LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

Tamanho: px
Começar a partir da página:

Download "LISTA DE REVISÃO DE ÁLGEBRA 3ºANO"

Transcrição

1 LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado, uma operadora de telefonia celular ofereceu aos clientes que utilizavam até 500 ligações ao mês o seguinte plano mensal: um valor fixo de R$,00 para os clientes que fazem até 00 ligações ao mês. Caso o cliente faça mais de 00 ligações, será cobrado um valor adicional de R$ 0,0 por ligação, a partir da 0ª até a 300ª; e caso realize entre 300 e 500 ligações, será cobrado um valor fixo mensal de R$ 3,00. Com base nos elementos apresentados, o gráfico que melhor representa a relação entre o valor mensal pago nesse plano e o número de ligações feitas é: a) d) b) e) c) 3. (Fuvest) Um dono de restaurante assim descreveu a evolução do faturamento quinzenal de seu negócio, ao longo dos dez primeiros meses após a inauguração: Até o final dos três primeiros meses, tivemos uma velocidade de crescimento mais ou menos constante, quando então sofremos uma queda abrupta, com o faturamento caindo à metade do que tinha sido atingido. Em seguida, voltamos a crescer, igualando, um mês e meio depois dessa queda, o faturamento obtido ao final do terceiro mês. Agora, ao final do décimo mês, estamos estabilizando o faturamento em um patamar 50% acima do faturamento obtido ao final do terceiro mês. Considerando que, na ordenada, o faturamento quinzenal está representado em unidades desconhecidas, porém uniformemente espaçadas, qual dos gráficos é compatível com a descrição do comerciante?

2 a) d) b) e) c) 4. (Enem (Libras)) A base de cálculo do imposto de renda é a parte dos rendimentos recebidos pelo contribuinte sobre a qual incide o imposto. Ela é obtida após serem descontadas, dos rendimentos, as deduções legais. No ano de 008, se a base de cálculo de um contribuinte teve um valor de até R$ 6.473,7, o contribuinte foi isento do imposto de renda. Se a base de cálculo ficou entre R$ 6.473,7 e R$ 3.99,00, o imposto devido foi de 5% sobre o que excedeu R$ 6.473,7. Por fim, se a base de cálculo ultrapassou R$ 3.99,00, o imposto devido é dado pela soma de R$.466,79 (correspondendo a 5% da diferença 3.99, ,7) mais 7,5% do que excedeu R$ 3.99,00. O gerente de um escritório de contabilidade pediu a um estagiário que identificasse o gráfico que descrevia o valor imposto devido, para o ano de 008, como função da base de cálculo, apresentando-lhe cinco gráficos, sem qualquer outra informação ou valores numéricos.

3 Admitindo que um desses gráficos corresponda ao pedido do gerente, qual é esse gráfico? a) I b) II c) III d) IV e) V 5. (Ueg) Sabendo-se que o gráfico da função y f(x) é o gráfico que melhor representa a função y 3f(x 3) é a) b) c) d) e)

4 6. (Unicamp) A figura abaixo exibe o gráfico de uma função y f(x). Então, o gráfico de y f(x ) é dado por a) b) c) d)

5 7. (Epcar (Afa)) A função real f definida por abaixo. x f(x) a 3 b, sendo a e b constantes reais, está graficamente representada Pode-se afirmar que o produto (a b) pertence ao intervalo real a) [ 4, [ b) [, [ c) [, 5[ d) [5, 8] 8. (Unesp) Admita que um imposto sobre a renda mensal bruta fosse cobrado da seguinte forma: Renda mensal bruta (R) Até R$.000,00 Acima de R$.000,00 e até R$ 5.000,00 0% Acima de R$ 5.000,00 e até R$ 8.000,00 5% Acima de R$ 8.000,00 5% Nos planos cartesianos abaixo: Taxa de imposto sobre a rend mensal bruta (T) Isento - esboce o gráfico de T (em %) em função de R (em milhares de reais); - esboce o gráfico do imposto mensal cobrado C (em centenas de reais) em função da renda mensal bruta R (em milhares de reais) no intervalo de R que vai de R$ 0,00 a R$ 8.000,00.

6 9. (Fuvest) A figura mostra o gráfico de uma função f. a) Encontre todos os valores de x tais que f(x). b) Encontre todos os valores de x tais que f(x). c) No sistema cartesiano abaixo, desenhe o gráfico da função y f(x ). 0. (Uff) Considere as funções f, g e h, todas definidas em [m, n] com imagens em [p, q] representadas através dos gráficos a seguir: Pode-se afirmar que: a) f é bijetiva, g é sobrejetiva e h não é injetiva. b) f é sobrejetiva, g é injetiva e h não é sobrejetiva. c) f não é injetiva, g é bijetiva e h é injetiva. d) f é injetiva, g não é sobrejetiva e h é bijetiva. e) f é sobrejetiva, g não é injetiva e h é sobrejetiva.

7 . (Puccamp) Seja f a função de IR em IR, dada pelo gráfico a seguir É correto afirmar que a) f é sobrejetora e não injetora. b) f é bijetora. c) f(x) = f(-x) para todo x real. d) f(x) > 0 para todo x real. e) o conjunto imagem de f é ] - ; ].. (Udesc) Considere a função f cujo gráfico está representado na figura abaixo. É correto afirmar que: a) f : [, 4] [, ] é injetora, mas não é sobrejetora. b) f : [, 4] [, ] é bijetora. c) f : [, ] [, ] é injetora, mas não é sobrejetora. d) f : [, ] [, ] é bijetora. e) f : [, ] [, ] é sobrejetora, mas não é injetora. 3. (Udesc) A função f definida por e a imagem (Im(f)) são: f(x) x é uma função bijetora, se os conjuntos que representam o domínio (D(f)) a) D(f) e lm(f) [, [ b) D(f) ],0] e lm(f) c) D(f) e lm(f) d) D(f) [0, [ e lm(f) [0, [ e) D(f) [0, [ e lm(f) [, [

8 4. (Unigranrio - Medicina) Sabe-se que a) 4 b) 3 c) d) e) 0 f x 3 x. 3 Desta forma, pode-se afirmar que f( ) vale: 5. (Uerj) Para enviar mensagens sigilosas substituindo letras por números, foi utilizado um sistema no qual cada letra do alfabeto está associada a um único número n, formando a sequência de 6 números ilustrada na tabela: Letra A B C D E... W X Y Z Número n Para utilizar o sistema, cada número n, correspondente a uma determinada letra, é transformado em um número f(n), de acordo com a seguinte função: f n n 3, se n 0 50 n, se n 6 na qual n As letras do nome ANA, por exemplo, estão associadas aos números [ 4 ]. Ao se utilizar o sistema, obtém-se a nova matriz [f() f(4) f()], gerando a matriz código [5 36 5]. Considere a destinatária de uma mensagem cujo nome corresponde à seguinte matriz código: [ ]. Identifique esse nome. 6. (Ufpr) Responda às seguintes perguntas a respeito da função 3x 4 g(x) : 4x a) Qual é o domínio de g? b) Qual é a inversa de g? x a 7. (Fuvest) A figura a seguir representa o gráfico de uma função da forma f(x) = bx c, para - x 3. Pode-se concluir que o valor de b é: a) - b) - c) 0 d) e)

9 8. (Uece) Sejam f e g funções reais de variável real definidas por composta f g no elemento x é igual a a). b) 8. c). d) (Uepb) Dada a) 56 b) 85 c) 9 d) 9 e) 85 f(x) x x 5, o valor de f(f( )) é: 0. (Unicamp) Seja a função h(x) definida para todo número real x por x f(x) e g(x) x x. O valor da função x se x, h(x) x se x. Então, h(h(h(0))) é igual a a) 0. b). c) 4. d) 8.. (Mackenzie) Se a função f : {} é definida por a) 5 f(x) e x f a sua inversa, então f ( ) é igual a b) 9 9 c) d) e) 5 4. (Espm) O conjunto imagem de uma função inversível é igual ao domínio de sua inversa. Sendo f : A B tal que x f(x) uma função real inversível, seu conjunto imagem é: x a) {} b) { } c) { } d) {0} e) {}

10 x 3 3. (Uece) A função real de variável real definida por f(x), para 4x ax b expressa na forma g(x), onde a, b, c e d são números inteiros. cx d x é invertível. Sua inversa g pode ser 4 Nessas condições, a soma a b c d é um número inteiro múltiplo de a) 6. b) 5. c) 4. d) (G - ifce) Sendo f(x) = 3x a, onde a é um número real fixado, a expressão f(a) f(a ) é equivalente a a) a 3. b) a. c) 3(a + ). d) a. e) a. 5. (Uern) Sejam as funções f(x) x 3 e a) b) 3 c) 4 d) 5 g(x) x x 4. Para qual valor de x tem f(g(x)) g(f(x))? 6. (Espm) Sejam f e g funções reais tais que f x x 4 e gx x para todo x R. Podemos afirmar que a função fog(x) é igual a: a) x b) x + c) 3x + d) x e) x 3 7. (Uern) Sejam as funções compostas f(g(x)) x e g(f(x)) x. Sendo g(x) x, então f(5) g() é a) 0. b) 8. c) 7. d) (Fuvest) Se a função f : {} é definida por g(x) f(f(x)), então g(x) é igual a x f(x) x e a função g : {} é definida por a) x b) x c) x d) x 3 e) x

11 9. (Uepb) Uma função inversível f, definida em R 3 por conjunto dos números reais. O valor de y 0 é: a) b) 3 c) d) e) zero Gabarito: Resposta da questão : [D] f(0) 0 0 f(4) 4 3 Portanto, f(0) f(4). x 5 f x, x 3 R y, tem contradomínio 0 onde R é o Resposta da questão : [B] Seja que f: a função que relaciona o valor mensal pago, f(x), com o número de ligações, x, efetuadas no mês. Tem-se, se 0 x 00 f(x) 0, (x 00), se 00 x 300 3, se 300 x 500, se 0 x 00 0, x, se 00 x , se 300 x 500 Portanto, dentre os gráficos apresentados, só pode ser o da alternativa [B]. Resposta da questão 3: [E] Os únicos gráficos que apresentam faturamento 50% acima do verificado ao final do terceiro mês são os das alternativas [C], [D] e [E]. Destes, os únicos que apresentam faturamento no mês 3,5 igual à metade do verificado ao final do terceiro mês são os das alternativas [D] e [E]. Finalmente, o único que mais se aproxima de um segmento de reta até o terceiro mês é o da alternativa [E]. Resposta da questão 4: [E] Seja i a função i :, em que i é o valor do imposto devido relativo à base de cálculo b. Tem-se que

12 0; se b 6473,7 i 0,5(x 6473,7); se 6473,7 b ,79 0,75(x 399); se b 399 0; se b 6473,7 0,5x 47,06; se 6473,7 b 399 0,75x 6585,94; se b 399 Portanto, não havendo pontos de descontinuidade no gráfico de i e sendo 0,75 0,5 podemos concluir que a resposta é o gráfico V. Resposta da questão 5: [C] O gráfico da função g, dada por g(x) f (x 3 ), corresponde ao gráfico de y f(x) deslocado de três unidades no sentido positivo do eixo das abscissas. Ademais, o gráfico da função h, dada por h(x) dilatado verticalmente por um fator igual a 3. Portanto, o gráfico da alternativa [C] é o que melhor representa a função h. Resposta da questão 6: [B] 3g(x), corresponde ao gráfico de g Supondo f, g, h :, tais que g(x) f(x ) e h g(x), segue-se que o gráfico de g é obtido a partir do gráfico de f, mediante uma translação horizontal de uma unidade no sentido positivo do eixo das abscissas. Além disso, o gráfico de h é obtido por meio de uma dilatação vertical do gráfico de g por um fator igual a. Portanto, o gráfico da função h é o da alternativa [B]. Resposta da questão 7: [A] Calculando: x f(x) a 3 b 0 f(0) a3 b a b b a 9 a 8 53 f() 8 a3 b 8 9a b 8 9a a 8 a b [ 4, [ 7 64 b 8 Resposta da questão 8: Calculando: 0, se 0 R 0,0R, se R 5 C(R)= 0,5R, se 5 R 8 0,5R, se R 8

13 Resposta da questão 9: a) Do gráfico, temos f(x) se x 3 ou x 7. b) Sendo f(x) f(x) f(x) 0, podemos concluir, do gráfico, que x 4 ou 6 x 8. c) O gráfico da função g(x) f(x ) corresponde ao gráfico da função f deslocado de duas unidades no sentido negativo do eixo das abscissas. O gráfico da função h(x) g(x) f(x ) corresponde ao gráfico da função g refletido em relação ao eixo das abscissas.

14 Finalmente, o gráfico da função y f(x ) corresponde ao gráfico da função h deslocado de uma unidade no sentido positivo do eixo das ordenadas. Resposta da questão 0: [A] Resposta da questão : [A] Resposta da questão : [D] Analisando cada alternativa: [A] Falsa. (i) Essa função não é injetora, pois a reta y α,3, o que indica que α f f, sendo α. (ii) A função é sobrejetora, pois qualquer reta y β, indicando que para qualquer β no contradomínio de f :,4,, f γ β. intercepta o gráfico da função nos pontos, e α,, sendo com β, intercepta o gráfico em pelo menos um ponto, existe ao menos um,4 γ tal que [B] Falsa. Pela mesma explicação apresentada na alternativa [A], f :,4, é sobrejetora, mas não é injetora. Logo, não pode ser bijetora. [C] Falsa. (i) Qualquer reta y β, com β, intercepta o gráfico da função em apenas um ponto, indicando que para cada β,, existe um, e apenas um α,, tal que α (ii) Como toda reta y β, com β no contradomínio, menos um α,, tal que f α β. f é também sobrejetora. f β, o que confirma que a função é injetora., intercepta o gráfico em pelo menos um ponto, existe ao Logo, todos os pontos do contradomínio pertencem à imagem da função, e então

15 [D] Verdadeira. Pela mesma explicação da alternativa [C], f :,, é injetora e sobrejetora, logo é bijetora. [E] Falsa. (i) A função f :,, não é sobrejetora. Basta verificar que para qualquer valor β,, não existe α, tal que f α β. (ii) Mas a função é injetora, uma vez que, para β Imf,, a reta y β intercepta o gráfico da função em apenas um ponto, de modo que se f α f α, α e α, então α α. Resposta da questão 3: [E], Lembrando que uma função está bem definida apenas quando se conhece o domínio, o contradomínio e a lei de formação, vamos supor que o contradomínio da função seja o conjunto, e que o enunciado pede o maior subconjunto dos números reais para o qual f está definida. Desse modo, como f é uma função quadrática bijetiva, segue-se que D(f) [0, [ e, sendo y v a ordenada do vértice do gráfico de f, Im(f) [y v, [ [, [. Resposta da questão 4: [A] Calculando: f x 3 x 3 x 3 x 3 3 f x 3 f(3) 3 f( ) 4 3 Resposta da questão 5: De acordo com as informações, temos que f(n ) 7 n 3 7 n, f(n ) 3 n 3 3 n 5, f(n 3 ) 5 n3 3 5 n3, f(n 4 ) n4 30 n4 0, f(n 5 ) 3 50 n5 3 n5 8, f(n 6 ) n6 3 n6 9 e f(n 7 ) 4 50 n7 4 n7 6. Portanto, o nome da destinatária é Beatriz. Resposta da questão 6: a) A função g será definida quando:

16 4x 0 x 4 Portanto o domínio da função será dada por: D x x 4 b) Trocando g(x) por x e x por g (x), temos: 3 g (x) 4 x x 4 g (x) x 3 g (x) 4 x 4 3 g (x) 4 g (x) x 4 g (x) x 4 g (x) 3 4x x 4 g (x) 3 4x Resposta da questão 7: [D] Resposta da questão 8: [C] Queremos calcular f(g()). Assim, como Resposta da questão 9: [D] Como f( ) ( ) ( ) 5 4, segue que f(f( )) f(4) g() ( ), segue que f(g()). Resposta da questão 0: [C] Desde que h(0) temos, h() e, portanto, vem Portanto, a resposta é h(h(h(0))) h(h()) h() 4. h() 4. Resposta da questão : [B] Impondo f(x), temos 5 9 x 4 5 x. x Portanto, segue que 9 f ( ). Resposta da questão : [E]

17 x Lembrando que é possível definir tantas funções quanto queiramos por meio da lei f(x), x domínio de f seja o conjunto dos números reais x, tal que x { }. Assim, temos x y yx y x x x(y ) (y ) y x. y vamos supor que o x Portanto, sendo f (x) x tal que y {}. a lei da inversa de f, podemos afirmar que a imagem de f é o conjunto dos números reais y Resposta da questão 3: [C] Se x 3 f(x), 4x então x 3 y 4xy y x 3 4x x(4y ) y 3 y 3 x. 4y x 3 Portanto, temos g(x) e, assim, desde que 3 4 ( ) (4), podemos afirmar que a soma a b c d é 4x um número inteiro múltiplo de 4. Resposta da questão 4: [C] f(a) f(a ) = 3.(a) a (3.(a ) a) = 5a a + 3 = 3a + 3 = 3.(a + ). Resposta da questão 5: [B] Lembrando que uma função só está bem definida quando conhecemos o seu domínio, contradomínio e a lei de associação, vamos supor que f: e g :. Além disso, por exemplo, a função g f está definida apenas quando o contradomínio de f é igual ao domínio de g. Desse modo, o valor de x para o qual se tem f(g(x)) g(f(x)) é x x 4 3 (x 3) (x 3) 4 x x 3 x 6x 9 x 6 6x 5 3 x 3. Resposta da questão 6: [D] Fazendo t x, vem

18 x x t t (x). Logo, x x f 4 f(x) x 3. Por outro lado, se u x, então x u u (x) x. Desse modo, g(x ) (x ) g(x) x 3. Portanto, f g(x) f(g(x)) g(x) 3 x 3 3 x. Resposta da questão 7: [A] Sabendo que g(f(x)) x e g(x) x, vem g(f(x)) f(x) x f(x) f(x) x 3. Portanto, f(5) g() Resposta da questão 8: [E] Tem-se que g(x) f(f(x)) x f x x x x x 5x 5 x. Resposta da questão 9: [D] Determinando a função inversa de f, temos:

19 f (x) 5 x x f (x) 3 f (x) 5 x f (x) 3x f (x) 5 f (x) x 5 3x f (x) 3 5 3x f (x) com domínio x R/x x O contradomínio de uma função inversível é o domínio de sua inversa, portanto, y0.

Função Inversa. f(x) é invertível. Assim,

Função Inversa. f(x) é invertível. Assim, Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)

Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda) Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5. Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da

Leia mais

Disciplina: Matemática I (Dependência) Conteúdo: Funções de várias sentenças Professora: Juliana Schivani Aluno(a): d)

Disciplina: Matemática I (Dependência) Conteúdo: Funções de várias sentenças Professora: Juliana Schivani Aluno(a): d) Disciplina: Matemática I (Dependênci Conteúdo: Funções de várias sentenças Professora: Juliana Schivani Aluno(: 1ª lista do 2º bimestre 1. (Fuvest 2019) Um dono de restaurante assim descreveu a evolução

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO

LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A),, 6 C),6 D),, 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então,

Leia mais

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo.

1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. 1. (Unicamp) Considere as funções f e g, cujos gráficos estão representados na figura abaixo. O valor de f(g(1)) g(f(1)) é igual a a) 0. b) 1. c) 2. d) 1. 2. (G1 - ifce) Seja f : 1, uma função dada por

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

MATEMÁTICA FRENTE 1 AULA 02

MATEMÁTICA FRENTE 1 AULA 02 MATEMÁTICA FRENTE 1 AULA 0 1- (Fgvrj 017) Um estacionamento cobra R$ 15,00 pela primeira meia hora e R$ 10,00 por cada meia hora seguinte.o valor cobrado em reais por N horas, N inteiro, nesse estacionamento,

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018

ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ADA 1º BIMESTRE CICLO I MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 2018 ITEM 1 DA ADA No desenho, a seguir, estão representados os pontos M e N que correspondem à localização de dois animais. Atividades relacionadas

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

Exercícios de Aprofundamento Matemática Funções Quadráticas

Exercícios de Aprofundamento Matemática Funções Quadráticas 1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm

Leia mais

Exercícios de Matemática Funções Função Bijetora

Exercícios de Matemática Funções Função Bijetora Exercícios de Matemática Funções Função Bijetora 1. (Ufpe) Sejam A e B conjuntos com m e n elementos respectivamente. Analise as seguintes afirmativas: ( ) Se f:aëb é uma função injetora então m n. ( )

Leia mais

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 30/03/016 RESOLUÇÃO 01. A

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS 1) Assinale a alternativa INCORRETA: A) existe x, x, tal que B) para todo x, x, C) existe um único x, x, tal que

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma clara,

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 04/05/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)),

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)), Função Logarítmica 1. (Fuvest 01) Seja f uma função a valores reais, com domínio D, tal que 10 1 para todo x D. f(x) log (log (x x 1)), O conjunto que pode ser o domínio D é x ; 0 x 1 a) b) x ; x 0 ou

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO FUNÇÕES VALOR NUMÉRICO 1 01) Dada a função f(x) 1 x, o valor f(1,5) é x + 1 igual a a) 1,7 b) 1,8 c) 1,9 d),0 e),1 0) Na função f:r R, com f(x) x² 3x + 1, o 1 valor de f a) b) 11/4 c) 3/3 d) 15/4 FUNÇÕES

Leia mais

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função: Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

Mudança de base. Lista de exercícios. Professora: Graciela Moro

Mudança de base. Lista de exercícios. Professora: Graciela Moro Lista de exercícios Professora: Graciela Moro Mudança de base. Sejam β {( ) ( )} β {( ) ( )} β { ) ( )} e β {( ) ( )} bases ordenadas de R. (a) Encontre a matrizes mudança de base: i. [I β β ii. [I β β

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 2 1. (Mackenzie 1996) A soma dos valores inteiros pertencentes ao domínio da função real definida por f(x) = x / x 3x a) 1. b). c) 3. d) - 1. e) -. é:. (Mackenzie 1996) Na desigualdade ser: (x 1) + x > k,

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B

Relação de Conjuntos. Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B Relação de Conjuntos Produto cartesiano A = 1,2 e o conjunto B = 2,3,4 queremos o produto cartesiano A x B A x B = { 1,2, 1,3, 1,4, 2,2, 2,3, 2,4 } A B 1 2 2 3 4 Funções Uma Relação será função se: 1.

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS

PROFª: ROSA G. S. DE GODOY BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: ª E.M. Data: / / 207 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 3ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS.

Leia mais

A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção.

A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção. Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 5 A Ideia de Continuidade Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =

Leia mais

Atividades de Funções do Primeiro Grau

Atividades de Funções do Primeiro Grau Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

b) Determinar as raízes de f(x) = g(x) quando m = 1/2. c) Determinar, em função de m, o número de raízes da equação f(x) = g(x). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x) = x - 2 + 2x + 1 - x - 6. O símbolo a indica o valor absoluto de um número real a e é definido por a = a, se a µ 0 e a = - a, se a < 0.

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 2ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 2ª PARTE EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - ª PARTE. (Enem (Libras) 07) A única fonte de renda de um cabeleireiro é proveniente de seu salão. Ele cobra R$ 0,00 por cada serviço realizado e atende 00 clientes

Leia mais

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a):

LISTA DE EXERCÍCIOS RECUPERAÇÃO Goiânia, de de 2018 Aluno(a): LIST DE EXERCÍCIOS RECUPERÇÃO Goiânia, de de 08 luno(: Série: ª Turma: Disciplina: Matemática Professor: Musgley Questão 0 - (UFPR) respeito da função representada no gráfico abaio, considere as seguintes

Leia mais

Humberto José Bortolossi [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo

Humberto José Bortolossi   [01] (a) (1.0) Escreva infinitos números racionais que pertençam ao intervalo PRIMEIRA VERIFICAÇÃO DE APRENDIZAGEM Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [0] (a) (.0) Escreva infinitos números racionais que pertençam

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3) FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor

Leia mais

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios

Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a

Leia mais