= o logaritmo natural de x.

Tamanho: px
Começar a partir da página:

Download "= o logaritmo natural de x."

Transcrição

1 VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite abaixo existe e está o itervalo [-0):! lim ( ) f PROLEM [5 potos] Prove que se p( x ) é um poliômio com coeficietes iteiros etão existe iteiro tal que p( ) tem mais de 00 fatores primos distitos x PROLEM [5 potos] Várias criaças estão bricado de telefoe sem fio criaça 0 susurra três palavras para a criaça que susurra o que ouviu para a criaça e assim por diate até uma mesagem chegar à criaça ada uma das três palavras tem exatamete uma "gêmea" errada (por exemplo as palavras ração e razão são "gêmeas" pois é muito fácil cofudí-las) ada criaça ( i + ) tem probabilidade de ouvir corretamete o que a criaça i falou tem 6 de probabilidade de trocar a primeira palavra dita pela criaça i pela sua "gêmea" 6 de probabilidade de trocar a seguda palavra e 6 de probabilidade de trocar a terceira palavra (e portato uca troca mais de uma palavra) Note que uma troca a mesagem pode ser acidetalmete corrigida alcule a probabilidade de que a criaça ouça exatamete a mesagem origial PROLEM 4 [5 potos] Uma família de cojutos é dita (a b) uiforme se i = b para quaisquer i j i j { } i j = a para todo i { } e Prove que dados abexiste Na b tal que se > N a b e é uma família ( a b) uiforme etão i = b i=

2 PROLEM 5 [7 potos] Seja z uma raiz da equação z 0 0 z + z = ode 0 a0 a a Prove que: i) Se Re z > 0 etão z < + (ode Re z é a parte real de z) ii) Re z < + PROLEM 6 [7 potos] Sejam = ε = Prove que s s s ε I I 0 0 = ε i {0} i = e si { } i 0 0 quaisquer ode PROLEM 7 [8 potos] iz iz iz iz e e e + e Prove que ta( z) = z z 5 ode para z & se( z) = cos( z) = e i se( z) ta( z) = cos( z) para

3 SOLUÇÕES SOLUÇÃO O PROLEM : Podemos ver que f( x) = x(log x ) f( x) = (/ ) x (log x / ) e f ( x ) = (/6) x (log x /6) [etermiação dos f f e f vale poto] Em geral podemos provar por idução que: f( x) = x (log x H ) ()! para todo iteiro 0 ode H = + / + + / = / é o assim chamado -ésimo = úmero harmôico e fato () vale para = 0 e se ela é válida para 0 etão + x f ( ) lim (log ) + x = t t H + ε ε 0 ( + )! + = x (log x H ) + ( + )! + pois ( d / dt)(/( + )! t (log t H + ) = (/!) t (log t H ) = f( t) lterativamete ispecioado casos pequeos vemos que f( x) = x (log x ) ()! para alguma costate que depede apeas de Observado que ' f ( ) log + x = x x +! + () + temos que + = + /( + ) omo = temos que = H [Valor da determiação de (): potos; potos se mostrar que f se escreve como em () mas ão coseguir determiar ] Temos assim que!! f( ) = (log H ) = log H (4)! e agora basta provar que lim (log H ) existe e que este limite pertece a [-0) Temos dt > log > pois log = = = t Portato para < log < 0 lém disso log é uma seqüêcia decrescete = = ssim lim(log ) [ 0) omo lim lim 0 = = = segue que = = lim ( log H ) lim log [ 0) = = [Existêcia e valor do limite: potos ( poto para existêcia e poto por provar que o limite está o itervalo dado o euciado)] lim log H = γ = 0577 ode γ é a costate de Euler Obs: Na verdade ( )

4 SOLUÇÃO O PROLEM Primeira Solução Supoha que para todo = f ( ) uca teha mais de 00 fatores primos distitos Tome 0 = tal que 0 α α j ( 0) j f ( ) teha a maior quatidade de fatores primos distitos digamos j f =± p p = [ poto] Podemos supor 0 = 0 (cosiderado g( ) = f ( 0 )) ssim teremos: f ( x) = a x + x + Tomado x= w f( x) (mod ) f ( x) = a + = ( a + ) para algum a iteiro omo mdc( a + ) = se ( a + ) ± teremos que f ( x) terá pelo meos um fator primo a mais bsurdo! [+ potos] e fato isso deve acotecer pois f ( ) =± admite o máximo raízes equato x = w pode assumir ifiitos valores ( w = )[+ poto] Seguda Solução - Seja S = { p primo p divide f ( ) para algum = } Se # S > 00 podemos escolher primos distitos p p p004 e iteiros a a a 004 tais que valem as cogruêcias f ( ai) 0(mod pi) (para cada i) Pelo teorema chiês dos restos podemos ecotrar um x iteiro que resolva a todas as cogruêcias x ai(mod pi) Para tal x teremos pp p004 f( x ) [ potos] - Supoha etão que # S 00 Seja = { m = m = 0 ou p primo p m p S} Etão α αr m m = ± p pr S = { p pr} r Se m m N α i log p i N log N i [ N N ] (log N + ) + mas existe d c > 0 tal que f ( = ) [ N N ] N ode d é o grau de f e como d + (log N + ) < (log N) < N para todo N suficietemete grade isso é um absurdo [+ potos]

5 SOLUÇÃO O PROLEM Sejam as palavras: abc e suas gêmeas a' b' c' Idetificamos as possíveis combiações de palavras com os vértices de um cubo da seguite forma: = ( a b c) (seqüêcia correta) = ( a' b c) = ( a b' c) = ( a b c') = ( ab ' c') = ( a' b c') = ( a' b' c) = ( a' b' c') Podemos repesar o problema dizedo que a cada passo os movimetamos uma aresta segudo as probabilidades dadas Pela evidete simetria as probabilidades de após passos estarmos em ou são iguais o mesmo valedo para Por isso agrupamos os vértices do cubo em 4 grupos ; = { } ; = { }; [ poto] Nosso diagrama de probabilidades será: / / /6 / /6 / / / / / efiimos etão: = probabilidade de estarmos o grupo após passos são defiidos aalogamete Temos etão as recorrêcias: a = a + b a / /6 0 0 a 6 b / / / 0 b = b = a + b + c c 0 / / / c ou d 0 0 /6 / d c = b + c + d d = d + c 6 [ poto] Nosso objetivo é ecotrar a Temos agora duas maeiras de termiar a solução:

6 Primeira Solução: r = a + d efia para isso: l = b + c aí: r = r + l () 6 5 l = r + l () 6 Substituido () em () obtemos: 4 r+ = r r ( ) o que jutamete com os casos iiciais r = ; r = ; r = ; r = Nos dá: r = Por outro lado defiido: x = a d y = b c Teremos: x = x + y () 6 y = x + y (4) 6 Substituido () em (4) ecotramos: x+ = x (para cuidado!!) x = x = 6 oclusão: a = ( r + x) = [+ potos] Seguda Solução: Queremos ecotrar os autovalores de X Seja Y = T Temos Y = Y = Y / /6 0 0 / 5 / X 0 + YXY = = 0 0 / 6 / 0 X 0 0 / 6 / Os autovalores de X + e X são claramete / e 0 / respectivamete [+ potos] ssim ( 0) a = v + v + v + v4 e algus casos deixam claro que v = v = v = v4 = [+ poto] SOLUÇÃO O PROLEM 4

7 Sejam a e b iteiros ão-egativos Se b = 0 N ab = Supoha agora que N ab serve Para tato supoha que temos etão é fácil ver que podemos tomar a b e tome Nab = a + Vamos provar que esta escolha de b uma família ( ab ) uiforme com > N ab a Existe um cojuto com = b tal que para pelo meos ( ) ídices j com b < j temos j = Sem perda de geeralidade podemos supor que isto vale para todo a j com < j j0 = + ( ) Note que b (*) os cojutos j \ com < j j0 são dois a dois disjutos [ potos por fixar um cojuto e coseguir cojutos satisfazedo (*)] Se todo cojuto com j0 < é tal que = etão = e vale a coclusão do problema Supoha agora que para algum j0 < Etão ( j \ ) para todo j j0 < Etretato como vale (*) e j0 > = a isto é impossível Isto mostra que todo cojuto com j0 < é tal que = de forma que i = e vale a coclusão do problema [ potos se deduzir a coclusão de (*)] i = i = i SOLUÇÃO O PROLEM 5 i) Seja R = z = α + β a a a 0 a a ( α βi ) a Temos = 0 omo Re a α = = 0 z z z z α + β z α + β 0 omo temos Re a a a Re a = + z z z z [ poto] a a 0 devemos ter em particular + + mas z z a a0 R = = j z z R R R R R R R R( R ) ssim devemos ter ( ) R R j = 0 ou seja R( R ) Se R + R e R( R ) ( + ) > absurdo ssim z = R < + [+ potos] ii) Temos dois casos: a) z = α + β i α 0 β α Nesse caso ( α β ) a ( α β ) a a ( α βi ) a ( α βαβ i) = = dode z ( α + β) ( α + β) Re a 0 = z ssim Re a a0 Re a a z z = + + z z

8 a a0 R dode = z z R R R R R ( R ) + e R ( R ) > absurdo ssim z = R < + [ poto] R R dode R ( R ) Se b) z = α + β i α 0 β > α omo z é raiz de P z é raiz de P podemos supor sem a β a perda de geeralidade que β > α Temos etão Im = 0 e z α + β a αβ a a Im = αa equato Re 0 4 = e z R z α + β a ( α β ) a ( α β ) a Re + a = 4 4 = z R R R ssim como a a0 a a0 a a0 + + Re + + e Im + + z z R ( R ) z z R ( R ) z z R ( R ) portato temos a (*) a + Re + e R R ( R ) z (**) a a a αβ Im + Supodo por absurdo que α + temos 4 R ( R ) z z R R α + e logo R ( R ) > e (**) a e logo R αβ ( R ) R αβ ( R ( R ) ) e logo de (*) + dode αβ ( R ) R ( R ) R = α + β > α e omo α < β α αβ R R R αβ + R ( R ( R ) ) ( ) omo α + temos R > α > + R > α > dode R = < = < <α R ( ) ( R ( R ) ) R [+ potos] absurdo SOLUÇÃO O PROLEM 6 / 0 / / 0 / Temos = / 0 / e = / 0 / [ poto] ε s s s ε s s s ε omo I + ε ε+ ε = = e { I } é suficiete s s s mostrar que para todo s s { } tem etradas irracioais para cocluir ε s que s ε I (pois de fato as etradas de I e de são todas iteiras)

9 s s [ojecturar que tem sempre etradas irracioais para todo s s { } : potos] s s s Para isso vamos mostrar por idução que para todo s s { } a b c sempre da forma d e f ode a c d e f são iteiros ímpares e g h i b e g h e i são iteiros pares Para isso seja 0 ε / 0 ε s + = ε / 0 / = ε 0 ode ε { } Temos etão a ( ) εb c εa + b s s s s+ = ( d εe) f εd + e e é fácil ver que + ( g h ) i g h ε ε + a+ = a εb c+ = εa + b d+ = d εe e f+ = ε d + e são iteiros ímpares equato b = c e = f g = g εh h = i e i = ε g + h são iteiros pares [+4 potos] SOLUÇÃO O PROLEM 7 Seja z= a bi logo iz = b i Queremos provar que b = 0 iz iz iz e e e Temos z= ta z= dode iz iz iz = iz ie ( + e ) e + b + bi b a i + = = e (cos a ise a) b ai ( b) é logo e + iz = ou seja iz iz ssim devemos ter (calculado ormas) ( + b) a e = e (calculado argumetos) ta a ( b) = b a [ poto] ( + b) e e = temos 4 b e = dode supodo por cotradição que b 0 ( b) ( b ) a = ( b) [ poto] e ( + b) ( b) e = e = a a omo e ta a = = podemos ( b) ( + b) b a ( b) a supor sem perda de geeralidade que b 0 e como a a ta a= ta( a) = podemos supor sem perda de geeralidade que b a b ( a) a > 0 [ + poto] Temos etão 4 b e > + 4 b+ (4 b) e logo a = ( b) < ( b) = ( b) e + 8b + b Se 0 b temos 4 7 a = < Se b temos a = < e + 4

10 e e e se b temos a = + Em qualquer caso a π < < dode 4 4 b a ( b) = cos( a) > 0 dode a + b < [ + poto] Notemos agora que ( b) b 4 b ( e )( b+ b ) + b+ b e ( b+ b ) e Se fb () =+ b+ be gb () = e ( b+ b) temos f(0) = = g(0) f '( b) = + g'( b) = e ( + 8 b ) f ''( b) = 4 g''( b) = e (4 + b ) e logo f '(0) = = g'(0) e f ''( b) g''( b) b 0 dode f( b) g( b) b 0 e logo a = ( b) b [ + poto] e gora se a = 0 teremos b + b b e = dode b < mas ( be ) < + b para todo b > 0 pois se b x x f( x) = ( x) e gx ( ) = + x temos f(0) = g(0) = f '( x) = ( x) e g'( x) = logo x f(0) = g'(0) = f ''( x) = 4xe 0 = g''( x) x 0 Podemos portato supor a > 0 [ + poto] a a sea a a ssim ta a = pois a b mas ta a b a a = cos a < = para ( a) a x x a > 0 pois sex< x para x < 0 e cos x+ x 0 (de fato se hx ( ) = cos x+ h'( x) = x sex 0 x 0) Note que como a b e a + b < temos a a + b < Isto dá a a > ta a a a o que é uma cotradição [ + potos] SEGUN SOLUÇÃO: Vamos cosiderar separadamete as seguites regiões: π = { z = a+ bi 0 a b 0} π π = z = a+ bi π a π + > 0 Note que em cada região há uma solução real

11 0 π/ π π/ asta demostrar que z = 0 é a úica solução em e que há uma úica solução em cada região [ poto] Região : Seja f( z) = ta z z Queremos provar que f ão admite ehuma raiz em exceto z = 0 osidere um camiho γ como a figura: F E γ π/ imagem de γ por f é: π/ E F

12 γ ode o comportameto do arco é idicado pela série de Taylor de f o de pelo comportameto da fução real tagete o arco pelo comportameto da fução perto do polo o arco E pelo comportameto da fução coth o arco EF pelo comportameto quado b >> 0 e o arco F pelo comportameto da fução tah Em todo caso é claro que a curva f ( γ ) dá 0 voltas ao redor da origem dode f tem 0 raízes detro de γ [ 4 potos] Região : π π Seja = { z = a+ bi π a π} e = { z = a+ bi π a π + } imagem por ta da região está cotida o segudo o terceiro quadrates logo ão há potos fixos em asta verificar que a fução ta tem um úico poto fixo em Seja γ como abaixo; a imagem por ta da curva γ é como γ a figura (o arco F dá o comportameto perto do polo os arcos e EF vem do comportameto da fução cotah o arco do comportameto de tah e os arcos e E do comportameto quado b >> 0) omo γ dá uma volta ao redor de γ temos exatamete um poto fixo [+ potos] i π γ π + π/ F i E E F

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2018 Lista de Exercícios de Cálculo Módulo - Primeira Lista - 0/08. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 6 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 6 000 } { 4

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

A maneiras. Concluindo, podemos obter

A maneiras. Concluindo, podemos obter Matemática A. o ao TESTE DE AVALIAÇÃO DE MATEMÁTICA.º ANO PROPOSTA DE RESOLUÇÃO. A soma de todos os termos da liha de ordem do triâgulo de Pascal é ; assim, para esta liha, tem-se 96 log 96 log. O elemeto

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

( ) ( ) ( ) (19) O ELITE RESOLVE IME 2010 MATEMÁTICA - DISCURSIVAS. MATEMÁTICA QUESTÃO 01 Sejam os conjuntos P 1

( ) ( ) ( ) (19) O ELITE RESOLVE IME 2010 MATEMÁTICA - DISCURSIVAS. MATEMÁTICA QUESTÃO 01 Sejam os conjuntos P 1 (9) 5-0 wwwelitecampiascombr O ELITE RESOLVE IME 00 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 0 Sejam os cojutos P, P, S e ( P S) P e ( S S) ( P P) Demostre que ( S S ) ( P P ) S tais que ( ) P S P,

Leia mais

I 01. Sequência Numérica. para a qual denotamos o valor de x em n por x n em vez de x ( n ).

I 01. Sequência Numérica. para a qual denotamos o valor de x em n por x n em vez de x ( n ). IME ITA Apostila ITA I 0 Sequêcia Numérica Defiição 4..: Uma sequêcia de úmeros reais é uma fução x : para a qual deotamos o valor de x em por x em vez de x ( ). Geralmete usamos a otação ( x ). Às vezes

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Uma discussão sobre a existência de raízes. n-ésimas. Ivo Terek Couto. 11 de julho de 2015

Uma discussão sobre a existência de raízes. n-ésimas. Ivo Terek Couto. 11 de julho de 2015 Uma discussão sobre a existêcia de raízes -ésimas. Ivo Terek Couto de julho de 205 Neste texto daremos uma demostração elemetar da existêcia de a, com e a > 0, e também de a, com a R e ímpar. Começaremos

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Preparar o Eame 0 Matemática A E X A M E 0 4 ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O GRUPO I ITENS DE ESOLHA MÚLTIPLA Tem-se que A e B são idepedetes, portato, P A B P A PB Assim: 0,48

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

(def) (def) (T é contração) (T é contração)

(def) (def) (T é contração) (T é contração) CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS

HEURÍSTICAS E EQUAÇÕES DIOFANTINAS HEURÍSTICAS E EQUAÇÕES DIOFANTINAS Michelle Crescêcio de Mirada Programa Istitucioal de Iiciação Cietífica e Moitoria da Faculdade de Matemática PROMAT michellemirada_8@hotmail.com Luiz Alberto Dura Salomão

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Curso: LEI. Correção do exame da Época Normal - A 2006/2007

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Curso: LEI. Correção do exame da Época Normal - A 2006/2007 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA DISCRETA Curso: LEI Correção do exame da Época Normal - A 2006/2007 Diga, justi cado, se as seguites proposições são verdadeiras

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO

2.ª FASE 2018 PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A ª FASE PROPOSTA DE RESOLUÇÃO EXAME NACIONAL DE MATEMÁTICA A 08.ª FASE PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica EXAME NACIONAL DE MATEMÁTICA

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017 Lista de Exercícios de Cálculo 2 Módulo - Primeira Lista - 0/207. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 000 2 } { 4

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente

2 cos n. 51. a n. 52. a n. 53. a n. 54. (a) Determine se a sequência definida a seguir é convergente 650M MCÁLCULO 7-6 Determie se a sequêcia coverge ou diverge. Se ela covergir, ecotre o limite. 7. a (0,) 8. a 5 9. a 0. a. a e /. a. a tg ( ) p. a () 5. a 6. a 7. a cos(/) 8. a cos(/) ( )! 9. a ( )! 0.

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

O TEOREMA ERGÓDICO DE BIRKHOFF

O TEOREMA ERGÓDICO DE BIRKHOFF O TEOREMA ERGÓDICO DE BIRKHOFF BRUNO SANTIAGO Resumo. Neste artigo expositório discutiremos a prova clássica do teorema ergódico de Birkhoff, via o teorema ergódico maximal. Buscaremos explorar os sigificados

Leia mais

A B C A e B A e C B e C A, B e C

A B C A e B A e C B e C A, B e C 2 O ANO EM Matemática I RAPHAEL LIMA Lista 6. Durate o desfile de Caraval das escolas de samba do Rio de Jaeiro em 207, uma empresa especializada em pesquisa de opiião etrevistou 40 foliões sobre qual

Leia mais

Elementos de Matemática

Elementos de Matemática Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e CAPÍTULO 3 Eercícios 3 3 Seja a equação y y 0 B Como o Eercício ( item (e, yabl B y( Bl A 0 B B B B y(! y(! B 4 4 4 l A0! A( l A solução procurada é y ( l 4 l $ % 4 Pela ª Lei de Newto, m dv dt dv v dt

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

Gabarito do Simulado da Primeira Fase - Nível Beta

Gabarito do Simulado da Primeira Fase - Nível Beta Gabarito do Simulado da Primeira Fase - Nível Beta Questão potos Serão laçados dois dados: um dado azul de 4 faces, umeradas de a 4, e um dado vermelho de 8 faces, umeradas de a 8 a Determie a probabilidade

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Cadero 1 + Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos:

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais