Estudo da Trigonometria (I)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estudo da Trigonometria (I)"

Transcrição

1 Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira Estudo da Trigonometria (I) Introdução A trigonometria é uma parte da geometria que estuda as relações entre as medidas dos lados e dos ângulos de um triângulo. Inicialmente a trigonometria era destinada ao cálculo de distâncias inacessíveis porém, atualmente, temos aplicações trigonométricas em diversos fenômenos, entre eles, os periódicos. De acordo com o referencial legal atual alguns rudimentos de trigonometria podem ser iniciados no 9º ano do Ensino Fundamental contudo, geralmente, a sistematização do conhecimento desta área ocorre no º ano do Ensino Médio. Inicialmente sugere-se a seguinte para o desenvolvimento do estudo da trigonometria: º) o estudo da proporcionalidade envolvendo as razões trigonométricas de ângulos notáveis no triângulo retângulo; º) a compreensão e definições das principais razões trigonométricas (seno, cosseno e tangente de um ângulo) no triângulo retângulo; 3º) a dedução dos valores das principais razões trigonométricas dos ângulos notáveis (30º, 45º e 60º); 4º) as aplicações das principais razões trigonométricas em situações que envolvem triângulos retângulos; 5º) a expansão das ideias de seno e cosseno de um ângulo para triângulos quaisquer (lei dos senos e lei dos cossenos); Num segundo momento as ideias a serem desenvolvidas em relação à trigonometria devem explorar: a) situações que envolvem periodicidade como, por exemplo, a projeção de sombras ou fenômenos naturais; b) a introdução do conceito de ciclo trigonométrico onde serão aplicadas as relações outrora estudadas no triângulo retângulo; c) o conhecimento de uma nova unidade de medida de arcos e de ângulos centrais (radiano); d) a relação entre a unicidade das razões trigonométricas de um determinado arco (funções trigonométricas); e) a elaboração de gráficos envolvendo as principais funções trigonométricas (função seno de um arco, função cosseno de um arco, função tangente de um arco); f) as transformações envolvendo as principais funções trigonométricas (y = c sen ax + b)(y = c cos ax + b)(y = c tan ax + b); g) as funções inversas das principais funções trigonométricas (função secante de um ângulo, função cossecante de um ângulo e função cotangente de um ângulo); h) a sistematização das fórmulas que envolvem soma de arcos, diferença entre arcos, arcos duplos e arcos-metades; i) a formalização das principais identidades trigonométricas. A proporcionalidade e a trigonometria Antes mesmo de inserir o vocabulário destinado aos conceitos trigonométricos o professor pode explorar situações que envolvam a proporcionalidade decorrida de determinadas razões trigonométricas de ângulos notáveis. Por exemplo, o professor pode solicitar ao aluno realizar medições envolvendo triângulos retângulos semelhantes e pedir que o mesmo descreva suas conclusões quando um dos ângulos agudos medir 30º.

2 Perguntas do tipo quando mede o cateto oposto de cada triângulo? e qual conclusão você pode redigir a partir de suas observações?, são muito importantes na resolução de outras situações como a que segue-se: Qual a altura do avião em relação ao chão na figura ao lado? Sugere-se que pouco a pouco o professor comece a elaborar, junto com os alunos, um vocabulário que o acompanhará nas explorações trigonométricas durantes sua escolarização. Um bom exemplo disto são as definições de cateto oposto e cateto adjacente a um ângulo pois, dependendo do ângulo que estiver se referindo, tem-se valores diferentes. Outro bom exemplo de elaboração de um vocabulário adequado ao trabalho na trigonometria é a definição de ângulo complementar (pois o seno de um ângulo agudo equivale ao cosseno de seu complementar). Cateto oposto ao ângulo C Cateto adjacente ao ângulo B Cateto adjacente ao ângulo C Cateto oposto ao ângulo B Para que o aluno perceba que as principais razões trigonométricas são constantes (para determinado ângulo) sugere-se que o professor desenvolva atividades onde os alunos possam experimentar realizar medições e comparar os resultados utilizando o mesmo ângulo. Os softwares de geometria dinâmica (como o GeoGebra) são ótimas ferramentas para realizar tais explorações. 3,6 0,554 = sen 33,69 4 0,554 = sen 33,69 7, Desta forma o aluno vai construindo, junto ao professor, as principais razões trigonométricas que são: sen α = cateto oposto hipotenusa ; cos α = cateto adjacente ; tan α = hipotenusa cateto oposto cateto adjacente

3 O papel dos ângulos notáveis na trigonometria do triângulo retângulo Os chamados ângulos notáveis (30º, 45º e 60º) são facilmente observáveis em diversas configurações por serem submúltiplos de 360º, 80º e 90º. Logo explorar o desenvolvimento das razões trigonométricas dos principais ângulos notáveis é fundamental para que o aluno se aproprie deste conhecimento e saiba, posteriormente, aplica-lo nas mais diversas situações. Basicamente o professor deve explorar o cálculo da diagonal do quadrado e da altura do triângulo equilátero para deduzir tais razões trigonométricas. Diagonal do quadrado d = l + l d = l d = l d = l No ABC temos que: sen 45 = l l = = cos 45 = l l = = tan 45 = l l = Altura do triângulo equilátero Logo temos no CDB que: sen 30 = l l No CDB temos que: l = h + ( l ) l = h + l 4 h = l l 4 h = 4l 4 l 4 h = 3l 4 h = 3l 4 h = l = l l = cos 30 = l = l l l = tan 30 = l l = l l = = 3 Também temos no CDB que: sen 60 = l = l l l = cos 60 = l = l l l = tan 60 = l = l l l =

4 Reunindo os resultados obtidos numa única tabela temos que: sen cos tan Explorando os resultados obtidos o aluno pode concluir que sen 30 = cos 60 e sen 45 = cos 45, ou seja, o seno de um ângulo agudo é igual ao cosseno de seu ângulo complementar. Outra relação que pode ser explorada é que tan 30 =. Em outras palavras isto significa que a tangente de um ângulo agudo equivale ao tan 60 inverso da tangente de seu complementar. 3 A contextualização das situações envolvendo razões trigonométricas Para que os alunos tenham uma visão adequada da trigonometria é imprescindível que os mesmos possam aplicar os conceitos desenvolvidos em situações cotidianas que lhes sejam rotineiras. Segue um bom exemplo de tais situações: Sobre uma rampa de 6 m de comprimento e inclinação de 30º com a horizontal, devem-se construir degraus de altura 5 cm. Quantos degraus desse tipo serão construídos? Inicialmente pode-se sugerir ao aluno elaborar um esquema para representar tal situação. Desta forma temos: Em se tratando de situações problemas que envolvam trigonometria, uma dificuldade muito comum entre os alunos é a identificação de qual a razão trigonométrica que deva ser utilizada para resolvê-la. Existem muitas razões para que o aluno não reconheça qual a razão trigonométrica indicada na situação, contudo, uma forma de auxiliá-lo na resolução de suas dúvidas é solicitando que o próprio aluno indique os elementos presentes no esquema que elaborou. No exemplo anterior, temos: Hipotenusa Cateto oposto ao ângulo de 30º Ao ser questionado qual a razão trigonométrica que relaciona o cateto oposto a um ângulo e a hipotenusa o aluno responderá que se trata da razão seno de um ângulo. Desta forma temos que: sen 30 = h 6 = h 6 h = 6 h = 6 = 3 m 3 m = 300 cm = degraus

5 Utilizando as razões seno de um ângulo e cosseno de um ângulo em outros tipos de triângulos Após a exploração das principais razões trigonométricas no triângulo retângulo é importante que o professor faça uma expansão de tais ideias para os outros tipos de triângulos (acutângulo e obtusângulo). Isto ocorrerá pelas relações conhecidas por Lei dos Senos e Lei dos Cossenos. É importante salientar que o papel da contextualização é imprescindível neste momento para que tais relações não sejam desenvolvidas apenas por constarem nos currículos ou, porquê serão necessárias para estudos futuros. Lei dos Senos Suponha que um observador esteja numa margem de um rio no ponto A (ver figura a seguir) e deseja saber qual é a distância (em linha reta) entre sua posição e uma árvore situada na outra margem de um rio (situada no ponto P). Para isto o observador pode deslocar-se (em linha reta) até um ponto B situado na mesma margem onde se encontra e distante km do ponto A (por exemplo). Sabendo que a medida do ângulo BA P = 30 e a medida do ângulo AB P = 40, quanto mede a distância AP? A Lei dos Senos nos afirma que a medida do lado de um triângulo qualquer é diretamente proporcional à medida do seno do ângulo oposto à este ângulo. Simbolicamente, seja um triângulo qualquer ABC cujos lados medem a, b e c, respectivamente. Pela Lei dos Senos temos que: a sen  = b sen B = c sen C Representando a situação dada, temos que: Note que nesta situação conhecemos a medida de dois ângulos e de um lado, desejando determinar a medida do outro lado. Aplicando a Lei dos Senos no ABP, temos que: sen 0 = x sen 40 0,74 = x 0,643 x = 3,760 km ou 3760 m 0,643 0,74 Lei dos Cossenos Determine a medida da diagonal maior do paralelogramo da figura a seguir.

6 Como os ângulos opostos de um paralelogramo são congruentes o problema pode ser reinterpretado da seguinte forma: Seja um triângulo qualquer ABC cujos lados medem a, b e c. De acordo com a Lei dos Cossenos temos que: a = b + c b c cos  b = a + c a c cos B c = a + b a b cos C Note que nesta situação conhecemos a medida de dois lados e do ângulo formado entre estes lados. Logo para calcular a medida da diagonal do paralelogramo dado basta aplicar a Lei dos Cossenos: d = cos 0 d = ( ) d = d = 35 d = 35 d = ,9 =,7 cm OBSERVAÇÕES a) Ao trabalhar com triângulos quaisquer o aluno irá de deparar com diversos valores de ângulos agudos e obtusos. As razões trigonométricas de tais ângulos podem ser obtidas através de tabelas de razões trigonométricas ou com o auxílio de uma calculadora científica. Tanto os valores contidos nas tabelas quanto aqueles fornecidos pelas calculadoras são advindos de relações entre os ângulos centrais determinados pelos arcos delimitados pelas extremidades de cordas numa circunferência. b) O Teorema de Pitágoras pode ser entendido como um caso particular da Lei dos Cossenos para o ângulo de 90º entre os dois catetos. Seja um triângulo ABC, reto em A cujas respectivas medidas sejam a, b e c. Desta forma temos que: a = b + c b c cos 90 a = b + c b c 0 a = b + c

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio.

Circunferência. É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Trigonometria Matemática, 1º Ano, Função: conceito Circunferência É o conjunto de pontos de um plano eqüidistantes de um ponto do plano chamado centro, e essa distância chama-se raio. Matemática, 1º Ano,

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen65º = 0,91; cos65º = 0,42 e tg65º = 2,14) 2. Determine no

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

Formação Continuada Nova EJA. Plano de Ação 2

Formação Continuada Nova EJA. Plano de Ação 2 Nome: Jones Paulo Duarte Regional: Centro Sul Tutora: Josiane da Silva Martins Formação Continuada Nova EJA Plano de Ação 2 INTRODUÇÃO Esse PA tem como objetivo enfatizar o assunto do capítulo 19 do 2º

Leia mais

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Formação continuada para professores de matemática Fundação CECIERJ/SEEDUC-RJ Colégio: E.E Lucas da Silva - 1 ano turma 1001 Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Introdução

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

MATEMÁTICA SEGUNDO ANO - PARTE UM

MATEMÁTICA SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM TRIGONOMETRIA NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos:

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

PLANO DE TRABALHO 2. MATEMÁTICA DO 1º ANO DO ENSINO MÉDIO/2 BIMESTRE/2013 CURSISTA: ADRIANA DE ARAÚJO BRAGA GRUPO 3 TUTOR: Wagner R.

PLANO DE TRABALHO 2. MATEMÁTICA DO 1º ANO DO ENSINO MÉDIO/2 BIMESTRE/2013 CURSISTA: ADRIANA DE ARAÚJO BRAGA GRUPO 3 TUTOR: Wagner R. PLANO DE TRABALHO 2 MATEMÁTICA DO 1º ANO DO ENSINO MÉDIO/2 BIMESTRE/2013 CURSISTA: ADRIANA DE ARAÚJO BRAGA GRUPO 3 TUTOR: Wagner R.Telles 1 SUMÁRIO INTRODUÇÃO...03 DESENVOLVIMENTO...04 AVALIAÇÃO...20 REFERÊNCIAS

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

CICLO TRIGONOMÉTRICO

CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades:

Do estudo dos triângulos e em especial do triângulo retângulo, temos as propriedades: Trigonometria Trigonometria Introdução A trigonometria é um importante ramo da Matemática. Derivada da Geometria (o termo trigonometria significa medida dos triângulos) é uma importante ferramenta para

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

CONCEITOS BÁSICOS - REVISÃO

CONCEITOS BÁSICOS - REVISÃO CONCEITOS BÁSICOS - REVISÃO GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR Sempre houve a necessidade

Leia mais

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ. Professor: Joana Eunice Rodes de Oliveira - Matrículas: 09353525. Série: 1º ANO ENSINO MÉDIO (2º Bimestre) GRUPO 04. Tutora:

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Plano de Trabalho Refeito sobre Razões Trigonométricas no Triângulo Retângulo

Plano de Trabalho Refeito sobre Razões Trigonométricas no Triângulo Retângulo FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Ciep 244 Oswaldo Aranha PROFESSORA: Angela Saida Alvarez Jacob. GRUPO 1 MATRÍCULA: 0918165-2 TURMA: 1 ano. TUTOR:

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

unções Trigonométricas? ...

unções Trigonométricas? ... III TRIGONOMETRIA Por que aprender Funçõe unções Trigonométricas?... É importante saber sobre Funções Trigonométricas, pois estes conhecimentos vão além da matemática. Você encontra a utilidade das funções

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

FUNÇÃO TRIGONOMÉTRICA

FUNÇÃO TRIGONOMÉTRICA FORMAÇÃO CONTINUADA EM MATEMÁTICA Tutora: Maria Tereza Baierl Matemática 1º ano - 4º bimestre/2012 PLANO DE TRABALH0 FUNÇÃO TRIGONOMÉTRICA Professora: Valéria Gomes Gonçalves Tutora:Maria Tereza Baierl

Leia mais

8-Funções trigonométricas

8-Funções trigonométricas 8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado

Leia mais

b) Todos eles possuem uma característica em comum. Qual é esta característica?

b) Todos eles possuem uma característica em comum. Qual é esta característica? ATIVIDADE INICIAL 1 Título da Atividade: Comparando triângulos a) Quantos triângulos você enxerga na figura? Escreva os seus nomes (por exemplo: ABC) ABC, BEF, BDG b) Todos eles possuem uma característica

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina.

Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9.3 do livro texto da disciplina: Números e Funções Reais,

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo.

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Tarefa 4 Aluna: Monique Andrade da Conceição Grupo: 5 Tutor: LEZIETI CUBEIRO

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA

ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA Professor da Disciplina: VAGNER ANTIQUEIRA 2017 Aluno (a): Nº Ano: 9º ANO Ensino Fundamental II Período: Matutino 2º TRIMESTRE O estudo da matemática começa

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS DE MIRA Escola Secundária c/3 Dr.ª Maria Cândida CURSO VOCACIONAL CURSO VOCACIONAL DO ENSINO BÁSICO: Jardinagem / Comércio / Socorrismo DISCIPLINA: MATEMÁTICA CICLO DE FORMAÇÃO:

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA II Nome: MATEMÁTICA II Curso: TÉCNICO EM INFORMÁTICA

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

R.: R.: c) d) Página 1 de 8-17/07/18-15:06

R.: R.: c) d) Página 1 de 8-17/07/18-15:06 PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Em um triângulo retângulo, a

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

Planificação de Matemática 9º ano. Ano letivo: 2014/15

Planificação de Matemática 9º ano. Ano letivo: 2014/15 Planificação de 9º ano Ano letivo: 01/15 Unidades Tema Total de previstas Unidade 8 (8ºano) Sólidos Geométricos 1ºP Unidade 1 Probabilidades 65 Unidade Funções Unidade 3 Equações ºP Unidade Circunferência

Leia mais