ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT"

Transcrição

1 ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB João Pessoa - PB, Brasl e-mal: Resumo As fraturas dos materas cerâmcos estão dretamente relaconadas às tensões geradas durante os choques térmcos, prncpalmente pela baxa condutvdade térmca dos mesmos. Métodos numércos e expermentas têm sdo propostos para a determnação destas tensões, mutos dos quas não têm consderado a dependênca térmca das propredades do materal. O presente trabalho utlza o método analítco da transformada ntegral generalzada (GITT) para obtenção do campo de temperatura na amostra e avalação das tensões térmcas máxmas, em função do número de Fourer. Palavras-chave: Tensões térmcas, Propredades varáves, Condução de calor, GITT. INTRODUÇÃO A análse de resstênca ao choque térmco de materas quebradços, tal como a cerâmca, tem sdo por muto tempo realzada apenas através de observações de caráter qualtatvo. Recentemente os nteresses têm dreconado as avalações com base quanttatva. Esta mudança de enfoque para a base quanttatva tem sdo ndcada por análses e expermentos ao demonstrarem que determnados materas podem apresentar ndcatvos de melhor qualdade que outros em um tpo de teste e produzr resultados contráros em outros. As razões para este comportamento estão relaconadas a complexdade para com o conhecmento do campo térmco e dos parâmetros envolvendo propredades térmcas dependentes da temperatura. As tensões térmcas geradas durante os testes dos choque térmcos estão dretamente relaconadas com as fraturas das cerâmcas; por sso mutos estudos têm sdo desenvolvdos para a determnação destas tensões. Entre estes estudos podemos ctar os métodos do resframento e do aquecmento rápdo. No resframento rápdo, a amostra é mersa em água e a resstênca resdual é medda para se obter a dferença de temperatura crítca, T c. No aquecmento rápdo, o corpo é submetdo a aquecmento produzdo por radação nfravermelha, e estma-se o decréscmo de sua resstênca. Porém, alguns problemas com estes métodos têm sdo apontados, uma vez que a dfculdade de montorar precsamente as condções de transferênca de calor faz com que uma pequena varação no procedmento do

2 teste cause uma larga varação nos resultados obtdos. Além dsto, nestes métodos não se leva em consderação que as propredades térmcas das cerâmcas (condutvdade, dfusvdade e calor específco), varam sgnfcatvamente com a temperatura e para cada tpo dferente de cerâmca. A não consderação da dependênca das propredades térmcas do materal afeta consderavelmente a determnação das tensões térmcas. Em trabalhos anterores, Nshkawa et al. (995) consderaram que a condutvdade e a dfusvdade térmcas varavam com a temperatura e resolveram numercamente pelo método mplícto das dferenças fntas. Recentemente, Dnz et al. (999) fzeram a mesma consderação para as propredades do materal e determnaram o campo de temperatura e as tensões térmcas através do uso da Técnca da Transformada Generalzada. O presente trabalho que vsa a determnação da dstrbução do campo de temperatura em uma placa nfnta de espessura L, no resframento e no aquecmento rápdo, levando um em consderação a varação das propredades do materal com a temperatura na superfíce e no nteror do corpo e condção ncal, também determna as tensões relaconadas aos choques térmcos. Para a determnação do campo térmco é utlzado a metodologa própra da Técnca da Transformada Integral Generalzada (GITT), onde o problema é formulado com uma nova defnção para o potencal admensonal de temperatura dferente da apresentada por Nshkawa et al (994). O sstema de equações dferencas ordnáras da temperatura transformada fo resolvdo pela subrotna DIVPAG do IMSL (989), com controle automátco de erro. Os resultados são apresentados em forma de gráfcos e tabelas onde se dscute a convergênca da solução e os efetos da nfluênca dos parâmetros de nteresses prátcos na engenhara dos materas como os números de Fourer e de Bot.. FORMULAÇÃO MATEMÁTICA DO PROBLEMA A determnação da dstrbução de temperaturas consderando a condução de calor undmensonal para uma placa nfnta, no aquecmento e resframento rápdo em ambas as superfíces, e anda levando-se em consderação a varação das propredades do materal com a temperatura na superfíce e no nteror do corpo, condções de contorno e ncal, são escrtas como mostrado abaxo. ( x, t) ( x, t), T T ρ C P K( T) t x x x L, t (.a) ( x, t) T x, ( x, t) x T K( T) h( T( x, t) Tf ), x L x (.b) (.c) T ( x, t) T, x x, t (.d) Utlzando os grupos admensonas abaxo, o problema defndo pelas equações (.a-d) será admensonalzado.

3 x X L αt τ L α α α ( T) K( T) ( X, τ ) K K Equações admensonalzadas: Equação prncpal: T ( x, t) T f Θ T Tf K hl B ( ) Θ τ ( X, ) τ Θ ( X, τ), α X X X, τ (3.a) Condções de contorno: (, τ) Θ X, X X (3.b) ( X, τ) Θ K + BΘ X Condção ncal: ( X, τ), X (3.c) ( X, τ), Θ x, τ (3.d) A condutvdade e dfusvdade térmca admensonas mostradas nas equações acma são expressas em função da temperatura, que segundo T. Nshkawa et al. (995) são dadas por: ( X, τ) K + AΘ (4) α ( X, τ) + BΘ (5) Os coefcentes A e B das equações (4 e 5) são os coefcentes de dependênca da temperatura, denotados como constantes de temperatura. Segundo a metodologa empregada pela Técnca da Transformada Integral Generalzada ndcada por Cotta (993), para se resolver analtcamente este problema de transferênca de calor, temos que fazer uso do problema auxlar de autovalor: d Ψ ( µ, X) dx + µ Ψ ( µ, X), X, (6.a) ( µ, X) dψ dx dψ (, X) µ + BΨ dx, X ( µ, X), X (6.b) (6.c)

4 O problema auxlar de autovalor acma tem solução clássca, através do método da separação de varáves do tpo: Ψ ( µ, X) cos( µ X) com os autovalores obtdos a partr da solução da equação transcendental. ( ) µ Sen( µ ) B Cos µ (6.d) Onde é a ordem do autovalor e da autofunção. O par transformada ntegral defndo para este problema é dado por: f Θ () τ Ψ ( µ, X) Θ ( X, τ)dx N (, τ) Transformada (7.a) ( µ,x) f () τ Ψ X Inversa (7.b) N Utlzando-se os operadores Ψ ( µ, X)dX no problema prncpal e N * Θ ( X, τ)dx no problema auxlar, e após as manpulações matemátcas, obtemos a N equação dferencal ordnára na forma transformada da dstrbução de temperaturas e a transformada da condção ncal, dadas pelas equações abaxo: df dτ () τ D Θ (, τ) A f () τ + B f () τ j j j j j j (8.a) onde a condção ncal transformada, e os coefcentes da eq. (8.a) são dados por: f () BΨ µ N ( µ, X) D ( µ,) α ( ) K () BΨ (8.b-c) N A j Ψ ( µ, X) Ψ j( µ j,x) ( N N ) j dx B j ( µ, X) Ψ j( µ j,x) Θ( X, τ) ( N N ) BΨ dx (8.d-e) j onde o número nas equações acma ndca que a função é tomada na parede. O problema acma fo resolvdo utlzando um códgo computaconal na lnguagem FORTRAN 9, usando a subrotna para problema de valor ncal DIVPAG (IMSL, 989).

