Fundamentos de Matemática I

Tamanho: px
Começar a partir da página:

Download "Fundamentos de Matemática I"

Transcrição

1 Trigonometria no triângulo retângulo8 Gil da Costa Marques 8.1 Trigonometria nos primórdios 8. Ângulos no triângulo retângulo: o grau 8.3 Definição de seno e cosseno de um ângulo agudo num triângulo retângulo 8.4 Propriedades dos senos e cossenos: a Lei dos Senos e a Lei dos Cossenos 8.5 Outras razões trigonométricas 8.6 Triangulação: cálculo de distâncias inacessíveis Licenciatura em Ciências USP/ Univesp

2 Licenciatura em Ciências USP/Univesp Módulo Trigonometria nos primórdios Por alguma razão, o número 60 tinha um apelo místico para os babilônios. Como resultado, cerca de.000 anos antes da era cristã, já propunham um sistema de numeração cuja base era esse número. Tal sistema tornou-se conhecido como sexagesimal, uma vez que a base escolhida por eles era o número 60, ou seja, nesse sistema qualquer número poderia ser expresso como soma de potências de 60 multiplicadas por constantes adequadas. Os Babilônios propuseram a divisão da circunferência de um círculo em 360 partes iguais, daí resultando a unidade de medida de ângulo conhecida como grau. Dessa forma uma circunferência tem 360. Hiparco (cerca 140 a.c.) recebeu o crédito por ter iniciado a trigonometria, ou melhor, ter introduzido, de forma indireta, o conceito de seno de um ângulo. Hiparco era pesquisador no museu de Alexandria, a primeira instituição científica financiada pelo poder público. Transformou-se num dos maiores astrônomos da antiguidade. Sua principal contribuição à matemática teve a influência da matemática dos babilônios. Credita-se a ele a introdução, nos meios científicos relevantes na época, da medida de ângulo proposta pelos babilônios. Introduziu também a função seno utilizando o número 60. Considerando-se dois pontos (P 1, P ), ambos localizados sobre uma circunferência, é possível construir o segmento de reta determinado por esses dois pontos (veja Figura 8.1). Hiparco definia corda (Crd) como o comprimento desse segmento. Para medi-lo, Hiparco introduzia uma unidade de comprimento que dependia do raio da circunferência. Para isso, dividia o raio da circunferência em 60 partes iguais. Traçando duas semirretas a partir da origem, passando pelos dois pontos, P 1 e P, podemos agora introduzir o ângulo a medindo a inclinação dessas semirretas. Claramente, a corda depende desse ângulo. Temos assim: Figura 8.1: Definição de Corda associada a um ângulo. Crd = Crd( a) 8.1

3 164 Licenciatura em Ciências USP/Univesp Módulo 1 A corda pode ser, nesse contexto, entendida como função do ângulo a. Adotando essa forma de caracterizar ângulos, ou de medi-los, podemos agora entender como Hiparco introduziu a função seno, como é definida nos dias de hoje. De fato, sua relação com a função comprimento da corda é bem simples: Escrevendo a corda como sendo dada por ( ) a Crd a a Crd a sen = sen R 10 = ( ) 8. Crd( a)= l 8.3 e utilizando o valor do raio, sem efetuar sua divisão em 60 partes, a função seno, definida a partir da função corda em 8., pode ser escrita como: sen a l = R 8.4 A rigor, Hiparco não estava introduzindo a função seno. Ele definia o que denominamos seno de um ângulo. Tal definição é análoga àquela obtida a partir das relações métricas de ângulos agudos num triângulo retângulo. Hiparco gerou uma tabela de cordas. Essa tabela é muito semelhante a uma tabela dos senos, desde que nos atenhamos a ângulos menores do que 180. A fim de determinar a posição dos corpos celestes, Hiparco teve a ideia de fazer a interpolação para gerar algo como a função corda. Ptolomeu publicou, em sua obra O Almagesto, uma tabela de cordas para ângulos variando dentro de intervalos de 0,5. 8. Ângulos no triângulo retângulo: o grau Um triângulo é retângulo quando possui um ângulo reto, isto é, dois de seus lados são perpendiculares. Esses lados são denominados catetos e aquele oposto ao ângulo reto é denominado hipotenusa. 8 Trigonometria no triângulo retângulo

4 Licenciatura em Ciências USP/Univesp Módulo Para medir os ângulos de um triângulo retângulo utilizamos o grau como unidade de medida. Você lembra? 1 grau é a medida do ângulo central obtido ao dividir uma circunferência em 360 partes iguais. Observamos que, como o ângulo reto tem 90 por medida, os outros dois ângulos de um triângulo retângulo são complementares, ou seja, têm como medida de sua soma 90. Figura 8.: Lados e vértices do triângulo retângulo. No caso de um triângulo retângulo, vale o teorema de Pitágoras, ou seja, vale a relação: a + b = c 8.5 onde c é medida da hipotenusa, a e b são as medidas dos catetos. 8.3 Definição de seno e cosseno de um ângulo agudo num triângulo retângulo Considerando o ângulo A, por exemplo, o lado que é oposto a ele tem o nome de cateto oposto (o lado de medida a ou simplesmente o lado a), enquanto o lado adjacente a ele, e diferente da hipotenusa (o lado de medida b ou lado b), é denominado cateto adjacente a esse ângulo. Observe que, considerando agora o ângulo B, o lado b é o seu cateto oposto enquanto o lado a é o seu cateto adjacente. Figura 8.3: Lados de um triângulo retângulo.

5 166 Licenciatura em Ciências USP/Univesp Módulo 1 A partir da notação, definimos o seno de um ângulo agudo do triângulo retângulo como sendo o quociente do cateto oposto pela hipotenusa: senθ= cateto oposto hipotenusa Figura 8.4: Seno de um ângulo agudo de um triângulo retângulo. Da definição anterior obtemos, na Figura 8.3: sena = a sen B = b c c 8.6 Podemos também definir o cosseno de um ângulo agudo de um triângulo retângulo como sendo o quociente do cateto adjacente pela hipotenusa: cosθ= cateto adjacente hipotenusa Figura 8.5: Cosseno de um ângulo agudo de um triângulo retângulo. Da definição anterior obtemos, na Figura 8.3: cos A = b cos B = a c c 8.7 Convém observar que num triângulo retângulo só temos como definir senos e cossenos para os ângulos agudos. 8 Trigonometria no triângulo retângulo

6 Licenciatura em Ciências USP/Univesp Módulo Exemplos Exemplo 1 A partir do triângulo equilátero ABC de lado l e do quadrado de lado a da Figura 8.6, preencha as lacunas da tabela: Resolução: Observemos a Figura 8.6: Seno Cosseno a. Para o caso do triângulo equilátero ABC, de lado l: Lembrando que, num triângulo equilátero, a altura, bissetriz e mediana, traçadas a partir de um vértice, coincidem, consideremos CH a altura do triângulo equilátero ABC, relativa à base AB; pelo teorema de Pitágoras, aplicado no triângulo retângulo HBC, obtemos que de onde Portanto, temos que: Figura 8.6: O triângulo equilátero ABC e o quadrado DEFG. l h = h 3 ou h l = l = l 4 3 (não convém) l ACB sen30 sen sen 1 = HCB cateto oposto = = = = hipotenusa l

7 168 Licenciatura em Ciências USP/Univesp Módulo 1 e l 3 ACB cos30 = cos HCB cateto adjacente h = cos = = = hipotenusa l l bem como: l 3 sen60 sen 3 = CBH cateto oposto h = = = = hipotenusa l l e l cos60 cos 1 = CBH cateto adjacente = = = hipotenusa l = 3 b. Para o caso do quadrado DEFG, de lado a: Consideremos DF a diagonal do quadrado; pelo teorema de Pitágoras, aplicado no triângulo retângulo isósceles DEF, obtemos que de onde Portanto, temos que: d d = a + a = a ou d = a (não convém) a a sen45 = cos45 = = = hipotenusa a Completando então a tabela: Seno 1 3 Cosseno 3 1 Convém notar que sen 30 = cos 60 e cos 30 = sen 60 que, alias, é uma propriedade válida para qualquer par de ângulos complementares, isto é sen α = cos (90 α) e e cos α = sen (90 α), como adiante veremos. 8 Trigonometria no triângulo retângulo

8 Licenciatura em Ciências USP/Univesp Módulo Propriedades dos senos e cossenos: a Lei dos Senos e a Lei dos Cossenos Uma propriedade notável do cosseno e seno de um ângulo agudo num triângulo retângulo é facilmente derivada a partir do teorema de Pitágoras. De fato, tomando os valores do seno e do cosseno do ângulo agudo A no triângulo retângulo da Figura 8.3, conforme as expressões 8.6 e 8.7, e, em seguida, somando os valores dos seus respectivos quadrados, obtemos: sen a A+ cos A= + c b a = c + b c 8.8 Utilizando o teorema de Pitágoras (8.5), resulta de 8.8 que, para qualquer ângulo agudo num triângulo retângulo, vale a relação: sen θ+ cos θ= A fim de poder estabelecer a Lei dos Senos e a Lei dos Cossenos, que são relações úteis entre os lados e os ângulos de um triângulo qualquer, não necessariamente retângulo, podendo ser acutângulo ou obtusângulo, vamos ampliar o conceito de seno e cosseno de um ângulo. Para tal, introduzimos as seguintes identidades: sen90 = cos90 = sen( 180 x) = sen x 8.1 cos( 180 x) = cos x 8.13

9 170 Licenciatura em Ciências USP/Univesp Módulo 1 Consideremos, em primeiro lugar, a Lei dos Senos a qual estabelece que, num triângulo ABC qualquer, vale a seguinte relação: a b c r sen = A sen B = senc = onde a, b, c indicam as medidas dos lados opostos aos ângulos de vértices A, B, C, respectivamente e r é o raio da circunferência circunscrita ao triângulo. Figura 8.7: Triângulo ABC qualquer, inscrito numa circunferência de raio r. Considerando um triângulo ABC qualquer, inscrito numa circunferência de raio r, a partir do vértice B podemos encontrar, na circunferência, um ponto diametralmente oposto D; ligando D a C, formamos um novo triângulo BCD retângulo em C, pois o ângulo BCD é inscrito numa semicircunferência. Os ângulos de vértices em A e D são inscritos na circunferência e determinam o mesmo arco BC, logo têm a mesma medida. Agora, no triângulo retângulo BCD, temos: sen D a = r de onde sen a A = r ou seja, a sen A = r Repetindo o raciocínio, para os ângulos de vértices B e C, teremos as relações: Logo, podemos concluir que: b r sen B = e c senc = r a b c r sen = A sen B = senc = 8 Trigonometria no triângulo retângulo

10 Licenciatura em Ciências USP/Univesp Módulo Consideremos agora a Lei dos Cossenos, a qual estabelece que, num triângulo ABC, qualquer, valem as seguintes relações: a = b + c bc cos A b = a + c ac cos B c = a + b ab cosc onde a, b, c indicam as medidas dos lados opostos aos ângulos de vértices A, B, C, respectivamente. Vamos provar apenas a primeira das relações e isso será suficiente, pois as três são análogas. Analisemos as três possibilidades para o ângulo A (agudo, obtuso e reto). a. A é um ângulo agudo. Seja CH a altura do triângulo ABC, relativa ao lado AB. O triângulo AHC é retângulo e pelo Teorema de Pitágoras, Figura 8.8: Triângulo ABC em que o ângulo de vértice A é agudo. b = h + m O triângulo HBC também é retângulo e, novamente pelo Teorema de Pitágoras, a = h + n Além disso, m + n = c, e, eliminando h nas duas primeiras equações, obtemos: b m = a n Eliminando n obtemos: ( ) b m = a c m

11 17 Licenciatura em Ciências USP/Univesp Módulo 1 Portanto, b m = a c + cm m e daí a = b + c cm. Mas (m/b) = cos A ou m= b.cos A. de onde a = b + c bc.cos A. b. A é um ângulo obtuso. Figura 8.9: Triângulo ABC em que o ângulo de vértice A é obtuso. Seja CH a altura do triângulo ABC, relativa ao lado AB. O triângulo CHA é retângulo e assim, pelo teorema de Pitágoras, b = h + m Como o triângulo CHB é retângulo, pelo teorema de Pitágoras, a = h + (m + c) Eliminando h, temos: b m = a (m + c) Simplificando a última equação, temos: a = b + c + cm Mas m b = coshac = cos( 180 A) = cos A, ou seja, m = b.cos A Logo, a = b + c bc.cos A. 8 Trigonometria no triângulo retângulo

12 c. A é um ângulo reto. Este caso é o próprio teorema de Pitágoras, pois cos A = 0. Licenciatura em Ciências USP/Univesp Módulo Exemplo 1. Determine o valor de x no triângulo abaixo. a. Figura 8.10: O triângulo dado. Resolução: Aplicando a Lei dos Senos ao triângulo da Figura 8.10, temos: e, como sen 10 = sen 60 = 100 sen10 = x sen 45 3 e sen 45 = temos: x = = b. Figura 8.11: O triângulo dado. Resolução: Aplicando a Lei dos Senos ao triângulo ABC da Figura 8.11, temos: 100 sen30 = x sen 45 uma vez que a soma dos ângulos internos do triângulo é 180. Logo, como sen 30 = 1 e sen 45 =, temos x = 100

13 174 Licenciatura em Ciências USP/Univesp Módulo 1 c. Figura 8.1: O triângulo dado Resolução: Aplicando a Lei dos Cossenos ao triângulo ABC da Figura 8.1, temos: x = cos 60 ou seja, como cos 60 = 1, temos: x = 1 ou seja, x = 1. Mostre que a área S de um triângulo, cujos lados são a, b e c, é dada por: S = p( p a)( p b)( p c), onde p é o semi-perímetro do triângulo. Essa relação é devida a Heron. Resolução: Consideremos a Figura Sabemos que a área do triângulo é dada por S c h = Também temos sen A h =. b E, pela Lei dos Cossenos, ou seja, Como sen A+ cos A= 1, temos: a = b + c bc.cos A cos A b c + a = bc h b c a b + + bc = 1 Figura 8.13: O triângulo ABC. 8 Trigonometria no triângulo retângulo

14 Licenciatura em Ciências USP/Univesp Módulo S b c a Ou seja, 1 bc + + bc =, pois h S =. c Multiplicando e dividindo por a primeira fração, temos ou seja, de onde resulta (4S) + (b + c a ) = (bc) 16S = (bc) (b + c a ) Uma vez que o segundo membro é uma diferença de quadrados, podemos escrever ou ainda, isto é, 16S = [bc (b + c a )].[bc + (b + c a )] 16S = [a (b + c bc)].[(b + c + bc)] a ] 16S = [a (b c) ].[(b + c) a ] Novamente, fatorando as diferenças de quadrados, ou Como p ou a b c = + + 4S b c a bc + + bc 16S = [a + b c]. [a b + c].[b + c + a].[b + c a] S é o semiperímetro, temos = 1 a b c a b c a b c b c a = S = (p c).(p b).p.(p a) S = ( p c).( p b). p.( p a) Ou, de outra forma, S = p.( p a).( p b).( p c).

15 176 Licenciatura em Ciências USP/Univesp Módulo Outras razões trigonométricas Num triângulo retângulo, sempre no caso de um ângulo agudo, ainda podemos definir outras razões entre as medidas de seus lados, além daquelas que definem o seno e o cosseno. Definimos a tangente de um ângulo agudo num triângulo retângulo como sendo o quociente do cateto oposto pelo cateto adjacente: cateto oposto tgθ= cateto adjacente 8.14 Figura 8.14: Tangente de um ângulo agudo do triângulo retângulo. Temos assim que, num triângulo retângulo, como o da Figura 8.3, definimos a tangente dos ângulos A e B, em termos dos catetos do triângulo retângulo: tg A = a tg B = b b a 8.15 Definimos também a cotangente de um ângulo agudo num triângulo retângulo como sendo o quociente do cateto adjacente pelo cateto oposto ou o inverso da tangente do mesmo ângulo: cotgθ 1 cateto adjacente = = tgθ cateto oposto 8.16 Figura 8.15: Cotangente de um ângulo agudo do triângulo retângulo. Temos assim que a cotangente do ângulo A e a cotangente do ângulo B da Figura 8.3 são, em termos dos catetos a e b: cotg A = b cotg B = a a b Trigonometria no triângulo retângulo

16 Licenciatura em Ciências USP/Univesp Módulo Definimos ainda o valor da secante de um ângulo agudo num triângulo retângulo como o inverso do cosseno do mesmo ângulo. Temos, pois, em termos dos lados do triângulo: secθ= hipotenusa cateto adjacente 8.18 Figura 8.16: Secante de um ângulo agudo do triângulo retângulo. Assim, para os ângulos A e B da Figura 8.3, temos: sec A = c sec B = c b a 8.19 Definimos a cossecante de um ângulo agudo num triângulo retângulo como o inverso do seno do mesmo ângulo: cossecθ= hipotenusa cateto oposto 8.0 Figura 8.17: Cossecante de um ângulo agudo do triângulo retângulo. Consequentemente, os valores da cossecante do ângulo A e da cossecante do ângulo B da Figura 8.3 são dados, em termos dos lados do triângulo cossec A = c cossec B = c a b 8.1 Conclui-se que, num triângulo retângulo, podemos definir diferentes valores associados a ângulos agudos, valores esses que são quocientes entre as medidas dos lados do triângulo.

