{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2"

Transcrição

1 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x)) é a) D = x R x 3 ou x 1 { } { } { } { } { } b) D = x R 3 x 1 c) D = x R x 1 d) D = x R 0 x 4 e) D = x R x 0 ou x 4 0)(Pucrj 01) Sejam f(x) = x + 1 e g(x) = 3x + 1. Então f(g(3)) g(f(3)) é igual a: a) 1 b) 0 c) 1 d) e) 3 03)(Uern 01) Sejam as funções compostas f(g(x)) = x 1 e g(f(x)) = x. Sendo g(x) = x + 1, então f(5) + g() é a) 10. b) 8. c) 7. d) 6. 04)(Ufsj 01) Sendo a função f( x) = ax+ b, tal que ( ( )) CORRETO afirmar que a) 1 x f ( x) = + 3 b) f( 0) = 8 c) f( x) = 3x+ 4 d) 1 ( x ) f ( x) = 3 f f x = 9x+ 8, é

2 Centro de Estudos Matemáticos 05)(Uem 01) Considere as funções f e g, ambas com domínio e contradomínio real, dadas por f(x) = 5x e g(x) = x 6x + 1, para qualquer x real. A respeito dessas funções, assinale o que for correto. 01. A imagem de qualquer número racional, pela função f, é um número irracional. 0. A função g possui uma única raiz real. 04. Ambas as funções são crescentes no intervalo [ 0,+ [ do domínio. 08. O gráfico da função f o g é uma parábola. 16. Ambas as funções possuem inversas. 06)(Ufsm 01) Os praticantes de exercícios físicos se preocupam com o conforto dos calçados utilizados em cada modalidade. O mais comum é o tênis, que é utilizado em corridas, caminhadas, etc. A numeração para esses calçados é diferente em vários países, porém existe uma forma para converter essa numeração de acordo com os tamanhos. x Assim, a função g(x) = converte a numeração dos tênis fabricados no 6 Brasil para a dos tênis fabricados nos Estados Unidos, e a função f(x) = 40x + 1 converte a numeração dos tênis fabricados nos Estados Unidos para a dos tênis fabricados na Coreia. A função h que converte a numeração dos tênis brasileiros para a dos tênis coreanos é a) b) c) d) e) 0 1 h(x) = x h(x) = x h(x) = x x + 1 h(x) =. 3 x+ 1 h(x) =. 3

3 Centro de Estudos Matemáticos 07)(CFTMG 01) Sendo f(x) = x + x + 1 definida em A = {x R / x 1} e g(x) = x definida em R +, o gráfico que representa a função (gof)(x) é a) b) c) d)

4 Centro de Estudos Matemáticos 08)(IFSC 01) Em uma fábrica de bijuterias o custo de produção de um lote de brincos é calculado a partir de um valor fixo de R$ 15,00, mais R$ 1,50 por unidade produzida. Nessa fábrica, são produzidos lotes de, no máximo, brincos, sendo vendido cada lote com 5% de lucro sobre o valor de custo. Sobre essa situação, leia e analise as afirmações abaixo: I. A função C que relaciona o custo de produção a uma quantidade x de brincos produzidos é C(x) = 16,50x. II. A função V que relaciona o valor de venda de um lote de brincos e o custo C de produção é V(C) = 1,5C. III. O custo para produção de um lote com 400 brincos é R$ 75,00. IV. Considerando C a função que relaciona o custo de produção de uma quantidade x de brincos e V a função que relaciona o valor de venda de um lote de brincos com o custo C de produção, então a função composta V(C(x)) é a função que relaciona o valor de venda de um lote de brincos e a quantidade x de brincos produzidos. V. O preço de venda de um lote com 100 brincos é R$ 343,75. Assinale a alternativa CORRETA. a) Apenas as afirmações II, III, IV e V são VERDADEIRAS. b) Apenas as afirmações I, III, IV e V são VERDADEIRAS. c) Apenas as afirmações III, IV e V são VERDADEIRAS. d) Apenas as afirmações I e II são VERDADEIRAS. e) Todas as afirmações são VERDADEIRAS. 09)(Espm 01) Sejam f e g funções reais tais que Podemos afirmar que a f( x+ 1) = x+ 4 e g( x+ 1) = x 1para todo x R. função fog(x) é igual a: a) x 1 b) x + c) 3x + 1 d) x e) x 3

5 Centro de Estudos Matemáticos 10)(Uepg 011) Sobre uma função afim f(x) = ax + b, assinale o que for correto. 01. Se a > 0 e b < 0 então f(x) é crescente e possui raiz negativa. 0. Se o gráfico de f(x) passa pelos pontos, ( 1, 1) e (3, 5) então f(f( 3)) = Se f(x) + f(x 3) = x então f(x) = 1 x Se b = 3 e f(f( )) = 5 então a = Se a.b > 0 a raiz de f(x) é um número positivo. 11)(Ifal 011) Considere o gráfico da função y segmentos de reta: = f(x), representado por I. ( ) f(4) = f(1). II. ( ) f(f(f(0))) = f(). III. ( ) f(f(6)) = f(f(f(8))). Podemos afirmar que a) somente as afirmativas (I) e (II) são verdadeiras. b) somente as afirmativas (I) e (III) são verdadeiras. c) somente as afirmativas (II) e (III) são verdadeiras. d) todas as afirmativas são verdadeiras. e) todas as afirmativas são falsas.

6 Centro de Estudos Matemáticos 1)(Espm 011) função f (x). A figura abaixo representa o gráfico cartesiano da Sabendo-se que f (1) =, o valor de f f ( π) a) 1 b) 3 c) 3 4 d) e) 5 13)(Afa 011) Considere o conjunto A = { 0,1,,3 } e a função f:a A tal que f( 3) = 1 e f( x) = x+ 1, se x 3. A soma dos valores de x para os quais ( fofof )( x) = 3é a) b) 3 c) 4 d) 5 14) Classifique as seguintes funções em par, ímpar ou sem paridade: a) f(x) = 4x 4 5x + 7 b) g(x) = 9x 7 6x 5 + 4x c) h(x) = 15x 5 + 6x 3 5x d) f(x) = x 4 + cosx e) g(x) = x 3 senx f) h(x) = x.cosx

7 Centro de Estudos Matemáticos 15)(Fei 1996) Em relação à função polinomial f(x) = x 3-3x, é válido afirmar-se que: a) f(-x) = f(x) b) f(-x) = - f(x) c) f(x ) = ( f(x) ) d) f(ax) = a f(x) e) f(ax) = a f(x) 16)(Unifesp 010) Uma função f : R R diz-se par quando f( x) = f(x), para todo x R, e ímpar quando f( x) = f(x), para todo x R. a) Quais, dentre os gráficos exibidos, melhor representam funções pares ou funções ímpares? Justifique sua resposta. b) Dê dois exemplos de funções, y = f(x) e y = g(x), sendo uma par e outra ímpar, e exiba os seus gráficos. 17)(Ita 010) Sejam f, g: afirmações: I. f. g e impar, II. f o g e par, III. g o f e impar, é (são) verdadeira(s) a) apenas I. b) apenas II. c) apenas III. d) apenas I e II. e) todas. R R tais que f é par e g é impar. Das seguintes

8 Centro de Estudos Matemáticos 18)(Afa 011) Considere as funções reais f e g tal que f( x) = x + 1e que existe a composta de g com f dada por ( )( ) ( ) função g, é incorreto afirmar que ela é a) par. b) sobrejetora. c) tal que g x ( ) 0, x R d) crescente se x + [ 1, [ gof x = x + 1. Sobre a 19)(Uepg 011) Considerando os conjuntos: R = {0, 1, 3, 5, 7}, S = {, 4, 6} e P = {1, }, assinale o que for correto (S P). 0. Existe uma função f: S P que é bijetora. 04. (S P) R = R. 08. R S P =. 16. Nenhuma função f: S R é sobrejetora. 0)(Uft 010) Seja a um número real e f: ], [ [ a, [ uma função definida por f(x) = m x + 4mx + 1, com m 0. O valor de a para que a função f seja sobrejetora é: a) - 4 b) - 3 c) 3 d) 0 e) 1)(Ita 005) Considere os conjuntos S = {0,, 4, 6}, T = {1, 3, 5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {} (S - U) e S T U = {0, 1}. III. Existe uma função f: S T injetiva. IV. Nenhuma função g: T S é sobrejetiva. Então, é(são) verdadeira(s) a) apenas I. b) apenas IV. c) apenas I e IV. d) apenas II e III. e) apenas III e IV.

9 Centro de Estudos Matemáticos )(Unifesp 00) Há funções y = f(x) que possuem a seguinte propriedade: "a valores distintos de x correspondem valores distintos de y". Tais funções são chamadas injetoras. Qual, dentre as funções cujos gráficos aparecem abaixo, é injetora?

10 Centro de Estudos Matemáticos Gabarito: 01) a 0) a 03) a 04) d 05) 09 06) c 07) a 08) a 09) d 10) 06 11) d 1) d 13) b 14) a) par b) sem paridade c) ímpar d) par e) ímpar f) par 15) b 16) a) As funções pares são I e III, pois f(-a) = f(a) para qualquer a real. As funções ímpares são IV e V, pois f(-a) = - f(a) para qualquer a. b) função y = x é par e a função y = x é ímpar. 17) b 18) b 19) 4 0) b 1) b ) e

11 Centro de Estudos Matemáticos Resolução: Questão 01: Temos que f(g(x)) = (x 1) + 4(x 1) = x x+ 1+ 4x 4 = x + x 3 = (x + 3)(x 1). Assim, a função f o g está definida para os valores de x tais que (x + 3)(x 1) 0 x 3 ou x 1, ou seja, D = {x R x 3 ou x 1}. Questão 0: Como f(3) = 3+ 1= 7 e g(3) = = 10, segue que f(g(3)) g(f(3)) = f(10) g(7) = (37 + 1) = = 1. Questão 03: Sabendo que g(f(x)) = x e g(x) = x + 1, vem g(f(x)) = f(x) + 1 x = f(x) + 1 f(x) = x 3. Portanto, f(5) + g() = = 10.

12 Centro de Estudos Matemáticos Questão 04: ( ( )) ( ) f f x = 9x+ 8 aax+ b+ b= 9x+ 8 ( ) a x + b a + 1 = 9 x + 8 a = 9, logo a = 3 ou a = 3. Considerando a = 3, temos: ( ) b3+ 1= 8 b = Logo f( x) = 3x+ e f ( x) ( ) 1 x = 3 OBS: Poderíamos também ter considerado a = 3. Questão 05: (01) Verdadeiro. Para qualquer x Q Im(f) I (I ConjuntodosIrracionais) (0) Falso. x1 = 3+ g(x) = 0 x 6x + 1 = 0 x = 3 (04) Falso. A função f(x) = 5x é crescente para todo x R A função g(x) x 6x 1 = + é crescente para todo x [ 3, ) (08) Verdadeiro. (f og)(x) = f(g(x)) = 5(x 6x + 1) ) = 5x 30x + 5 é uma parábola. (16) Falso. Considerando as funções f e g, ambas com domínio e contradomínio real, temos: I. II. f(x) = 5x com D = R e CD = 1 x+ f (x) = com D = R e CD = 5 g(x) = x 6x + 1 com D =R e CD = R 1 g (x) = 3+ x+ 8 comd= 8, + e CD = 0, + [ ) [ ) Portanto, a inversa de g possui restrição quanto ao domínio. Logo, não admite inversa.

13 Centro de Estudos Matemáticos Questão 06: h(x) = f[g(x)] h(x) = x h(x) = 0 x Questão 07: A função composta g(f(x)) será dada por: gf(x) ( ) = x + x+ 1 ( ) g f(x) = x + x + 1 para x 1 Portanto, o seu gráfico é o da alternativa [A] (apenas o ramo direito da parábola). Questão 08: I. Falsa, pois C(x) = ,5x. II. Verdadeira. Como o lucro da produção é de 5% temos V(C) = 1,5 C. III. Verdadeira, pois C(400) = ,5 400 = R$ 75,00. IV. Verdadeira, pois V(C(x)) = 1,5 (15 + 1,5x). V. Verdadeira, pois V(C(100)) = 1,5 (15 + 1,5 100) = 1,5 75 = 343,75. Apenas as afirmações II, III, IV e V são VERDADEIRAS.

14 Centro de Estudos Matemáticos Questão 09: Fazendo t = x+ 1, vem 1 x 1 x = t+ 1 t = (x). Logo, x 1 x 1 f + 1 = + 4 f(x) = x+ 3. Por outro lado, se u= x+ 1, então 1 x = u+ 1 u (x) = x 1. Desse modo, g(x 1+ 1) = (x 1) 1 g(x) = x 3. Portanto, f og(x) = f(g(x)) = g(x) + 3 = x = x. Questão 10: Item (01) Falso Sendo f(x) = ax + b, temos para a > 0 e b < 0 o gráfico a seguir: Portanto, f(x) = ax + b é crescente, porém não possui raiz negativa (intercepta x num valor positivo)

15 Centro de Estudos Matemáticos Item (0) Verdadeiro Considerando f(x) = ax + b, temos: ( 1,1) f( 1) = a( 1) + b a+ b = 1 a = 1 (3,5) f( 3) = a( 3) + b 3a+ b = 5 b = Portanto: f( 3) = ( 3) + = 1 Logo: f(f( 3)) = ( 1) + = 1, então f(x) = x + Item (04) Verdadeiro f(x) = ax + b f(x) + f(x 3) = 1x (ax + b) + (a(x 3) + b) = 1x ax + b + ax 3a + b = 1x ax + b 3a = 1x Logo : 1 a = 1 a = 3 b 3a = 0 b = 4 Portanto: 1 3 f(x) = x + 4 Item (08) Falso Para b = 3 f(x) = ax 3 f( ) = a 3 f(f( )) = a( a 3) ) 3 f(f( )) = a 3a 3 Portanto: f(f( )) = 5 Logo a 3a 3 = 5 a 3a + = 0 Temos : 1 a1 = = ou a Item (16) Falso Se a < 0 e b < 0 ab 0 > Logo : A raiz de f(x) = ax + b será negativa..

16 Centro de Estudos Matemáticos Questão 11: A lei da função f é dada por 3x + 6, se 0 x 8 < f(x) = 30,se 8 x 15 <. x + 60, se 15 x 30 I. Verdadeira. f(4) = = 18 e f(1) = = 18. II. Verdadeira. f(f(f(0))) = f(f(3 0 6)) + = f(f(6)) = f(3 6 6) + = f(4) = = 1. e f() = = 1. III. Verdadeira f(f(6)) = 1. e f(f(f(8))) = f(f(30)) = f( ) = f(0) = (30 + 6) = 1. Questão 1: Observando que f é constante para x 4 e sabendo que π 3,14, basta calcularmos f(f()) para determinarmos f(f( π )). Do gráfico, temos que para x f é uma função afim, isto é, f(x) = ax + b. Como o gráfico intersecta o eixo y no ponto de ordenada 3, temos que b = 3. Além disso, sabemos que f(1) =. Logo, a 1 3 a 1 Desse modo, f(x) = + x 3 para x e, assim, f() = + 3 = 1. Portanto, f(f( π )) = f(f()) = f(1) =. = + =.

17 Centro de Estudos Matemáticos Questão 13: f[f(f(x))] =3 f(f(x)) = f(x) =1 Portanto, x = 3. Questão 14: a) Função polinomial só com expoentes pares b) Função polinomial com expoentes pares e com expoentes ímpares c) Função polinomial só com expoentes ímpares d) Soma de funções pares e) Soma de funções ímpares f) Produto de funções pares Questão 15: A Função f(x) = x 3-3x é uma função polinomial só com expoentes ímpares, portanto ela é ímpar, ou seja f(-x) = -f(x) Questão 16: a) As funções pares são I e III, pois f(-a) = f(a) para qualquer a real. As funções ímpares são IV e V, pois f(-a) = - f(a) para qualquer a. b) função y = x é par e a função y = x é ímpar. Questão 17: I. f(-x).g(-x) = - f(x).g(x) (função ímpar) II.f(g(-x)) = f(-g(x)) = f(g(x)) ( função par) III.g(f(-x)) = g(f(x)) ( função par) Apenas I e II estão corretas.

18 Centro de Estudos Matemáticos Questão 18: g(f(x)) = (f(x)) = f(x) portanto g(x) = x g(x) não é sobrejetora, pois seu conjunto imagem é contradomínio é o conjunto dos números reais. 0,+ e seu Questão 19: Item (01) - Falso S P = {4,6}. Portanto 1 (S P). Item (0) - Falso Função Bijetora Função injetora e função sobrejetora. Função injetora: x1 x y1 y Função sobrejetora: CD(f) = Im(f) Portanto: f:s P não é injetora, pois existirá x1 x y1 = y Item (04) - Falso (S P) R = { 0,1,,3,5,7 } R Item (08) Verdadeiro R S P = pois, não possuem nenhum elemento em comum. Item (16) Verdadeiro Função sobrejetora: CD(f) = Im(f) Portanto: Qualquer associação entre S e R que defina uma função terá CD(f) Im(f).

19 Centro de Estudos Matemáticos Questão 0: a deverá ser o y do vértice. Δ ((4m) 4. m.1) 1m Portanto, s = = = = 3 4a 4. m 4m Questão 1: b Questão : e

Exercícios de Matemática Funções Função Composta

Exercícios de Matemática Funções Função Composta Exercícios de Matemática Funções Função Composta TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se as funções f(x) = x

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

Função do 1 Grau - AFA

Função do 1 Grau - AFA Função do 1 Grau - AFA 1. (AFA 2009) Considere as funções reais f : IR IR dada por f(x) = x + a, g : IR IR dada por g(x) = x a, h : IR IR dada por h(x) = x a Sabendo-se que a < 0, é INCORRETO afirmar que

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Unidade 3 Função Afim

Unidade 3 Função Afim Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B).

Uma função f de domínio A e contradomínio B é usualmente indicada por f : A B (leia: f de A em B). Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo : Funções.- Definições Sejam A e B dois conjuntos não vazios. Uma função f de

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição 90 1. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 1.1 FUNÇÕES INJETORAS Definição Dizemos que uma função f: A B é injetora quando para quaisquer elementos x 1 e x de A, f(x 1 ) = f(x ) implica x 1 = x. Em

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

Polígonos Regulares Inscritos e Circunscritos

Polígonos Regulares Inscritos e Circunscritos Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10]

Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [2;10] Exercícios - Funções Injetora, sobrejetora e bijetora. h) f: [1;8] [;10] 1) Verifique se as funções são injetoras, sobrejetoras ou bijetoras: a) f: A B A 0 f 1 B 4 5 6 7 b) f: A B A 0 4 6 c) f: R R + definida

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Equações Trigonométricas

Equações Trigonométricas Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)

Leia mais

Exercícios de Matemática Funções Função Logarítmica

Exercícios de Matemática Funções Função Logarítmica Exercícios de Matemática Funções Função Logarítmica 3. (Ufsm) Se x > 0 e x 1, então a expressão TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos.

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

0.1 Tipos importantes de funções

0.1 Tipos importantes de funções . Tipos importantes de funções Função par: Se f(x) =f(x), paratodox Dom(f) então dizemos que a função f é uma função par. (note que o gráfico é uma curva simétrica pelo eixo y). Exemplos: f(x) =x é uma

Leia mais

MA 109 Matemática Básica. Petronio Pulino DMA/IMECC/UNICAMP e-mail: pulino@ime.unicamp.br www.ime.unicamp.br/ pulino/ma109/

MA 109 Matemática Básica. Petronio Pulino DMA/IMECC/UNICAMP e-mail: pulino@ime.unicamp.br www.ime.unicamp.br/ pulino/ma109/ MA 109 Matemática Básica Primeiro Semestre de 2009 Petronio Pulino DMA/IMECC/UNICAMP e-mail: pulino@ime.unicamp.br www.ime.unicamp.br/ pulino/ma109/ 5 Lista de Exercícios Função Afim Exercício 5.1 Uma

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa 1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx

Leia mais

2y 2z. x y + 7z = 32 (3)

2y 2z. x y + 7z = 32 (3) UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

www.cursoavancos.com.br

www.cursoavancos.com.br LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

Exercícios de Matemática Equações de Terceiro Grau

Exercícios de Matemática Equações de Terceiro Grau Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

www.pconcursos.com Questão 1

www.pconcursos.com Questão 1 APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (SANTA CASA-SP) Existem 4 estradas de rodagem e 3 estradas de ferro entre as cidades

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I MATEMÁTICA Prof. Paulo Roberto MÓDULO I ENCONTRO 01---------------Função, Domínio e Imagem, Tipos, composição e inversibilidade. ENCONTRO 0 ---------------Função (função do primeiro grau). ENCONTRO 03---------------Função

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

Função Afim. www.soexatas.com Página 1

Função Afim. www.soexatas.com Página 1 Função Afim. (Ufsm 04) De acordo com dados da UNEP - Programa das Nações Unidas para o Meio Ambiente, a emissão de gases do efeito estufa foi de 45 bilhões de toneladas de CO em 005 e de 49 bilhões de

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa 1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

Capítulo 2 Generalidades sobre Funções Reais de Variável Real. Carlos J. Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal

Capítulo 2 Generalidades sobre Funções Reais de Variável Real. Carlos J. Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Capítulo Generalidades sobre Funções Reais de Variável Real Carlos J. Luz Departamento de Matemática Escola Superior de Tecnologia de Setúbal Ano Lectivo 7/8 Índice Generalidades sobre Funções. Definiçãodefunção....

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1.

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1. 2.1 Domínio e Imagem EXERCÍCIOS & COMPLEMENTOS 1.1 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferentes Para Números Complexos Capítulo II Aplicação 2: Complexos na Geometria Na rápida revisão do capítulo I desse artigo mencionamos

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Função Seno. Gráfico da Função Seno

Função Seno. Gráfico da Função Seno Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Ludmilla Rangel Cardoso Silva Kamila Gomes Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Matemática I PROFESSOR(A) Steve ANO SEMESTRE DATA 8º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Considere que x é a fração geratriz da

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina):

Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Alguns exercícios amais para vocês (as resoluções dos exercícios anteriores começam na próxima pagina): Seja A um domínio. Mostre que se A[X] é Euclidiano então A é um corpo (considere o ideal (a, X) onde

Leia mais

Notas de aulas. André Arbex Hallack

Notas de aulas. André Arbex Hallack Cálculo I Notas de aulas André Arbex Hallack Julho/007 Índice 0 Preliminares 0. Números reais.................................... 0. Relação de ordem em IR.............................. 3 0.3 Valor absoluto....................................

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais

PARTE 3. 3.1 Funções Reais de Várias Variáveis Reais PARTE 3 FUNÇÕES REAIS DE VÁRIAS VARIÁVEIS REAIS 3. Funções Reais de Várias Variáveis Reais Vamos agora tratar do segundo caso particular de funções vetoriais de várias variáveis reais, F : Dom(F) R n R

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

O Plano. Equação Geral do Plano:

O Plano. Equação Geral do Plano: O Plano Equação Geral do Plano: Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = (a, b, c), n 0, um vetor normal (ortogonal) ao plano (figura ao lado). Como n π, n é ortogonal a todo vetor

Leia mais

Funções com o Winplot

Funções com o Winplot UNIVERSIDADE FEDERAL DE SANTA MARIA - RS GRUPO PET MATEMÁTICA DA UFSM Funções com o Winplot Antonio Carlos Lyrio Bidel Luana Kuister Xavier Rodrigo Guerch Rosin Vagner Weide Rodrigues 2013 Conteúdo 1 Introdução

Leia mais

Aula 4 Função do 2º Grau

Aula 4 Função do 2º Grau 1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função

Leia mais

REVISÃO DE. Vamos em Frente. O sucesso nos espera.

REVISÃO DE. Vamos em Frente. O sucesso nos espera. REVISÃO DE Esta Lista de Revisão reúne questões de vestibulares de todo o país. Sobre os assuntos dados no º Semestre. As questões foram selecionadas e classificadas cuidadosamente por assunto, com o objetivo

Leia mais

Tópico 2. Funções elementares

Tópico 2. Funções elementares Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter.

Leis de Kepler. 4. (Epcar (Afa) 2012) A tabela a seguir resume alguns dados sobre dois satélites de Júpiter. Leis de Kepler 1. (Ufpe 01) Um planeta realiza uma órbita elíptica com uma estrela em um dos focos. Em dois meses, o segmento de reta que liga a estrela ao planeta varre uma área A no plano da órbita do

Leia mais

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de

Leia mais

01) 45 02) 46 03) 48 04) 49,5 05) 66

01) 45 02) 46 03) 48 04) 49,5 05) 66 PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R).

1. Verifique se são operadores lineares no espaço P n (R): (a) F: P n (R) P n (R) tal que F(f(t)) = tf (t), f(t) P n (R). UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSUNTO: TRANSFORMAÇÕES LINEARES EXERCÍCIOS RESOLVIDOS 1. Verifique se são operadores lineares

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional. n=1 Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA Números e Funções Reais Avaliação - GABARITO 3 de abril de 203. Determine se as afirmações a seguir são verdadeiras

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)

EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios) UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios

Leia mais

QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.

QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 3 8 + 30 = a) 8 b) 9 c) 8 d) 9 e) 58 5 5 3 3 8

Leia mais

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2 Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: ELIZABETH E JOSIMAR Ano: 8º Data: / 07 / 01 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA ÁLGEBRA 1) Classifique em verdadeiro (V)

Leia mais