2 Aplação da dentdade de modelos não-lneares na estmatva da relação hpsométra de Pnus arbaea var. hondurenss e Pnus ooarpa sob dferentes dades Leonardo Cassan Laerda Adrano Rbero de Mendonça Edson Lahn Glson

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo INTRODUÇÃO Semana Conteúdo Introdução aos métodos multvarados 1 Análse de componentes prncpas Aplcações de análse de componentes

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem?

Função de Incidência: uma possível união da Teoria de Metapopulação com a Ecologia da Paisagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? Função de Incdênca: uma possível unão da Teora de Metapopulação com a Ecologa da Pasagem? INTRODUÇÃO O que é uma

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

4 Modelos de Equações Estruturais

4 Modelos de Equações Estruturais 4 Modelos de Equações Estruturas 4. Introdução Este capítulo é dedcado aos fundamentos teórcos sobre os Modelos de Equações Estruturas baseados em Estruturas de Covarâncas (CSM) e em Mínmos Quadrados Parcas

Leia mais

FUNÇÃO DE PRODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROPECUÁRIA

FUNÇÃO DE PRODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROPECUÁRIA FUNÇÃO DE RODUÇÃO DE FRONTEIRA E TOMADA DE DECISÃO NA AGROECUÁRIA ADRIANO ROVEZANO GOMES ANTONIO JOSÉ MEDINA DOS SANTOS BATISTA Resumo: Este estudo teve o objetvo de estmar e analsar as funções de produção

Leia mais

DESEMPENHO DOS MODELOS DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE NO INVERNO/VERÃO NA AMÉRICA DO SUL

DESEMPENHO DOS MODELOS DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE NO INVERNO/VERÃO NA AMÉRICA DO SUL DESEMPENHO DOS MODELOS DE ESTIMATIVA DE PRECIPITAÇÃO POR SATÉLITE NO INVERNO/VERÃO NA AMÉRICA DO SUL Wagner F. A. Lma 1, Eder P. Vendrasco 1 ; Danel Vla 1 1 Dvsão de Satéltes e Sstemas Ambentas (CPTEC/INPE)

Leia mais