17 178 Licenciatura em Ciências USP/Univesp Módulo Triangulação: cálculo de distâncias inacessíveis Medir é comparar. No cotidiano, a medida de distâncias é feita através de uma medida direta, isto é, comparando-se as dimensões de algo com uma unidade padrão. Usualmente, adotamos o metro como unidade padrão para medir distâncias. Na astronomia utilizamos outras unidades, as quais serão aqui apresentadas. Medidas diretas são inviáveis na Astronomia. Por isso, no caso dos objetos localizados fora da Terra as medidas são efetuadas de uma maneira indireta. Um dos métodos indiretos mais antigos de determinação das distâncias é o uso da triangulação. Na Figura 8.18 esboçamos o esquema básico do uso da triangulação, para determinação da altura (h) do monte. Ele requer a determinação de um ângulo (θ), entre as direções da base e do cume do monte, e da distância (d) entre o observador e o monte; θ e d podem ser medidos. O ângulo θ é medido com um instrumento denominado teodolito. Figura 8.18: Determinação da altura do monte por triangulação: tgθ = h/d ou h = d tgθ. Algumas vezes utilizamos a semelhança entre triângulos. Um dos registros mais antigos de uso desse método indireto é aquele atribuído a Tales de Mileto ( a.c.), o qual teria determinado a altura da pirâmide de Gizé a partir da determinação da dimensão da sombra projetada no solo. Tomou o cuidado de efetuar tal medida no exato momento em que o tamanho de sua sombra projetada no solo era igual à sua altura. Nesse momento, o tamanho da sombra da pirâmide era igual à altura da pirâmide. 8 Trigonometria no triângulo retângulo

18 Licenciatura em Ciências USP/Univesp Módulo Na Figura 8.19 está representada a configuração de uma estrela, vista da Terra em duas posições diametralmente opostas no seu movimento de translação e o Sol. A paralaxe estelar é o desvio aparente da estrela em relação às estrelas de fundo. O ângulo de paralaxe é p. As posições aparentes da estrela podem ser registradas em imagens da região do céu, obtidas em épocas diferentes. As paralaxes são diminutas. Ou seja, são medidas em segundos de arco. Por exemplo, a estrela mais próxima do Sol, a Próxima Centauro (e de grande paralaxe, portanto) tem paralaxe de meros 0,77 segundo de arco ( décimos-milésimo de grau). Estrelas mais distantes têm paralaxes menores ainda.tendo em vista a dificuldade experimental de distinguir pontos muito próximos, esse método é bastante limitado. Figura 8.19: Paralaxe estelar. O método da paralaxe trigonométrica introduziu na Astronomia uma nova unidade de comprimento: o parsec. Um parsec é equivalente a 3,6 anos-luz ou unidades astronômicas, ou ainda 31 trilhões de quilômetros. Nesta unidade, as distâncias a estrelas mais brilhantes visualmente ficam a distâncias entre 1,3 pc (a-centauri) e 800 pc, excluindo-se evidentemente o Sol. D(parsec) = 1 / p(segundo de arco) Experimente escrever essas distâncias em km, você vai ter que escrever muitos dígitos! Um parsec = 0665 U.A. Uma unidade astronômica, por sua vez, é equivalente a 1, km. Exemplo 3 1. Na Figura 8.0 está representado um morro entre dois pontos A e B. Um teodolito colocado no ponto C consegue mirar tanto A quanto B, informando que o ângulo ACB = 135. Sabendo que CA = 100 m e que CB = 75 m, pede-se determinar a distância entre A e B. Figura 8.0: Encontrar a distância entre A e B.

19 180 Licenciatura em Ciências USP/Univesp Módulo 1 Resolução: Pela Lei dos Cossenos, temos: Como cos 135 = cos 45 = então (AB) = (AC) + (BC) AC.BC.cos 135 (AB) 631,6 de onde AB 161,96 m.. Na Figura 8.1, estão representados os pontos A e B situados em margens opostas de um rio. Para calcular a distância AB, o topógrafo considerou um ponto C de onde fosse possível mirar os pontos A e B. Em seguida, com uma trena, mediu BC, encontrando 300 m, e, com o teodolito, mediu os ângulos ACB e ABC, encontrando 85 e 75, respectivamente. Quanto mede AB aproximadamente? Resolução: Em primeiro lugar, sabendo que a soma dos ângulos de um triângulo é 180 o, determinamos o ângulo A= BAC = 0. Pela Lei dos Senos, temos: 300 sen0 = AB sen85 Figura 8.1: Encontrar a distância entre A e B. de onde temos 300.sen85 AB = sen 0 ou seja, usando uma calculadora, obtemos AB 874 Glossário Acutângulo: Todos os ângulos são agudos. Obtusângulo: Há no triângulo um ângulo obtuso. Parsec: Distância produzida por uma paralaxe anual média de um segundo de arco. 8 Trigonometria no triângulo retângulo

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 8/0/017 Parte I - 5 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona a opção

Leia mais

Aula 11: Distâncias Astronômicas.

Aula 11: Distâncias Astronômicas. Aula 11: Distâncias Astronômicas. Maria de Fátima Oliveira Saraiva, Kepler de Souza Oliveira Filho & Alexei Machado Müller. Ilustração do uso da triangulação para medir a distância da Terra à Lua. Introdução

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen65º = 0,91; cos65º = 0,42 e tg65º = 2,14) 2. Determine no

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

Aula 11: Distâncias Astronômicas

Aula 11: Distâncias Astronômicas Aula 11: Distâncias Astronômicas Maria de Fátima Oliveira Saraiva, Kepler de Souza Oliveira Filho & Alexei Machado Müller. Ilustração do uso da triangulação para medir a distância da Terra à Lua. Unidades

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo.

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Tarefa 4 Aluna: Monique Andrade da Conceição Grupo: 5 Tutor: LEZIETI CUBEIRO

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Formação continuada para professores de matemática Fundação CECIERJ/SEEDUC-RJ Colégio: E.E Lucas da Silva - 1 ano turma 1001 Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Introdução

Leia mais

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que Matemáticas Revisão de trigonometria Professor Luiz Amaral E- 1. (Uepg 01) Em um triângulo, as medidas dos lados, em cm, são números inteiros consecutivos e o ângulo maior é igual ao dobro do ângulo menor.

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Aula 10 Trigonometria

Aula 10 Trigonometria Aula 10 Trigonometria Metas Nesta aula vamos relembrar o teorema de Pitágoras, introduzir e aplicar as importantes razões trigonométricas, obtidas a partir dos lados de um triângulo retângulo. Objetivos

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente MATEMÁTICA CADERNO CURSO D ) I) x 0 As raízes são e e o gráfico é do tipo FRENTE ÁLGEBRA n Módulo 7 Sistema de Inequações ) I) x x 0 As raízes são e e o gráfico é do tipo Logo, x ou x. II) x x 0 As raízes

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por: A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

LISTA DE EXERCÍCIOS 3º ANO

LISTA DE EXERCÍCIOS 3º ANO Questão Considere a figura. (3-3 ) cm O trajeto ACDB tem comprimento mínimo quando B, D e H são colineares. Com efeito, se D' é um ponto da reta DK e C' é o pé da perpendicular baixada de D' sobre a reta

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Trigonometria. 1 História. 2 Aplicações

Trigonometria. 1 História. 2 Aplicações Trigonometria 1 História As origens da trigonometria são incertas. É possível encontrar problemas que envolvem a cotangente no Papiro Rhind e uma notável tábua de secantes na tábua cuneiforme babilônica

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos

Leia mais

SENO do ângulo agudo é o quociente entre a medida do cateto oposto ao ângulo e a medida da hipotenusa, e assim o representamos: sen = e sen =.

SENO do ângulo agudo é o quociente entre a medida do cateto oposto ao ângulo e a medida da hipotenusa, e assim o representamos: sen = e sen =. IFSP - EAD_- TRIGONOMETRIA RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO CONCEITUAÇÃO: No capítulo anterior foram aordadas as relações métricas no triângulo retângulo, e você deve ter perceido que em nenhuma

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Aula 1. Exercício 1: Exercício 2:

Aula 1. Exercício 1: Exercício 2: Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Distâncias Inacessíveis de se Medir

Distâncias Inacessíveis de se Medir Reforço escolar M ate mática Distâncias Inacessíveis de se Medir Dinâmica 7 1ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Médio 1ª Geométrico Utilizar as razões trigonométricas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

Fundação CECIERJ/Consórcio CEDERJ

Fundação CECIERJ/Consórcio CEDERJ Fundação CECIERJ/Consórcio CEDERJ Matemática 1 Ano do Ensino Médio 3 Bimestre Plano de trabalho TRIGONOMETRIA NA CIRCUNFERÊNCIA TAREFA 2 CURSISTA: RODOLFO DA COSTA NEVES TUTOR (A): ANALIA MARIA FERREIRA

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Trigonometria no triângulo retângulo

Trigonometria no triângulo retângulo COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais