Funções Trigonométricas

Tamanho: px
Começar a partir da página:

Download "Funções Trigonométricas"

Transcrição

1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas Prof.: Rogério Dias Dalla Riva

2 Funções Trigonométricas 1.Funções Trigonométricas.Identidades Trigonométricas 3.Cálculo de Funções Trigonométricas 4.Resolução de Equações Trigonométricas

3 1. Funções trigonométricas Há duas maneiras usuais de encarar o estudo da trigonometria. Em uma delas, definem-se as funções trigonométricas como razões de dois lados de um triângulo retângulo. Em outra, tais funções são definidas em termos de um ponto no lado terminal de um ângulo arbitrário. Definem-se a seguir, de ambos os pontos de vista, as seis funções trigonométricas. 3

4 1. Funções trigonométricas Definição pelo Triângulo Retângulo: 0 <θ<π/ cat. op. hip. sen θ = csc θ = hip. cat. op. cat. adj. hip. cos θ = sec θ = hip. cat. adj. cat. op. cat. adj. tg θ = cot θ = cat. adj. cat. op. 4

5 1. Funções trigonométricas Definição como Função Circular: θ é um ângulo arbitrário em posição padrão e (x, y) é um ponto no lado terminal do ângulo. y r sen θ = csc θ = r y x r cos θ = sec θ = r x y x tg θ = cot θ = x y 5

6 . Identidades trigonométricas Na segunda definição das seis funções trigonométricas, o valor de r é sempre positivo. Decorre daí que os sinais das funções trigonométricas são determinados a partir dos sinais de x e y. tg θ = sen θ cos θ cos θ 1 cot θ = sec θ = sen θ cos θ 1 1 cot θ = csc θ = tg θ sen θ 6

7 . Identidades trigonométricas Além disso, como y x x + y r sen θ + cos θ = + = = = 1 r r r r obtemos a Identidade de Pitágoras. Nota: Usa-se o símbolo sen θ para representar (sen θ). 7

8 . Identidades trigonométricas Identidades Pitagóricas sen + cos = 1 tg cot θ θ + 1= sec θ θ + 1= csc θ θ 8

9 . Identidades trigonométricas Soma ou Diferença de Dois Ângulos sen ( θ ± φ) = sen θ cos φ ± cos θ sen φ cos ( θ ± φ) = cos θ cos φ sen φ sen θ tg θ ± tg φ tg ( θ ± φ) = 1 tg θ tg φ 9

10 . Identidades trigonométricas Ângulo Duplo sen θ = sen θ cos θ cos θ = cos θ sen θ θ = θ = sen θ cos cos

11 . Identidades trigonométricas Fórmulas de Redução sen ( θ ) cos ( θ ) = cos θ tg( θ ) = sen θ = tg θ sen θ = sen ( θ π ) cos θ = cos ( θ π ) tg θ = tg ( θ π ) 11

12 . Identidades trigonométricas Ângulo Metade 1 1 sen θ = (1 cos θ ) cos θ = (1+ cos θ ) 1

13 3. Cálculo de funções trigonométricas Exemplo 1: Calcule o seno, o cosseno e a tangente de π/3. Inicialmente, tracemos o ângulo θ = π/3 em posição padrão, conforme a figura ao lado. 13

14 3. Cálculo de funções trigonométricas Exemplo 1: Calcule o seno, o cosseno e a tangente de π/3. Como π/3 radianos correspondem a 60 o, podemos imaginar um triângulo equilátero com lados de comprimento 1 e θ como um de seus ângulos. Como a altura do triângulo bissecciona sua base, sabemos que x = ½. Assim, pelo Teorema de Pitágoras, temos 14

15 3. Cálculo de funções trigonométricas Exemplo 1: Calcule o seno, o cosseno e a tangente de π/ y = r x = 1 = = 4 Portanto: 3 π y 3 sen = = = 3 r 1 1 π x 1 cos = = = 3 r 1 3 π y tg = = = 3 3 x 1 15

16 A seguir são apresentados os senos, cossenos e tangentes de vários ângulos usuais. Medida em graus de θ 0 30 o 45 o 60 o 90 o Medida em radianos de θ 0 π/6 π/4 π/3 π/ sen θ 0 1/ 3 1 cos θ 1 3 1/ 0 tg θ Cálculo de funções trigonométricas nãodefinido 16

17 3. Cálculo de funções trigonométricas Para entender a utilização dos valores da tabela anterior a ângulos em quadrantes que não o primeiro, valemo-nos do conceito de ângulo de referência, conforme a figura acima, juntamente com o sinal adequado do quadrante. 17

18 3. Cálculo de funções trigonométricas O ângulo de referência para um ângulo θ é o menor ângulo positivo entre o lado terminal de θ e o eixo x. Por exemplo, o ângulo de referência para 135 o é 45 o, e o ângulo de referência para 10 o é 30 o. 18

19 3. Cálculo de funções trigonométricas Exemplo : Calcule: (a) sen 3π/4, (b) tg 330 o (c) cos 7π/6. e Como o ângulo de referência para 3π/4 é π/4 e o seno é positivo no segundo quadrante, podemos escrever 3π π sen = sen =

20 3. Cálculo de funções trigonométricas Exemplo : Calcule: (a) sen 3π/4, (b) tg 330 o (c) cos 7π/6. e Como o ângulo de referência para 330 o é 30 o e a tangente é negativa no quarto quadrante, podemos escrever tg o o 330 = tg 30 = 3 3 0

21 3. Cálculo de funções trigonométricas Exemplo : Calcule: (a) sen 3π/4, (b) tg 330 o (c) cos 7π/6. e Como o ângulo de referência para 7π/6 é π/6 e o cosseno é negativo no terceiro quadrante, podemos escrever 7π π 3 cos = cos = 6 6 1

22 3. Cálculo de funções trigonométricas Exemplo 3: Calcule: (a) sen (-π/3), (b) sec 60 o, (c) cos 15 o, (d) sen π, (e) cot 0 o e (f) tg (9π/4). (a) Pela fórmula de redução sen (-θ) = - sen θ. π π 3 sen sen 3 = = 3 (b) Pela fórmula do inverso, sec θ = 1/cosθ. o 1 1 sec 60 = = = o cos60 1/

23 3. Cálculo de funções trigonométricas Exemplo 3: Calcule: (a) sen (-π/3), (b) sec 60 o, (c) cos 15 o, (d) sen π, (e) cot 0 o e (f) tg (9π/4). (c) Pela fórmula da diferença cos (θ - φ) = cos θ cos φ + sen θ sen φ. ( ) o o o o o o o cos15 = cos = cos 45 cos30 + sen 45 sen30 = = + = 4 (d) Como o ângulo de referência para π é 0, sen π = sen 0 = 0 3

24 3. Cálculo de funções trigonométricas Exemplo 3: Calcule: (a) sen (-π/3), (b) sec 60 o, (c) cos 15 o, (d) sen π, (e) cot 0 o e (f) tg (9π/4). (e) Utilizando a fórmula do inverso, cotg θ = 1/tg θ e o fato de que tg 0 = 0, concluímos que cotg 0 não é definida. (f) Como o ângulo de referência para 9π/4 é π/4 e a tangente é positiva no primeiro quadrante tg 9π π = tg =

25 3. Cálculo de funções trigonométricas Exemplo 4: Um agrimensor de pé, está a 50 pés de distância da base de uma grande árvore. Ele mede o ângulo de elevação em relação ao topo da árvore e obtém 71,5 o. Qual é a altura da árvore? o y tg 71,5 = x y = x tg 71,5 y 50,98868 y 149,4 pés o 5

26 3. Cálculo de funções trigonométricas Exemplo 5: Para medir a extensão de sua visão periférica, fique em pé, à distância de 1 pé do canto de uma sala, olhando para o canto. Faça com que outra pessoa mova um objeto ao longo da parede, até que você mal possa vê-lo. Se o objeto está a pés do canto, conforme a figura seguinte, qual é o ângulo total de sua visão periférica? 6

27 3. Cálculo de funções trigonométricas Seja α o ângulo total de sua visão periférica. Conforme a figura abaixo, podemos modelar a situação física com um triângulo retângulo isósceles cujos catetos têm 1/ pés cada um e cuja hipotenusa tem pés. No triângulo, o ângulo θ é dado por y tg θ = x tg θ = 1 tg θ 3,414 7

28 3. Cálculo de funções trigonométricas Utilizando a função inversa da tangente em uma calculadora, podemos determinar θ 73,7 o Assim, α/ 180 o - 73,7 o = 106,3 o, o que implica que α 1,6 o. Em outras palavras, o ângulo total de sua visão periférica é da ordem de 1,6 o. 8

29 4. Resolução de equações trigonométricas Considere, por exemplo, a equação sen θ = 0. Sabemos que θ = 0 é uma solução. Por outro lado, no Exemplo 3d, vimos que θ = π é outra solução. Mas estas não são as únicas soluções. Na verdade, esta equação tem um número infinito de soluções. Qualquer um dos valores seguintes de θ serve:, 3 π, π, π, 0, π, π, 3 π, Para simplificar a situação, costumamos restringir a busca de soluções ao intervalo 0 θ π. 9

30 4. Resolução de equações trigonométricas Exemplo 6: Resolva cada equação em relação a θ. Suponha 0 θ π. ( a) sen θ = 3 ( b) cos θ = 1 ( c) tg θ = 1 30

31 4. Resolução de equações trigonométricas, notemos pri- (a) Para resolver a equação meiro que sen θ = 3 3 sen π = 3 Como o seno é negativo no terceiro e quarto quadrantes, devemos procurar valores de θ nesses quadrantes que tenham ângulo de referência de π/3. Os dois ângulos que satisfazem estes critérios são: θ = π + π/3 = 4π/3 e θ = π - π/3 = 5π/3. 31

32 4. Resolução de equações trigonométricas (b) Para resolver cos θ = 1, notemos que cos 0 = 1 e que, no intervalo [0, π], os únicos ângulos cujos ângulos de referência são 0 são os ângulos 0, π e π. Destes, 0 e π têm cosseno 1. (O cosseno de π é -1). Assim, a equação tem duas soluções: θ = 0 e θ = π 3

33 4. Resolução de equações trigonométricas (c) Como tg π/4 = 1 e a tangente é positiva no primeiro e no terceiro quadrantes, temos que as duas soluções são: θ = π/4 e θ = π + π/4 = 5π/4 33

34 4. Resolução de equações trigonométricas Exemplo 7: Resolva, em relação a θ, a equação cos θ = 3 sen θ, 0 θ π Podemos utilizar a identidade do ângulo duplo cos θ = 1 sen θ Para escrever a equação como segue: cos θ = 3sen θ 1 sen θ 3 = sen sen θ sen θ 3 + 1= 0 θ (sen θ 1) ( sen θ 1) = 0 34

35 4. Resolução de equações trigonométricas Para sen θ - 1 = 0, temos sen θ = 1/, que tem as soluções θ = π/6 e θ = 5π/6. Para sen θ - 1 = 0, temos sen θ = 1, que tem a solução θ= π/ Assim, para 0 θ π, as três soluções são θ = π/6, π/ e 5π/6 35

Medida de Ângulos em Radianos

Medida de Ângulos em Radianos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Medida de Ângulos

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Extensão da tangente, secante, cotangente e cossecante, à reta.

Extensão da tangente, secante, cotangente e cossecante, à reta. UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 05- Trigonometria - Parte - Tan-Cot_Sec-Csc PARTE II TANGENTE COTANGENTE SECANTE COSSECANTE Agora estudaremos as funções tangente, cotangente, secante

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Trigonometria - atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian

Plano de Ensino. Dados de Identificação. Clarice Fonseca Vivian CAMPUS CAÇAPAVA DO SUL CURSO DE LICENCIATURA EM CIÊNCIAS EXATAS PIBID MATEMÁTICA Plano de Ensino Escola Disciplina Bolsista Dados de Identificação Matemática Clarice Fonseca Vivian Conteúdos Funções trigonométricas:

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

As funções Trigonométricas

As funções Trigonométricas Funções Periódicas Uma função diz-se periódica se se repete ao longo da variável independente com um determinado período constante. Quando se observam fenômenos que se repetem periodicamente, como temperatura

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

Obter as equações paramétricas das cônicas.

Obter as equações paramétricas das cônicas. MÓDULO 1 - AULA 1 Aula 1 Equações paramétricas das cônicas Objetivo Obter as equações paramétricas das cônicas. Estudando as retas no plano, você viu que a reta s, determinada pelos pontos P = (x 1, y

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica Universidade Federal do ABC Aula 18 Substituição Trigonométrica BCN0402-15 FUV SUBSTITUIÇÃO TRIGONOMÉTRICA Substituição Trigonométrica Introdução: Um exemplo A área de um círculo ou uma elipse é dada por

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

Topografia Exercícios de Trigonometria

Topografia Exercícios de Trigonometria Topografia Exercícios de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros Luizmiguel.barros@yahoo.com.br 1) Some os ângulos. A) 19 23 15 + 72 21 12 (graus

Leia mais

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca

Leia mais

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora

TRIGONOMETRIA. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega. 1º Bimestre. Maria Auxiliadora TRIGONOMETRIA Aua Trigonometria no Triânguo Retânguo Professor Luciano Nóbrega º Bimestre Maria Auxiiadora Eementos de um triânguo retânguo ß a cateto adjacente ao ânguo ß B c A Lembre-se: A soma das medidas

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

REVISÃO DE CONCEITOS BÁSICOS

REVISÃO DE CONCEITOS BÁSICOS Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

Medir um arco ou ângulo é compará-lo com outro, unitário.

Medir um arco ou ângulo é compará-lo com outro, unitário. Trigonometria A palavra trigonometria vem do grego (tri+gonos+metron, que significa três+ângulos+medida) e nos remete ao estudo das medidas dos lados, ângulos e outros elementos dos triângulos. Historicamente,

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

Trigonometria Funções Trigonométricas

Trigonometria Funções Trigonométricas Trigonometria Funções Trigonométricas imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x) = sen x y f(x) = R R Imagem: [-,] Período: 3 0 0 0 x - 3 - período imagem: [ -, ] Prof. FUNÇÕES TRIGONOMÉTRICAS f(x)

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

Notas de Aula de Matemática Básica I

Notas de Aula de Matemática Básica I UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10min) Acomodação dos alunos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 8º e 9º ano 1.3 Turno: manhã 1.4 Data: 09/10 Lauro Dornelles e 14/10 Oswaldo Aranha 1.5 Tempo

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

Aula Trigonometria

Aula Trigonometria Aula 4 4. Trigonometria A trigonometria estabelece relações precisas entre os ângulos e os lados de um triângulo. Definiremos as três funções (mesmo se a própria noção de função será estudada no próximo

Leia mais

O CASO INVERSO DA QUEDA LIVRE

O CASO INVERSO DA QUEDA LIVRE O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ. 2 a Lista de Exercícios - Matemática Básica II Professor Márcio Nascimento UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática a Lista de Exercícios - Matemática Básica II - 015.1 Professor Márcio Nascimento 1. Encontre a medida em radianos do ângulo θ, sendo θ o ângulo

Leia mais

b) Todos eles possuem uma característica em comum. Qual é esta característica?

b) Todos eles possuem uma característica em comum. Qual é esta característica? ATIVIDADE INICIAL 1 Título da Atividade: Comparando triângulos a) Quantos triângulos você enxerga na figura? Escreva os seus nomes (por exemplo: ABC) ABC, BEF, BDG b) Todos eles possuem uma característica

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

Matemática Trigonometria TRIGONOMETRIA

Matemática Trigonometria TRIGONOMETRIA TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

Razões Trigonométricas

Razões Trigonométricas Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer gigferrer@uesc.br 13 de Agosto de 2013 Problema 13 (The New York City Contest - Outono 1983) No triângulo ABC, sin 2 A + sin 2 B = 1. Encontre

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais