Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo"

Transcrição

1 Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática 10 de setembro de 014 Vamos, agora, entrar para valer na trigonometria. Veremos as relações trigonométricas (ainda não são as funções!) definidas em um triângulo retângulo. Mais adiante veremos as funções a partir do ciclo trigonométrico e, depois, a trigonometria em um triângulo qualquer. 1 Triângulos Na escola, é comum dizer que um triângulo é uma figura geométrica de três lados. Mas por quê os lados são segmentos de retas e não arcos de circunferência, por exemplo? Figura 1: À esquerda, uma curva fechada com bicos em A, B, C. À direita, um triângulo plano. Para entendermos bem, é preciso saber o conceito de geodésica. No plano, sabemos que a menor distância entre dois pontos é sempre o caminho reto. Já em uma superfície esférica, por exemplo, não podemos dizer o mesmo, uma vez que não existem retas sobre uma esfera! Neste tipo de superfície, o menor caminho entre dois pontos é um círculo máximo, isto é, uma circunferência sobre a superfície esférica cujo centro coincide com o centro da esfera. As curvas que minimizam a distância em uma determinada superfície são chamadas de geodésicas. Por isso as geodésicas do plano são as retas. Na esfera, as geodésicas são os círculos máximos. Assim, definimos um triângulo como a figura formada por três pontos que não estejam sobre uma mesma geodésica e os caminhos geodésicos ligando tais pontos entre si. Um triângulo 1

2 no plano é, então, a figura formada por três pontos não colineares e os segmentos de reta que ligam esses pontos entre si. Figura : Triângulo Plano. Em um triângulo plano, os pontos de encontro dos segmentos de reta são chamados vértices e os segmentos são chamados lados. Os ângulos internos são aqueles formados pelos lados. Geralmente os vértices são representados com letras maiúsculas e os lados com letras minúsculas. A letra minúscula x representa o lado oposto ao vértice X. 1.1 Soma dos ângulos internos de um triângulo plano Os triângulos no plano possuem alguns invariantes, isto é, características que independem de suas medidas (lados ou ângulos). Teorema 1 A soma dos ângulos internos de um triângulo plano é sempre igual a um ângulo raso. Prova: Considere um triângulo de vértices A, B, C como mostra a Figura. Figura : Triângulo Plano. Traçando pelo vértice C uma reta paralela ao lado AB e, também, os prolongamentos dos lados AC e BC, determinamos os ângulos 1,,. Inicialmente, observe que os ângulos Ĉ e são opostos pelo vértice. Portanto, são iguais. Além disso, sendo a reta traçada paralela ao lado AB, os ângulos  e são iguais. Pelo mesmo motivo, os ângulos B e 1 também são iguais. Desta forma, a soma dos ângulos 1, e é igual a soma dos ângulos Â, B e Ĉ. Ora, mas somados, os ângulos 1, e formam um ângulo raso. Daí,  + B + Ĉ = 1800

3 1. Triângulo Retângulo Quando um dos ângulo internos de um triângulo é um ângulo reto, temos um triângulo retângulo, como mostra a Figura 4. Figura 4: Triângulo Retângulo. O lado oposto ao ângulo reto é chamado hipotenusa 1 e os demais lados são os catetos. Relações Trigonométricas Os triângulos retângulos possuem importantes relações entre as medidas dos seus lados. Elas auxiliam na resolução de diversas situações práticas..1 Seno Considere um ângulo agudo α e os segmentos paralelos A 1 B 1, A B, A B... como mostra a Figura 5. Note que os segmentos A i B i são perpendiculares a um dos lados do ângulo α. Figura 5: Ângulo agudo e triângulos semelhantes. Vemos ai, vários triângulos retângulos e semelhantes, pois em todos eles temos dois ângulos comuns, a saber, α e o ângulo reto. Com isso, A 1 B 1 OA 1 = A B OA = A B OA =... e, portanto, temos uma relação que não depende do tamanho dos lados do triângulo. Essa relação será chamada seno do ângulo α. Notação: senα = AB OA 1 Do grego, contrário à. Do grego, que cai perpendicular. ou senα = cateto oposto hipotenusa.

4 Exemplo (Aplicação - Cálculo do Raio da Terra) No alto de um farol à beira-mar, por exemplo, podemos estimar o raio da terra... Subindo no alto de um farol, do qual seja possível ter uma visão limpa da linha do horizonte, podemos estimar o raio da Terra usando a relação trigonométrica seno. Para tanto, vamos admitir que a altura da torre (farol) é conhecida e que é possível medir o ângulo formado pela torre e a linha de visão do observador em direção ao horizonte (o ângulo em A). Figura 6: Esquematização para cálculo do raio da Terra usando a relação seno. Chamando de R o raio da Terra e lembrando que o ponto T que determina o ponto onde a visão do observador alcança, é tangente à superfície esférica (Terra), temos um triângulo retângulo em T de vértices O, A e T. Portanto, OA é hipotenusa e AT, OT são catetos. Usando a relação seno, teremos: Isolando R, senâ = R = R = (R + h).senâ = R R.sen = h.senâ R + h h.senâ R(1 senâ) = h.senâ = R = 1 senâ. Cosseno e Tangente Assim como no caso da relação seno, a semelhança entre os triângulos na Figura 5 nos dá outras duas relações que também não dependem da medida dos lados. Subsistem as seguintes relações: OB 1 OA 1 = OB OA = OB OA =... A 1 B 1 OB 1 = A B OB = A B OB =... Essas serão chamadas, respectivamente, cosseno e tangente do ângulo α. Notação: cos α = OB OA ou cos α = cateto adjacente hipotenusa 4

5 tgα = AB OB ou cos α = cateto oposto cateto adjacente Veja que decorre desta definição a seguinte relação: ( ) b tgα = b a = c ( a c ) = senα cos α. Relação Fundamental Considere um triângulo retângulo e um de seus ângulos, digamos, Â. Figura 7: Triângulo Retângulo em C. Já conhecemos as relações trigonométricas seno e cosseno. Portanto, podemos escrever: ( ) a sen  + cos  = + c Pelo Teorema de Pitágoras, a + b = c. Portanto,.4 Alguns resultados básicos sen  + cos  = 1 ( ) b = a + b c c Proposição Se  e B são ângulos complementares, então senâ = cos B, sen B = cos  e tgâ = 1 Prova: Considere um triângulo retângulo como na Figura 8. Considerando as relações trigonométricas para os ângulos  e B, temos: senâ = a c = cos B tg B sen B = b c = cos  tgâ = a b = 1 b a = 1 tg B 5

6 Proposição 4 (i) Se α é um ângulo no intervalo (0 0, 45 0 ), então (ii) Se x é um ângulo no intervalo (0 0, 90 0 ), então senα =.senα. cos α sen x = 1 cos x Prova: (i) Considere um triângulo isósceles onde os lados congruentes medem 1. Traçando a bissetriz pelo ângulo no vértice O, determinamos o ponto médio do lado BC, o ponto A. Vamos chamar de α a medida dos ângulos BÔA e AÔC, que são congruentes e traçar a altura relativa ao lado OC. Isso determina o ponto D e BD é uma altura para o triângulo. Figura 8: Triângulo Isósceles com lados congruentes medindo 1. Assim, podemos calcular a área do triângulo BOC de duas formas: OA.BC = BD.OC Encontremos os tamanhos dos segmentos em função de α. Veja que OA = cos α. Sendo OB = 1, temos OB (1) OA = cos α Análogamente, BA = senα e BA = senα. Como A é ponto médio do lado BC, segue que OB BC = BA, isto é: BC =.senα Considerando o triângulo retângulo BOD, temos que BD = senα. Daí OB BD = senα 6

7 pois OB = 1. Além disso, Substituindo em (1), temos: OC = 1 e portanto cos α..senα = senα.1 senα =. cos α.senα (ii) Considerando o triângulo da Figura 9, seja β o ângulo no vértice C. Veja que Figura 9: Triângulo Isósceles com lados congruentes medindo 1. Por outro lado, no triângulo BOD, vemos que OD OB Já no triângulo BDC, temos DC BC OD + DC = 1 () OD = cos α = cos β e portanto DC = BC. cos β Além disso, BA = senα e BC = BA implica que OB Fazendo a substituição em (), temos: como α e β são complementares, Isolando senα, teremos: BC =.senα = cos α. Sendo OB = 1, temos (cos α + BC. cos β = 1 = cos α +.senα. cos β = 1 cos α +.senα.senα = 1 =.sen α = 1 cos α 7

8 ou senα = 1 cos α sen x = 1 cos x.5 Ângulos Especiais Considere um triângulo equilátero de lado 1, como mostra a Figura 10. A bissetriz do ângulo no vértice em A, coincide com altura relativa ao lado BC e a mediana deste mesmo lado. Figura 10: Triângulo Equilátero de lado 1. Aplicando o Teorema de Pitágoras no triângulo ADC, temos AC = AD + DC isto é, 1 = AD e AD =. Sendo AC = 1, AD = trigonométricas no triângulo ADC, tem-se:, DC = 1 e fazendo uso das relações sen0 0 = DC AC = 1 cos 0 0 = AD AC = tg0 0 = DC AD = 1/ = / Ademais, sendo 0 0 e 60 0 ângulos complementares, segue que cos 60 0 = sen0 0 = 1 sen60 0 = cos 0 0 = 8

9 tg60 0 = 1 tg0 0 = 1 = Para o ângulo de 45 0, considere o triângulo isósceles como mostra a Figura 11. Figura 11: Triângulo Isósceles com ângulos internos de Pelo Teorema de Pitágoras: BC = AB + AC isto é, BC = = e portanto, BC =. Daí, sen45 0 = AC BC = 1 = Assim, temos a famosa tabela: cos 45 0 = sen45 0 tg45 0 = AC AB = 1 Ângulo Seno Cosseno Tangente

10 Podemos obter valores para o seno, cosseno e tangente sem o uso de calculadora também para o ângulo de Considere um triângulo isósceles cujos lados congruentes medem 1 e que 6 0 é o ângulo formado por tais lados, como mostra a Figura 1.. Obviamente os demais ângulos internos são ambos iguais a 7 0. Seja x o terceiro lado. Figura 1: Triângulo Isósceles ABC com um dos ângulos internos medindo 6 0. Seja CD a bissetriz do ângulo Ĉ. O ângulo Ĉ é dividido, então, em dois ângulos iguais a 6 0 e é determinado o ponto D sobre o segmento AB. Veja que os triângulos ABC e CDB são semelhantes! Além disso, o triângulo ADC terá, então, dois ângulos internos iguais a 6 0. Isso implica que ADC é isósceles e que, sendo CD igual a x, necessariamente AD = x. Isso significa que AC CB = CB e fazendo as substituições, DB cuja solução positiva é 1 x = x 1 x = x + x 1 = 0 CB = x = 5 1 Figura 1: Triângulo Isósceles ABC com um dos ângulos internos medindo 6 0. Tomando, agora, a bissetriz do ângulo Â, determina-se o ponto H, médio do lado CB (Figura 1). Pelo fato do triângulo ABC ser isósceles, AH também é altura para tal triângulo. Isso 10

11 garante que AHB é retângulo em H. Daí, sen18 0 = HB AB = x/ 1 = Pela relação fundamental, cos sen 18 0 = 1 e cos 18 0 = 4 e tg18 0 = sen180 cos 18 0 = Usando a relação fundamental e as Proposições () e (4) podemos encontrar seno, cosseno e tangente para, por exemplo, Exercícios (Fonte: Trigonometry, Cynthia Young, rd Edition) 9 0 = 180, 60 = 18 0., 7 0 = Como parte de uma corrida de obstáculos os participantes devem subir até o topo de uma escada colocada no lado de fora de um prédio e depois usar uma corda para escalar o resto do caminho até chegar ao telhado. A distância percorrida pode ser calculada utilizando a fórmula d = 15senθ + 4, onde θ é o ângulo que a escada faz com o chão e d a distância percorrida medida em metros. Encontre a distância exata percorrida pelos participantes quando θ = Um balão de ar quente é amarrado por cordas, por dois lados, formando um ângulo de 45 0 com o pavimento. Se a altura do balão pode ser determinada multiplicando o comprimento da corda pelo seno de 45 0, encontre a altura exata do balão quando cordas de 100m são usadas.. Um satélite (de 108m de comprimento e 7m de largura) está em órbita a uma distância de 400km da terra. Se uma das antenas de comunicação da terra tem um desvio de 1, o que se pode dizer sobre os sinais trocados com o satélite? 4. Encontre a medida solicitada no triângulo retângulo (Figura 14) de acordo com as medidas dadas: (a) B = 5 0, c = 17. Encontre a. (b) Â = 550, c =. Encontre a. (c) Â = 0.50, b = Encontre a. (d) B = 5 0, a = 11. Encontre c. (e) Â = 48.50, a = Encontre c. (f) a = 9, c = 8. Encontre Â. (g) b =., c = 4.9. Encontre Â. 11

12 Figura 14: Triângulo Retângulo. (h) Â = 10 17, b = Encontre a. (i) B = , a = 10.. Encontre c. (j) Â = , a = 1.5. Encontre c. 5. Resolva o triângulo retângulo (Figura 14) de acordo com as medidas dadas: (a) Â = 0, c = 1 (b) Â = 440, b =.6 (c) Â = 600, c = 5 (d) B = 7 0, c = 9.7 (e) Â = 54.0, a = 111 (f) B = 45 0, b = 10. (g) Â = 80, b = 174 (h) a = 45., b = 8.7 (i) a = 5.6, c = A Figura 15 mostra uma situação de reabastecimento de aeronave em pleno ar, muitas vezes utilizado por aviões militares. O ângulo de elevação da mangueira com relação ao plano do avião que será reabastecido é de 6 0. Se a mangueira tem 150m qual deve ser a diferença de altitude entre as duas aeronaves? Figura 15: Reabastecimento de Aviões em pleno ar. 1

13 7. Se um helicóptero de busca e resgate está voando a uma altitude de 150m acima do nível do mar (Figura 16), qual o diâmetro do círculo iluminado na superfície da água? Figura 16: Helicóptero de busca e resgate. 8. Órbitas geoestacionárias são úteis pois fazem com que o satélite pareça imóvel em relação a um ponto fixo na Terra. Algumas antenas das ditas TVs por assinatura (antenas tipo prato) podem apontar numa direção fixa e manter um link com o satélite. Esse tipo de satélite orbita na direção da rotação da Terra a uma altitude de aproximadamente quilômetros. (a) Se sua antena de TV tem um erro de 1 (1 segundo) na direção, que tamanho o satélite deveria ter para manter o link? (b) Se o satélite em uma órbita geoestacionária tem 10 metros de comprimento, qual o erro máximo que a antena pode ter ao apontar para o satélite? 9. Um canal construído para abastecer com água uma determinada comunidade tem seção tranversal em forma de triângulo isósceles. Quando foi construído, o canal tinha uma profundidade de 5m e o ângulo que define a forma do canal é de Se a superfície da água no canal hoje é de 4m, encontre a profundidade da água que corre pelo canal. 10. Do topo de uma escada de 1m o ângulo de depressão para o lado mais distante da calçada é de Já o ângulo de depressão para o ponto mais próximo da calçada é de Qual a largura da calçada? 1

14 11. A estrutura das moléculas é fundamental para o estudo de química orgânica e tem inúmeras aplicações para uma variedade de fenômenos interessantes. A trigonometria desempenha um papel importante na determinação de ângulos de ligação de moléculas. Por exemplo, a estrutura do íon (FeCl 4 Br ) é mostrada na figura ao lado. Determine o ângulo θ entre o eixo no qual estão os átomos de Br e o segmento ligando Br a Cl. 1. Usando a informação contida na Figura 17 encontre a altura da montanha. Figura 17: 1. Determine o valor de x no triângulo da Figura Respostas 1. m. 50 m. Haverá um desvio de cerca de 116m. Haverá perda de sinal. 4. (a) a = 14 (b) a = 18 (c) a =

15 Figura 18: (d) c = 1 (e) c = 0.6 (f) Â = 500 (g) Â = 60 (h) a = 8.1 (i) c = 10.6 (j) c = (a) B = 58 0, a = 6.4, b = 10 (b) a =.5, c =.6, B = 46 0 (c) a = 5, b = 5, B = 0 0 (d) Â = 180, a =.0, b = m 7. 80m (e) B = 5.8 0, b = 80.1, c = 17 (f) a = 10, c = 14, Â = 450 (g) B = , a = 96.9, c = 1971 (h) Â = 56.00, B, c = 51. (i) Â = , B = , b = 4, 5 8. (a) 170m 9..5m 10..4m m 1. (b)

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

1. Converta para a forma decimal: (a) (b) (c) (d) (e)

1. Converta para a forma decimal: (a) (b) (c) (d) (e) UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Ângulos Matemática Básica II - 2015.1 Professor Márcio Nascimento Fontes: Practice Makes Perfect - Trigonometry

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade 1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

SENO do ângulo agudo é o quociente entre a medida do cateto oposto ao ângulo e a medida da hipotenusa, e assim o representamos: sen = e sen =.

SENO do ângulo agudo é o quociente entre a medida do cateto oposto ao ângulo e a medida da hipotenusa, e assim o representamos: sen = e sen =. IFSP - EAD_- TRIGONOMETRIA RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO CONCEITUAÇÃO: No capítulo anterior foram aordadas as relações métricas no triângulo retângulo, e você deve ter perceido que em nenhuma

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Complemento Matemático 04 Ciências da Natureza I RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Física - Ensino Médio Material do aluno

Complemento Matemático 04 Ciências da Natureza I RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Física - Ensino Médio Material do aluno A Trigonometria é a parte da Matemática que estuda os triângulos e seus elementos, como ângulos, lados e alturas. Atualmente ela não fica limitada ao estudo dos triângulos. E podemos observar a presença

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 11º Ano Versão 1 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta.

ÂNGULOS. Dados dois pontos distintos, a reunião do conjunto desses dois pontos com o conjunto dos pontos que estão entre eles é o segmento de reta. ÂNGULOS 1 CONSIDERAÇÕES PRELIMINARES 1.1 Notação de ponto, reta e plano: a) Letras: Ponto: letras maiúsculas: A, B, C,... Reta: letras minúsculas: a,b,c... Plano: letras gregas minúsculas: α, β, γ,...

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. GEOMETRIA ANALÍTICA CONTEÚDOS Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência. AMPLIANDO SEUS CONHECIMENTOS Neste capítulo, estudaremos a Geometria Analítica.

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Radianos e Graus. Prof. Márcio Nascimento.

Radianos e Graus. Prof. Márcio Nascimento. Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II - 2015.1

Leia mais

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA. ANEXO 7 Referente a Ação 7 5. ATIVIDADE DE PREPARAÇÃO DOS BOLSISTAS ALUNOS MINI-CURSO Construções Geométricas: Esta atividade foi desenvolvida na Universidade com o objetivo de habilitar os bolsistas em

Leia mais

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

AB de medida igual a 3 cm, qual é a medida do lado BC?

AB de medida igual a 3 cm, qual é a medida do lado BC? LEI DOS SENOS CONTEÚDO Lei dos senos AMPLIANDO SEUS CONHECIMENTOS Dado o triângulo ABC, sendo o ângulo  igual a 80, o ângulo Ĉ igual a 50 e o lado AB de medida igual a 3 cm, qual é a medida do lado BC?

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA Ana Clecia Capistrano de Maria 1, Leandro Santos Ribeiro 2, Ana Clívia Capistrano de Maria 3. 1. Instituto Federal de Educação,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Lei dos Cossenos / Lei dos Senos

Lei dos Cossenos / Lei dos Senos Aplicação da Lei dos Cossenos / Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

TRIÂNGULOS RETÂNGULOS

TRIÂNGULOS RETÂNGULOS . (Unesp 05) A figura representa a vista superior do tampo plano e horizontal de uma mesa de bilhar retangular ABCD, com caçapas em A, B, C e D. O ponto P, localizado em AB, representa a posição de uma

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

b) Todos eles possuem uma característica em comum. Qual é esta característica?

b) Todos eles possuem uma característica em comum. Qual é esta característica? ATIVIDADE INICIAL 1 Título da Atividade: Comparando triângulos a) Quantos triângulos você enxerga na figura? Escreva os seus nomes (por exemplo: ABC) ABC, BEF, BDG b) Todos eles possuem uma característica

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadriláteros 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros 2 Exercícios de Fixação Exercício 5. Seja

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: 1. (G1 - cftmg 01) O percurso reto de um rio, cuja correnteza aponta para a direita, encontra-se representado pela figura abaixo. Um nadador deseja determinar a largura do rio nesse trecho e propõe-se

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais