ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

Tamanho: px
Começar a partir da página:

Download "ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora"

Transcrição

1 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora

2 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto B. A B Ou seja, x diferente tem y diferente!!!

3 3 FUNÇÃO SOBREJETORA É quando o conjunto Imagem da função for igual ao conjunto contradomínio. ( Im = CD ) M -1 1 H Se M é o conjunto das mulheres e H é o conjunto dos homens, então não se pode ter homem solteiro!!! 1 9 3

4 FUNÇÃO BIJETORA 4 É uma função simultaneamente injetora e sobrejetora. M Injetora: x diferente tem y diferente -1 1 H Ou seja, homens e mulheres com os mesmos direitos!! Sobrejetora: NÃO SOBRAM elementos no contra domínio.

5 5 Testando seus conhecimentos 1º) Classifique as funções como bijetora, sobrejetora, injetora ou ainda nenhuma delas: a) b) é injetora é sobrejetora

6 1º) Classifique as funções como bijetora, sobrejetora, injetora, ou ainda nenhuma delas: 6 c) d) é bijetora não é sobrejetora, nem injetora

7 2º) (UFRN) Seja B o conjunto formado por todos os brasileiros e 7R o conjunto dos números reais. Se f: B R é a função que associa a cada brasileiro sua altura, medida em centímetros, então f : Existem brasileiros com a a) é injetora e não é sobrejetora. mesma altura, portanto, b) é injetora e é sobrejetora. f não é injetora! c) não é injetora e é sobrejetora. Sobram elementos no d) não é injetora e não é sobrejetora. conjunto contra domínio, portanto, f não é sobrejetora! B Eu Thiago Mailson Francisli Claúdia Dennys R 1,73-2 1, ,70-2,3 1, π Resp. (d)

8 3º) (UFRN) Sejam E o conjunto formado por todas as escolas de ensino médio de Natal e P o conjunto formado pelos números que representam a quantidade de professores de cada escola do conjunto E. Se f: E P é a função que a cada escola de E associa seu número de professores, então: a) f é uma função sobrejetora. b) f não pode ser uma função bijetora. c) f não pode ser uma função injetora. d) f é necessariamente uma função injetora. Resp. (a) 8 E IFRN Empregad éstica Maris bela Flo foca Over dopping Conte râneo P

9 FUNÇÃO INVERSA: 9 D A idéia agora é entender que y = f(x) e seguir o seguinte procedimento: 1º) Isola x ; 2º) Troca x por y e vice versa. R O símbolo para a f(x) função inversa de f é f -1 e lê-se função x y inversa de f. f -1 (x) O símbolo 1 em f -1 não é um expoente; f -1 (x) não significa 1 / f(x).

10 FUNÇÃO INVERSA: 10 TESTE DA RETA HORIZONTAL Uma função f tem inversa se e somente se o gráfico da mesma for cortado apenas uma vez por qualquer reta horizontal. EXEMPLO: a função f(x) = x 2 tem inversa? y ou f(x) y=x 2 ou f(x)=x 2 reta horizontal x Conclusão: a função f(x)=x 2 não tem inversa.

11 4º) (UFSE) Considere a função bijetora y = ( 3x 1) : (x + 3), a expressão que define sua inversa é: A) (x + 3) : ( 3x 1) B) ( 3x + 1) : ( 3 x) C) ( 2x 1) : (x + 1) D) ( 3x 1) : (x + 3) Vejamos: y = ( 3x 1) : (x + 3) y = _3x 1_ x + 3 1º) Isolando x ; _3x 1_ = y x x 1 = y. (x + 3) 3x 1 = y. x + 3.y 3x y. x = 3.y + 1 Colocando x em evidência: x.(3 y) = 3.y + 1 x = _3.y + 1_ 3 y 2º) Troca x por y. y = _3.x + 1_ = ( 3.x + 1) : ( 3 x) 3 x

12 FUNÇÃO PAR: Uma função é PAR quando ela é simétrica em relação ao eixo y. f(x) = f(-x) y 12 f(x) = x² exemplo: f(x) = x² é par pois 2² = (-2)² = 4 x FUNÇÃO ÍMPAR: Função ÍMPAR é simétrica em relação a origem. exemplo: f(x) = x³ é ímpar pois 2³ = - (-2)³ f(a) = - f(-a) y f(x) = x³ x

13 5º) a) Verifique se f(x) = 2x³ +5x é par ou ímpar: 13 Primeiro vejamos que f(1) = 2.1³ = 7 Em seguida, vejamos f(-1) = 2.(-1)³ + 5.(-1) = -7 Logo f(x) = 2x³ +5x é ÍMPAR, pois f(x) = - f(-x) ou seja, f(1) = - f(-1), pois 7 = - (-7) b) Mostre que f(x) = 3x² é par: Primeiro vejamos que f(1) = 3(1)² = 3 Em seguida, vejamos f(-1) = 3(-1)² = 3 Logo f(x) = x² é PAR, pois f(x) = f(-x) ou seja, f(1) = f(-1), pois 3 = 3

14 6º) Sendo o gráfico ao lado de f(x), o gráfico de f( x) será : 14 Lembre-se: Se f(x) = f(-x) Então a função f é par e ela é simétrica ao eixo y. Resp.:E

15 15 FUNÇÃO CRESCENTE ou DECRESCENTE: f(b) f(a) f g(b) g(a) g f(b) f(a) f g(b) g(a) g O a b O a b a b a b A função f é crescente A função g é decrescente A função f é crescente A função g é decrescente Diz-se que f é crescente f se para a < b, então f(a) < f(b). Diz-se que g é decrescente, se a < b então g(a) > g(b).

16 7º) A partir da análise do gráfico, determine os intervalos onde a função é: y x a) Decrescente ]0, 4[ b) Crescente ]- ; 0[ e ]4 ; + [

17 Função Composta Função composta Considere as funções f: A B e g: B C, então a função h: A C é a função composta g(f(x)), com x Є A. B A C x f(x) g(f(x)) Se x = 3 Ex: f(x) = x+2 e g(y) = y 2, então h(x) = g(f(x)) = (x+2) 2

18 Mais exemplos: Sejam as funções f(x) = x 2 1 e g(x) = 3x, calcule: a) f(g(x)) b) g(f(x)) c) f(f(x)) d) g(g(x)) Função Composta

19 19 TESTANDO OS CONHECIMENTOS 1 Qual dos gráficos representa uma função injetora? 2 Ao analisar a função real f definida por f(x)=x²+4x-12, podemos afirmar que f é injetora? Justifique a resposta.

20 20 TESTANDO OS CONHECIMENTOS 3 Em cada gráfico, analise o intervalo de crescimento e de decrescimento. 4 Dadas as proposições: p: Existem funções que não são pares nem ímpares. q: O gráfico de uma função par é uma curva simétrica em relação ao eixo dos y. r: Toda função de A em B é uma relação de A em B. t: O gráfico cartesiano da função y = x / x é uma reta. Podemos afirmar que são falsas: a) Nenhuma b) Todas c) p,q e r d) t e) r e t

21 21 TESTANDO OS CONHECIMENTOS 5 (PUC-RS) Seja a função definida por f(x) = (2x - 3) / 5x. O elemento do domínio de f que tem -2 / 5 como imagem é: a) 0 b) 2/5 c) -3 d) 3/4 e) 4/3 6 A função f é definida por f(x) = ax + b. Sabe-se que f(-1) = 3 e f(3) = 1, então podemos afirmar que f(1) é igual a: a) 2 b) -2 c) 0 d) 3 e) -3

22 22 TESTANDO OS CONHECIMENTOS 7 (UFRJ) Considere a relação de M em N, representada no diagrama abaixo. Para que seja uma função de M em N, basta: A) apagar a seta (1) e retirar o elemento s; B) apagar a setas (1) e (4) e retirar o elemento k; C) apagar a seta (4) e retirar o elemento k; D) apagar a seta (2) e retirar o elemento k.

23 23 TESTANDO OS CONHECIMENTOS 8 (UNESP SP) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função (h) = 17h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3)h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é: A) B) C) D) 2601.

24 24 TESTANDO OS CONHECIMENTOS 9 (UFRN) Na figura abaixo, tem-se o gráfico de uma reta que representa a quantidade, medida em m, de um medicamento que uma pessoa deve tomar em função de seu peso, dado em kgf, para tratamento de determinada infecção. O medicamento deverá ser aplicado em seis doses. Assim, uma pessoa que pesa 85kgf receberá em cada dose: A) 7 m B) 9 m C) 8 m D) 10 m

25 25 TESTANDO OS CONHECIMENTOS 10 (UFRN) Na tabela abaixo, X representa dias, contados a partir de uma data fixa, e Y representa medições feitas em laboratório, nesses dias, para estudo de um fenômeno. X Y De acordo com a tabela, pode-se afirmar que as grandezas são: A) diretamente proporcionais e relacionadas por uma função quadrática. B) inversamente proporcionais e relacionadas por uma função linear. C) diretamente proporcionais e relacionadas por uma função linear. D) inversamente proporcionais e relacionadas por uma função quadrática.

26 26 TESTANDO OS CONHECIMENTOS 11 (UFCE) Qual dos gráficos abaixo não pode representar uma função?

27 27 TESTANDO OS CONHECIMENTOS 12 (UFRN) Determine o valor da expressão para a = a 2 a a 2a 2

28 28 TESTANDO OS CONHECIMENTOS 13 Vimos que se uma função ƒ é bijetora então ela admite uma função inversa ƒ -1. Diante de duas funções, ƒ e g, podemos obter uma composição entre elas, ou seja, uma função h = ƒ(g(x)) ou j = g(ƒ(x)). Dadas as funções ƒ(x) = 5x + 1 e g(x) = 6x 4, resolva a equação ƒ -1 (g(x)) = 0, seguindo o procedimento em cada item: a) Determine ƒ -1 (x); b) Na função ƒ -1 (x) obtida no item (a), substitua x por g(x), em seguida, iguale a zero e resolva a equação;

29 29 TESTANDO OS CONHECIMENTOS RELEMBRANDO: Resolva os exercícios do livro: P.89 _ 4 P.95 _ 9 P.99 _ 10 P.100 _ 11 P.101 _ 14 e 15 P.107 _ 17 e 19 P.112 _ 23 e 25 OBS: Foram selecionados 10 exercícios de um total de 36 exercícios do referente capítulo do livro.

30 Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Semana 1 Revendo as Funções

Semana 1 Revendo as Funções 1 CÁLCULO DIFERENCIAL E INTEGRAL I Semana 1 Revendo as Funções Professor Luciano Nóbrega UNIDADE 1 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas

Leia mais

Aula 1 Revendo Funções

Aula 1 Revendo Funções Tecnólogo em Análise e Desenvolvimentos de Sistemas _ TADS 1 Aula 1 Revendo Funções Professor Luciano Nóbrega 2 SONDAGEM 1 Calcule o valor das expressões abaixo. Dê as respostas de todas as formas possíveis

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 3 _ Introdução às Funções Professor Luciano Nóbrega 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS

Leia mais

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega

MATEMÁTICA. Aula 04. Função Uma Ideia Fundamental Professor Luciano Nóbrega MATEMÁTICA 1 A Matemática apresenta invenções tão sutis que poderão servir não só para satisfazer os curiosos como, também para auxiliar as artes e poupar trabalho aos homens. (Renê Descartes Filósofo,

Leia mais

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com.

A idéia de função. O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com. Matemática Básica Unidade 5 Estudo de Funções RANILDO LOPES Slides disponíveis no nosso SITE: O conceito de função é um dos mais importantes em toda a Matemática. https://ueedgartito.wordpress.com A idéia

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Plano Cartesiano Fixando em um plano dois eixos reais Ox e Oy, perpendiculares entre si no ponto O, podemos determinar

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin

Matemática Complementos de Funções. Professor Marcelo Gonsalez Badin Matemática Complementos de Funções Professor Marcelo Gonsalez Badin Paridade Função PAR f (x) é chamada FUNÇÃO PAR se f ( x) = f (x) Exemplo: f (x) = x 4 f ( x) = ( x) 4 = x 4 = f (x) O gráfico de uma

Leia mais

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 3 _ Introdução às Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 3 _ Introdução às Funções Professor Luciano Nóbrega Maria Auxiliadora 2 A FUNÇÃO 3 É como uma máquina onde entram que são transformados e saem suas Matematicamente... elementos IMAGENS y

Leia mais

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5

MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/ Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 MATEMÁTICA - SEMI/NOITE PROF. FELIPE HEY 20/04/2016 Aula 04 FUNÇÃO MODULAR 01.01. Assinale V para as afirmativas verdadeiras e F para as falsas. a) ( ) -8 = 8 b) ( ) 5 = ±5 c) ( ) x² d) ( ) 3 ² 3 e) (

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;

CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.

Leia mais

Matemática I Capítulo 06 Propriedades das Funções

Matemática I Capítulo 06 Propriedades das Funções Nome: Nº Curso: Mineração Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 06 Propriedades das Funções 6.1 Paridade das Funções 6.1.1 - Função par Dada uma função

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Capítulo 3. Fig Fig. 3.2

Capítulo 3. Fig Fig. 3.2 Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA I. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA I Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

CÁLCULO I Aula 01: Funções.

CÁLCULO I Aula 01: Funções. Inversa CÁLCULO I Aula 01: Funções. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará Inversa 1 Funções e seus 2 Inversa 3 Funções Funções e seus Inversa Consideremos A e B dois

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Uma Relação será função se:

Uma Relação será função se: Funções Uma Relação será função se: 1. Todo elemento do conjunto domínio (A) possui um elemento correspondente no conjunto contradomínio (B); 2. Qualquer que seja o elemento do domínio (A), so existe um

Leia mais

QUESTÕES-AULA Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4. Se calcularmos (g f)(x) e (f g)(x) teremos,

QUESTÕES-AULA Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4. Se calcularmos (g f)(x) e (f g)(x) teremos, QUESTÕES-AULA 36 1. Determine se as funções dadas são inversa uma da outra: f(x) = x 4 4, g(x) = 4 x + 4 Se calcularmos (g f)(x) e (f g)(x) teremos, e (g f)(x) = g(f(x)) = g(x 4 4) = 4 x 4 4 + 4 x (f g)(x)

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora

2º Trimestre ÁLGEBRA. Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega. Maria Auxiliadora 2º Trimestre 1 ÁLGEBRA Aula 7 _ Progressão Aritmética Professor Luciano Nóbrega Maria Auxiliadora SEQUÊNCIA NUMÉRICA 2 SEQUÊNCIA NUMÉRICA Denominamos por Sequência Numérica uma função f, cujo domínio é

Leia mais

FUNÇÕES. Prof.ª Adriana Massucci

FUNÇÕES. Prof.ª Adriana Massucci FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:

Leia mais

FUNÇÕES. Jairo Weber

FUNÇÕES. Jairo Weber FUNÇÕES Jairo Weber De Relações e funções Seja o conjunto A={0, 1,2, 3, 4} e o conjunto B={0, 2, 4, 6, 8, 11}, temos: R = {(x,y) AxB / y = 2x} R={(0,0); (1,2); (2,4); (3,6); (4,8)} N(R)=5 Diagrama 0 1

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 3ª Lista de Exercícios RESOLUÇÃO Nome Nota RESOLUÇÃO 1) Para cada uma das relações a seguir, em R, desenhe uma figura para mostrar a região do plano que a descreve. a) x R 2 b) S = {(x,) Rx R 2x + 3-0} x 0 2 3 0 2) São dados A={,,7,8}

Leia mais

Subtemas: Função Composta, Função Inversa, Qualidades

Subtemas: Função Composta, Função Inversa, Qualidades PLANO DE AULA 1)Escola de Educação Básica Bulcão Viana Município: Praia Grande/SC Disciplina: Matemática Série: 1º ano Nível: Ensino Médio Turma: Única Professora: Mariani Constante de Jesus Tempo previsto:

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 1ª PARTE QUESTÃO 1: Sabendo-se que o diagrama a seguir representa uma função f de A em B, responda: A) Qual é o domínio da função f?? B) Qual é o contradomínio da função f? C) Qual é o conjunto imagem da função

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------

Leia mais

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE

Relações. George Darmiton da Cunha Cavalcanti CIn - UFPE Relações George Darmiton da Cunha Cavalcanti CIn - UFPE Relações Binárias Sejam X e Y dois conjuntos. Uma relação entre X e Y é um subconjunto de produto cartesiano X Y. No caso de X = Y, a uma relação

Leia mais

INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO

INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO INSTITUTO FEDERAL CATARINENSE CAMPUS AVANÇADO SOMBRIO Disciplinas: Estágio Supervisionado IV e Laboratório de prática e ensino aprendizagem II Professoras: Marleide Coan Cardoso e Margarete Farias Medeiros

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO

GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO FACET Faculdade de Ciências Exatas e Tecnológicas Avaliação 30/03/016 RESOLUÇÃO 01. A

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Função Composta e Função Inversa. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Função Composta e Função Inversa Professor : Dêner Rocha Monster Concursos 1 Função Composta A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO

LISTA DE REVISÃO DE ÁLGEBRA 3ºANO LISTA DE REVISÃO DE ÁLGEBRA 3ºANO. (Espcex (Aman)) Considerando a função real definida por a) 8 b) 0 c) d) e) 4 x 3, se x, x x, se x o valor de f(0) f(4) é. (Enem) Após realizar uma pesquisa de mercado,

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo.

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) O conjunto A = {1, 2, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaixo. Questão 0) O conjunto = {,, 3, 4, 5} foi representado duas vezes, na forma de diagrama, na figura abaio. Para definir uma função sobrejetora f :, uma pessoa ligou cada mento do diagrama com um único mento

Leia mais

Função Afim. Definição. Gráfico

Função Afim. Definição. Gráfico Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função

Leia mais

Exercícios de Matemática Funções Função Modular

Exercícios de Matemática Funções Função Modular Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de /04/2014 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação Primeiro Semestre Letivo de 014 6/04/014 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: 1- A prova pode ser feita a lápis, exceto

Leia mais

p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.

p: João Alvaro w:  e: Lista de exercícios de Matemática Função composta. Função inversa. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

Lista 6 - Bases Matemáticas

Lista 6 - Bases Matemáticas Lista 6 - Bases Matemáticas Funções - Parte 1 Conceitos Básicos e Generalidades 1 Sejam dados A e B conjuntos não vazios. a) Defina rigorosamente o conceito de função de A em B. b) Defina rigorosamente

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

Exercícios: Funções - Introdução Prof. André Augusto

Exercícios: Funções - Introdução Prof. André Augusto Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X =

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a

Leia mais

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010 1. Função Afim Uma função f: R R definida por uma expressão do tipo f x = a. x + b com a e b números reais constantes é denominada função afim ou função polinomial do primeiro grau. A função afim está

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira)

Mat.Semana 5. PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Semana 5 PC Sampaio Alex Amaral Gabriel Ritter (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F.

M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F. Módulo de Funções - Noções Básicas Funções - Noções Básicas. 9 o ano E.F. Funções - Noções Básicas 1 Exercícios Introdutórios Exercício 1. Em um certo dia, três mães deram à luz em uma maternidade. Uma

Leia mais

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2

(d) Quais das sentenças abaixo são verdadeiras? Explique sua resposta. (a) 3 IR (b) IN IR (c) Z IR. IR Q (i) 3 2 LISTA - 1 1 Números Reais 1. Expresse cada número como decimal: (a) 7 10 (b) 2 5 (c) 9 15 (d) 7 8 (e) 17 20 (f) 4 11 (g) 8 7 (h) 56 14 2. Expresse cada número decimal como uma fração na forma mais reduzida

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

3º Bimestre. Álgebra. Autor: Leonardo Werneck

3º Bimestre. Álgebra. Autor: Leonardo Werneck 3º Bimestre Autor: Leonardo Werneck SUMÁRIO CAPÍTULO 01 RELAÇÕES E FUNÇÕES... 6 1. O Plano Cartesiano... 6 2. Produto Cartesiano... 7 2.1. Gráfico de um Produto Cartesiano... 8 2.2. O produto ℝ ℝ ou ℝ𝟐...

Leia mais

ANPEC. Prova de Matemática Exame de 2017

ANPEC. Prova de Matemática Exame de 2017 ANPEC Prova de Matemática Exame de 2017 Exercícios 1. Considere o seguinte conjunto: C = x, y : x ' 2x 1 y min x + 17, x + 19. Analise a veracidade das seguintes afirmações: A. O valor máximo da coordenada

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor

Leia mais

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4).

b) Para que valores reais de x, f(x) > 2x + 2? 2. (Ufscar 2002) Sejam as funções f(x) = x - 1 e g(x) = (x + 4x - 4). 1. (Fuvest 2000) a) Esboce, para x real, o gráfico da função f(x)= x-2 + 2x+1 -x-6. O símbolo a indica o valor absoluto de um número real a e é definido por a =a, se aµ0 e a =-a, se a

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental

Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa

Leia mais

Universidade Federal de Pelotas Disciplina de Introdução à Economia Matemática Professor Rodrigo Nobre Fernandez. Primeira Avaliação

Universidade Federal de Pelotas Disciplina de Introdução à Economia Matemática Professor Rodrigo Nobre Fernandez. Primeira Avaliação Universidade Federal de Pelotas Disciplina de Introdução à Economia Matemática Professor Rodrigo Nobre Fernandez Primeira Avaliação ) Sejam definidos os seguintes conjuntos ( ponto): I = Conjunto de pessoas

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem?

2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos. Quantas funções injetoras de A em B existem? 1. (Unirio 99) Sejam as funções f : IR ë IR x ë y= I x I e g : IR ë IR x ë y = x - 2x - 8 Faça um esboço gráfico da função fog. 2. (Ufpe 96) Seja A um conjunto com 3 elementos e B um conjunto com 5 elementos.

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

(CESGRANRIO) Sendo A = { 0,1 } e B { 2,3 }, o produto cartesiano A X B é:

(CESGRANRIO) Sendo A = { 0,1 } e B { 2,3 }, o produto cartesiano A X B é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (CESGRANRIO) Sendo A = { 0,1 } e B { 2,3 }, o produto cartesiano A X B é: a) {

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega

MATEMÁTICA II. Aula 14. 4º Bimestre. Números Complexos Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 14 Números Complexos Professor Luciano Nóbrega 4º Bimestre www.professorlucianonobrega.wordpress.com 2 INTRODUÇÃO Vamos relembrar os Conjuntos Numéricos: N: conjunto dos números naturais:

Leia mais

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega

MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder

Leia mais

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6

CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 CURSO ALCANCE UFPR Matemática 13/08/2016 Página 1 de 6 Introdução à funções Uma função é determinada por dois conjuntos e uma regra de associação entre os elementos destes conjuntos. Os conjuntos são chamados

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte A Universidade Federal do Rio Grande FURG Instituto de Matemática, Estatística e Física IMEF Edital 5 CAPES FUNÇÕES Parte A Prof. Antônio Maurício Medeiros Alves Profª Denise Maria Varella Martinez UNIDADE

Leia mais

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a:

1) Sejam as funções f e g de R em R tais que f(x) = 2 x + 1 e f(g(x)) = 2 x - 9, o valor de g(- 2) é igual a: COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1) Sejam as funções f e g de R

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica

MATEMÁTICA 3. Professor Renato Madeira. MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica MATEMÁTICA 3 Professor Renato Madeira MÓDULO 4 Função injetora, sobrejetora, bijetora, par, ímpar, crescente, decrescente, limitada e periódica SUMÁRIO 1. Funções monotônicas (crescente ou decrescente)

Leia mais

Funções - Terceira Lista de Exercícios

Funções - Terceira Lista de Exercícios Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na

Leia mais