5 A tensão térmca admensonal, σ *, para uma placa nfnta undmensonal, segundo Tmoshenko & Gooder (97), é dada por: σ ( ) Θ ( τ) Θ ( X, τ) X med (9) A temperatura méda na placa pode ser calculada a partr da dstrbução de temperatura da segunte forma: Θ () τ Θ ( X, )dx med τ () A tensão σ * é admensonalzada na forma [ γε Τ] σ f, onde σ f é a resstênca à fratura, γ é o coefcente de expansão térmca, E é o módulo de Young s e T é a dferença de temperatura no teste do choque térmco. A tensão térmca máxma é gerada no centro do corpo no aquecmento rápdo e na superfíce no resframento rápdo. 3. RESULTADOS OBTIDOS Os resultados são apresentados abaxo e a análse é feta quanto a qualdade obtda em termos de convergênca e confabldade para uma análse amplada e com o controle dos parâmetros que nfluencam as tensões térmcas. A tabela mostra a convergênca dos resultados obtdos para a tensão térmca admensonal nos testes do resframento rápdo nos quas as propredades térmcas, condutvdade e dfusvdade, do materal foram consderadas constantes ( com os coefcentes A e B ), representando uma stuação clássca de um problema de condução transente de calor. Nesta tabela podemos observar que o número de equações necessáras para convergênca da solução é menor que o apresentado por Dnz, Slva, et al. (999). Isso ocorre devdo ao fato de que o problema auxlar de autovalor representa melhor o problema prncpal. Tabela : Convergênca da tensão térmca, σ*, no aquecmento rápdo para A e B, e Bot 5. τ σ* NC σ* NC σ* NC3 σ* NC4 σ* NC A fgura mostra a dstrbução de temperatura para dferentes números de Fourer em função do comprmento admensonal, consderando as propredades do materal constantes (A, B ). A tensão térmca máxma no resframento rápdo ocorre quando a dferença entre a temperatura méda do corpo e a temperatura na superfíce torna-se máxma à medda que se vara o tempo do teste. Neste caso o gradente máxmo é atngdo quando t 5 s e assume o valor de E-.

6 Fgura : Dstrbução da temperatura admensonal com o comprmento admensonal no resframento rápdo para dferentes números de Fourer, propredades térmcas constantes (A, B ) e Bot 4. A fgura mostra a nfluênca do número de Bot na dstrbução de temperatura na qual ocorre as tensões térmcas máxmas para o caso do resframento rápdo com as propredades térmcas, condutvdade e dfusvdade constantes. A medda que o valor do Bot aumenta, o gradente máxmo de temperatura é maor e o tempo para ocorrênca deste fenômeno é menor. Este fato pode ser observado através de cada curva, vsto que, para uma mesma varação no comprmento admensonal, provoca gradentes térmcos maores para curvas com números de Bot maor. Além dsto, pode-se perceber que, neste caso, a mudança de temperatura na parede é mas brusca para número de Bot mas elevado. A fgura 3 mostra o comportamento das tensões térmcas geradas na superfíce da amostra, durante os testes do choque térmco. Neste caso observa-se que o tempo para a ocorrênca da tensão máxma dmnu com o aumento do coefcente da dfusvdade térmca, B 5, tendo o coefcente da condutvdade menor nfluênca. A stuação mas crítca ocorre quando A e B 5, uma vez que a onda de calor se dsspa rapdamente apresentando um pco em um menor ntervalo de tempo. Na fgura 4 podem ser observadas as tensões térmcas máxmas atngdas por uma amostra de materal cerâmco quando submetdo a um teste de aquecmento em função do número de Fourer e dferentes coefcentes de temperatura A e B. Neste tpo de teste as tensões térmcas máxmas σ * max, são atngdas no centro da amostra. Como pode ser observado pelas curvas obtdas os valores dos gradentes máxmos de temperatura são aproxmadamente metade do valor determnado no resframento, enquanto o ntervalo de tempo necessáro para atngr a máxma tensão térmca aumenta.

7 Fgura : Dstrbução de temperatura admensonal no caso do resframento rápdo para dferentes números de Fourer e Bot. Fgura 3: Varação da tensão térmca com o número de Fourer no resframento rápdo, para o número de Bot 5.

8 Fgura 4: Varação da tensão térmca no centro com o número de Fourer no aquecmento rápdo, para o número de Bot CONCLUSÕES A técnca da transformada ntegral fo utlzada na análse das tensões térmcas em materas cerâmcos, levando-se em consderação a varação de suas propredades térmcas com a temperatura. Resultados de referênca são obtdos, uma vez que o método permte a manpulação analítca e oferece soluções explíctas para a dstrbução de temperatura com controle automátco do erro global. Convergênca para quatro algarsmos sgnfcatvo é alcançada para um menor número de termos na sére em função da homogenezação da condção de contorno na parede. Em relação á físca do processo, observa-se que a tensão gerada no aquecmento rápdo é aproxmadamente metade da obtda no resframento rápdo. 5. REFERÊNCIAS BIBLIOGRÁFICAS Cotta, R. M., 993, Integral transforms n computatonal heat and flow, CRC Press, Inc., Boca Raton, Flórda. IMSL Lbrary, Houston, Texas, 989. T. Nshkawa, T. Gao, M. Hb & M. Takatsu, 994, Heat transmsson durng thermal shock testng of ceramcs, Journal of Materals Scence, Vol. 9, pp T. Nshkawa, T. Mzu, M. Takatsu & Y. Mzutan, 995, Effect of the temperature dependence of thermal propertes on the shock tests of ceramcs, Journal of Materals Scence, Vol. 3, pp S. P. Tmoshenko & J. N. Gooder, 97, Theory of Elastcty, Mcgraw Hll, New York. Slva, M. G.da; Dnz, L. da S.; Santos, C. A. C.; Belo, F. A.; 999; Análse das Tensões Térmcas em Cerâmcas va Técnca da Transformada Integral Generalzada; XV Congresso Braslero de Engenhara Mecânca - COBEM. AGRADECIMENTOS Os autores agradecem o suporte fnancero das agêncas CNPq/CAPES.

SOLUÇÃO APROXIMADA PARA A CONVECÇÃO FORÇADA TRANSIENTE COM DIFUSÃO AXIAL

SOLUÇÃO APROXIMADA PARA A CONVECÇÃO FORÇADA TRANSIENTE COM DIFUSÃO AXIAL SOLUÇÃO APROXIMADA PARA A CONVECÇÃO FORÇADA TRANSIENTE COM DIFUSÃO AXIAL Romberg R. Gondm Unversdade Federal da Paraíba, Campus I, Laboratóro de Energa Solar Cx. P. 55 5805-970 João Pessoa, PB, Brasl Fábo

Leia mais

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR

SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEPENDENTE DA TEMPERATURA E GERAÇÃO DE CALOR SOLUÇÕES DA EQUAÇÃO DA CONDUÇÃO DO CALOR BIDIMENSIONAL COM CONDUTIVIDADE TÉRMICA DEENDENTE DA TEMERATURA E GERAÇÃO DE CALOR E. T. CABRAL,. A. ONTES, H. K. MIYAGAWA, E. N. MACÊDO 3 e J. N. N. QUARESMA 3

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

MODELAGEM COMPUTACIONAL DA DIFUSÃO DE NÊUTRONS EM GEOMETRIA UNIDIMENSIONAL CARTESIANA

MODELAGEM COMPUTACIONAL DA DIFUSÃO DE NÊUTRONS EM GEOMETRIA UNIDIMENSIONAL CARTESIANA 27 Internatonal Nuclear tlantc Conference - INC 27 antos, P, razl, eptember 3 to October 5, 27 OCIÇÃO RILEIR DE ENERGI NUCLER - EN IN: 978-85-99141-2-1 MODELGEM COMPUTCIONL D DIFUÃO DE NÊUTRON EM GEOMETRI

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

Um modelo para simulação de ensaios oedométricos pelo método dos elementos finitos

Um modelo para simulação de ensaios oedométricos pelo método dos elementos finitos Um modelo para smulação de ensaos oedométrcos pelo método dos elementos fntos Macon S. Morera¹, Waldr T. Pnto¹ e Cláudo R. R. Das¹ ¹Programa de Pós-Graduação em Engenhara Oceânca FURG, Ro Grande RS, Brasl

Leia mais

Circuitos Elétricos. 1) Introducão. Revisão sobre elementos. Fontes independentes de tensão e corrente. Fonte Dependente

Circuitos Elétricos. 1) Introducão. Revisão sobre elementos. Fontes independentes de tensão e corrente. Fonte Dependente Crcutos Elétrcos 1) Introducão Resão sobre elementos Fontes ndependentes de tensão e corrente Estas fontes são concetos muto útes para representar nossos modelos de estudo de crcutos elétrcos. O fato de

Leia mais

PROBLEMAS DIFUSIVOS TRANSIENTES COM PROPRIEDADES TERMOFÍSICAS VARIÁVEIS EM CÉLULAS DE COMBUSTÍVEL NUCLEAR RETANGULARES

PROBLEMAS DIFUSIVOS TRANSIENTES COM PROPRIEDADES TERMOFÍSICAS VARIÁVEIS EM CÉLULAS DE COMBUSTÍVEL NUCLEAR RETANGULARES PROBLEMAS DIFUSIVOS TRANSIENTES COM PROPRIEDADES TERMOFÍSICAS VARIÁVEIS EM CÉLULAS DE COMBUSTÍVEL NUCLEAR RETANGULARES MARCELO FERREIRA PELEGRINI 1, THIAGO ANTONINI ALVES RICARDO ALAN VERDÚ RAMOS 3, CASSIO

Leia mais

ANÁLISE TEÓRICA DA CONVECÇÃO FORÇADA LAMINAR TRANSIENTE EM DESENVOLVIMENTO SIMULTÂNEO EM DUTOS CIRCULARES

ANÁLISE TEÓRICA DA CONVECÇÃO FORÇADA LAMINAR TRANSIENTE EM DESENVOLVIMENTO SIMULTÂNEO EM DUTOS CIRCULARES AÁLSE TEÓCA DA COVECÇÃO FOÇADA LAMA TASETE EM DESEVOLVMETO SMULTÂEO EM DUTOS CCULAES Marnaldo J. Mederos Escola Técnca Federal de Sergpe -UED- Lagarto, SE, Brasl Carlos A. C. dos Santos Unversdade Federal

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

ALGORÍTMO FLEXÍVEL PARA SOLUÇÃO DE PROBLEMAS DE CONVECÇÃO TÉRMICA VIA TRANSFORMAÇÃO INTEGRAL

ALGORÍTMO FLEXÍVEL PARA SOLUÇÃO DE PROBLEMAS DE CONVECÇÃO TÉRMICA VIA TRANSFORMAÇÃO INTEGRAL ALGORÍMO FLEXÍVEL PARA SOLUÇÃO DE PROBLEMAS DE CONVECÇÃO ÉRMICA VIA RANSFORMAÇÃO INEGRAL Humberto Araujo Machado Unversdade Federal de Uberlânda, Departamento de Engenhara Mecânca Av. João Naves de Ávla,

Leia mais

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson Trabalho apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of the Brazlan Socety of Computatonal and Appled Mathematcs Procedmento Recursvo do Método dos Elementos de Contorno Aplcado em Problemas

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

SOLUÇÃO ANALÍTICA PARA O PROBLEMA DA CAVIDADE COM TAMPA DESLIZANTE PARA NÚMERO DE REYNOLDS TENDENDO A ZERO

SOLUÇÃO ANALÍTICA PARA O PROBLEMA DA CAVIDADE COM TAMPA DESLIZANTE PARA NÚMERO DE REYNOLDS TENDENDO A ZERO SOLUÇÃO ANALÍTICA PARA O PROBLEMA DA CAVIDADE COM TAMPA DESLIZANTE PARA NÚMERO DE REYNOLDS TENDENDO A ZERO Jesús S. Pérez Guerrero Comssão Naconal de Energa Nuclear - CNEN/COREJ Rua General Severano 9

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

4 Análise de confiabilidade de estruturas

4 Análise de confiabilidade de estruturas 4 Análse de confabldade de estruturas Nos prmórdos da engenhara cvl, o desconhecmento técnco-centífco conduza a proetos excessvamente seguros, mas em contrapartda de custo muto elevado. Hoe em da, o progresso

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

COEFICIENTE DE TRANSFERÊNCIA DE CALOR NAS INTERFACES METAL/MOLDE E MOLDE/AMBIENTE RELATIVOS A SOLIDIFICAÇÃO DE LIGAS DO SISTEMA

COEFICIENTE DE TRANSFERÊNCIA DE CALOR NAS INTERFACES METAL/MOLDE E MOLDE/AMBIENTE RELATIVOS A SOLIDIFICAÇÃO DE LIGAS DO SISTEMA COEFICIENTE DE TRANSFERÊNCIA DE CALOR NAS INTERFACES METAL/MOLDE E MOLDE/AMBIENTE RELATIVOS A SOLIDIFICAÇÃO DE LIGAS DO SISTEMA Sn-Pb EM MOLDES DE COBRE João de Deus da Costa Alves Fernando Antôno de Sá

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Emprego de MER e CRE em Poisson 1D para análise do erro de variáveis secundárias

Emprego de MER e CRE em Poisson 1D para análise do erro de variáveis secundárias Trabalo apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of te Brazlan Socety of Computatonal and Appled Matematcs Emprego de MER e CRE em Posson 1D para análse do erro de varáves secundáras

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

2. Introdução à Condução de Calor (Difusão de Calor)

2. Introdução à Condução de Calor (Difusão de Calor) 7. Introdução à Condução de Calor (Dfusão de Calor) Neste tem serão apresentados os processos de dfusão e convecção de grandezas físcas. presenta-se uma dedução das equações geras de balanço un e trdmensonal.

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude AMPLIAÇÃO E ESCALA Admensonas: Reynolds Re ρ N /μ Número de Potênca dq dq dqs o dqv Número de Froude Fr N / g AMPLIAÇÃO E ESCALA COMO CORRELACIONAR k L a com potênca de agtação? Os japoneses propões aquecer

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ACOPLADAS PELA TÉCNICA DE TRANSFORMADA INTEGRAL E COMPUTAÇÃO SIMBÓLICA. Francisco Edmundo de Andrade

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ACOPLADAS PELA TÉCNICA DE TRANSFORMADA INTEGRAL E COMPUTAÇÃO SIMBÓLICA. Francisco Edmundo de Andrade SOLUÇÃO DE EQUAÇÕES DIFERECIAIS ACOPLADAS PELA TÉCICA DE TRASFORMADA ITEGRAL E COMPUTAÇÃO SIMBÓLICA Francsco Edmundo de Andrade DISSERTAÇÃO SUBMETIDA À COORDEAÇÃO DO CURSO DE PÓS- GRADUAÇÃO EM CIÊCIA DA

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES

MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES MODELAGEM DE CURVAS DE MAGNETIZAÇÃO PARA SOLUÇÃO ITERATIVA DE CIRCUITOS MAGNÉTICOS NÃO LINEARES MEZA, Rafael Argüello, estudante de graduação, CEFET-PR, 2005 Centro Federal de Educação Tecnológca do Paraná

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO

COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO COMPARAÇÃO ENTRE METODOLOGIA DE OTIMIZAÇÃO GLOBAL E O MÉTODO DE GRADIENTES PARA AJUSTE DE HISTÓRICO ASSISTIDO Célo Mascho e Dens José Schozer, Unversdade Estadual de Campnas, Faculdade de Engenhara Mecânca

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

ESTIMAÇÃO DE PROPRIEDADES TÉRMICAS A PARTIR DE UM SINAL NATURAL USANDO O MÉTODO TDMA

ESTIMAÇÃO DE PROPRIEDADES TÉRMICAS A PARTIR DE UM SINAL NATURAL USANDO O MÉTODO TDMA ESTIMAÇÃO DE PROPRIEDADES TÉRMICAS A PARTIR DE UM SINAL NATURAL USANDO O MÉTODO TDMA Martn Ordenes(); Roberto Lamberts(); Saulo Guths(2) () LabEEE Unversdade Federal de Santa Catarna, Brasl e-mal: martn@labeee.ufsc.br

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

FENÔMENOS DE TRANSFERÊNCIA DE CALOR: UMA ABORDAGEM PARA O ENSINO MÉDIO

FENÔMENOS DE TRANSFERÊNCIA DE CALOR: UMA ABORDAGEM PARA O ENSINO MÉDIO FENÔMENOS DE RANSFERÊNCIA DE CALOR: UMA ABORDAGEM PARA O ENSINO MÉDIO Julano Borges julanobrg@gmal.com Márco André Martns mandre@uncentro.br Resumo Este trabalho apresenta uma abordagem para o ensno de

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

Modelagem Matemática do Desenvolvimento da Soja

Modelagem Matemática do Desenvolvimento da Soja Modelagem Matemátca do Desenvolvmento da Soja Artur Gustavo Muller Embrapa Cerrados 73310-970, Planaltna, DF E-mal: agmuller@cpac.embrapa.br Jorge Luz Berto Unversdade Regonal do Noroeste do Estado do

Leia mais